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SPECIALITY OF QUADRATIC JORDAN ALGEBRAS

KEVIN McCRIMMON

In this paper we extend to quadratic Jordan algebras
certain results due to P, M, Cohn giving conditions under
which a Jordan algebra is special, the most important of
these being the Shirshov-Cohn Theorem that a Jordan algebra
with two generators and no extreme radical is always special.
We also prove that the free algebra on two generators x, y
modulo polynomial relations p(x) = 0, ¢(y) = 0 is special, and
by taking a particular p(x) we show that most of the properties
of the Peirce decomposition of a Jordan algebra relative to
a supplementary family of orthogonal idempotents follow im-
mediately from the analogous properties of Peirce decomposi-
tions in associative algebras.

Throughout we will work with algebras over an arbitrary (com-
mutative, associative) ring of scalars @. A (unital) quadratic Jordan
algebra is defined axiomatically in terms of a product U,y linear in ¥y
and quadratic in # [4, p. 1072]. We can introduce a quadratic Jordan
structure 2" in any unital associative algebra 2 by taking

Uy = zyx .
Any (Jordan) subalgebra of such an algebra At is called a special
Jordan algebra. A specialization of a quadratic Jordan algebra & is
a homomorphism of ¥ into an algebra of the form 2A+.

With any quadratic Jordan algebra ¥ we can associate its special
universal envelope, consisting of a unital associative algebra su(J) and
a (universal) specialization o,: J — su(J)*™ such that any specialization
o: §— A+ factors uniquely through an associative homomorphism su(o):
su(JF) — A,

r\C"S _f__., A+
1) a\u\ /sﬁa)
su(J)

su(Y) carries a unique involution, the main involution w, such that
the elements of J’* are symmetric: 7+ = x°». This association is

functorial—if @: § — & is a homomorphism of quadratic Jordan algebras
there is induced an associative homomorphism su(®) making

3-8
(2) o .
su(R) = su(S)
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commutative. An algebra & is special if and only if it is imbedded
in su(y) via o,.

For any set X we have a free quadratic Jordan algebra FJ(X),
a free spectal Jordan algebra FS(X), and a free associative algebra
F(X) on the set X (over the ring ®). We have FS(X) imbedded in
F(X) as the (Jordan) subalgebra of F(X)* generated by X, and F(X)
with this inclusion map serves as special universal envelope for F'S(X)..
When X consists of just two elements X = {x, y} we know FJ(z, y) =
FS(z, y) by Shirshov’s Theorem. For all these see [3].

1. Cohn’s theorem and criterion. We consider a set X = {x.};c,
where the indices are linearly ordered. The free associative algebra
F(X) carries a reversal involution, whose action on a typical monomial is,

* _
iy n - n 1°
( oo ;) B eee

The subspace H(F(X), *) of *-symmetric elements is a Jordan sub--
algebra of F(X)* containing X, hence containing FS(X). Cohn’s:
Theorem measures how far F'S(X) is from being all of $(F(X), *).

CouN’s THEOREM [1, p. 257; 2, ex. 2 p. 9]. O(F(X), *) is the
Jordan subalgebra of F(X)* generated by 1, X, and all the n-tads

{xil e xi”} =y v By, Xy e By

where =4 and 1, < 1, < v+ < lpe

Proof. Clearly $ = H(F(X), *) contains X and all n-tads. Con--
versely, to show the subalgebra & generated by such elements is all
of § we must show & contains all {z; ---2; }=; ---2; +@;, -2,
and all @; ---x; yx; ---x; (Where y is either 1 or one of the ;) since:
these clearly span . Now the x; ---; yx; «+-@; = U,,il oo Un,}/'
are generated by X alone, so we need only generate the {; ---x,}.
We do this by induction on n. The result is trivial for n = 2, 8 since
{2} = o, 0 @y, {2:,2,2,,) = U,,,.l,,,isaciz where oy and U,.y are the
linearizations of x*(=U,l1) and U,y. We assume n = 4 and that all
{a; ««-x; } for m < n are in &.

Our first task is to show
( 3 ) {x'z:r(l) o xix(n)} = i{x” T xi'n} (mOd R)-

for any permutation m. It suffices to do this for the generators
(12 .-+ n) and (1n) of the symmetric group S,. For the transposition
(1n) we have

{xil cee ;) + {winxiz cee @i} = Uzil,x.;n{x ceew, 3=0

12
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by our induction hypothesis, and for the cycle (12 ... n)
{xil e xln} + {‘/viz e xinxil} =x; 0 {xiz I win} =0.

If all the indices are distinct then (3) shows that {w; ---w;} is
congruent to + an n-tad, which belongs to & by hypothesis, so
{o; «--w;} also belongs to . If two indices coincide, (3) shows
(g, cevwecenw e )= {ow, -o-a;, 00 = Udwy -} =0 by induc-
tion. In either case, {v; ---; }e&.

Since there are no n-tads for m = 4 if there are only three vari-
ables, we have the following useful corollary.

COROLLARY. For m < 3, the subalgebra of F(x, --+,2,)" generated
by Tiy o0y Ty 15 all Of. @(F(xly Y "/Um)y ;i:)’

The next result gives a criterion for when a homomorphic image
of a special Jordan algebra is again special.

CouN’s CRITERION [1, p. 255; 2, p. 10]. If & is a special Jordan
algebra and @__an ideal in  then /& is special if and only if I N
K = & where K is the ideal in su(I) generated by K.

Proof. A standard functorial argument shows that the algebra
su(/R) = su(I)/R and the specialization of J/R induced from [ —
su() — su()/] by passage to the quotient serve as special universal
envelope for /& (i.e., satisfy the universal property (1)). The kernel
of this specialization is X N &/, so the specialization is injective (i.e.,
/R is special) if and only if N K = K.

In particular, for § = FS(X) and su(¥) = F(X) we obtain

COROLLARY. FS(X)/® is special if and only if &N FS(X) =
where & 1is the associative ideal in F(X) generated by the Jordan ideal
& in FS(X).

2. Shirshov-Cohn theorem. The extreme radical of a unital
quadratic Jordan algebra & is the set of elements z such that U, =
U, =0 for all z in &; this always forms an ideal. Since 2z =21 =10
for such elements, the extreme radical is always zero when ¢ @.

PROPOSITION [1, p. 260]. If & ¢s an ideal in FS(z, y, z) having a
set of gewerators {k} such that all tetrads {xyzk} belong to &, and if
FS(z, y, 2)/R has zero extreme radical, then FS(x, vy, z)/8 is special.

Proof. By the Corollary to Cohn’s Criterion FS(z, y, 2)/® will be
special if & N FS(x, y,2) c & To prove that any p(x, v, 2) in &N
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FS(z, y, 2) belongs to & it will suffice to show it is in the extreme
radical modulo &,

(i) Upr=prpe®

(i) U,r=prq+qrpe® (g, re FS(x, y, 2)
since we are assuming FS(z, ¥, 2)/® has no extreme radical.

It will be enough to prove the stronger results

(1) prp*ef®

(iiy p+p*ec® (pe& reFS(x, vy, 2)
since p = p* if pe & N FS(x, v, 2) and then prq e & has prq + (pro)* =
prq + qrp.

We tackle (ii)’ first. The proof is the standard one [2, p. 11].
It suffices to consider p = skt for s, ¢ monomials in #,%,2 and k a
generator of &, since such elements span &. As swt + t*ws* is a.
symmetric element of the free algebra F(z, v, z, w), by Cohn’s Theo-
rem it is a sum of Jordan products of z, y, 2, w and the tetred {xyzw}
where each term in the sum has a factor w or {zyzw}. But then
(applying the homomorphism Fz, y, z, w) — F(z, y, 2) sending z — x,
Yy—Y,2z— 2, w— k) we see p + p* = skt + t*ks™ is a sum of Jordan
products of z, ¥, 2,k and the tetrad {xyzk} where each term has a.
factor ke & or {xyzk} e (by our hypothesis), so p + p* falls in the:
ideal R.

Since (i)' is not linear in » we must first consider a general p =
2p; = Is;kit;. Here prp* = Xiparpf + 2ii(porpf + pirpf). By (i)
the latter sum is in & since the p,rp} belong to & if p; does, so once
again we need only consider an individual p,: to consider prp* for
p = skt. Now prp* = sktrt*ks™ = skhks* for

h = trt* e 9(F(x, y, ?), *) = FS(z, y, 2)

by the Corollary to Cohn’s Theorem. But since £ is an ideal in
FS(x, v, z) this yields ¥’ = khk = U,he R, and if s =s, ---s, where
each s; is an =, y, or z then sk's* = U, --- U, k'eR. Thus prp*ef
in all cases, finishing (i)’ and the Proposition.

Shirshov-Cohn Theorem [1, p. 261; 2, p. 48]. Any unital quadratic
Jordan algebra on two generators without extreme radical is special.

Proof. By universal properties, any quadratic Jordan algebra J
on two generators is a homomorphic image of the free quadratic Jordan
algebra FJ(x, ¥) on two generators, hence (by Shirshov’s Theorem) of
FS(z, y): § = FS(z, y)/® for some ideal . We now apply the Propo-
sition; we can forget about tetrads, since we are not concerned with
the variable z.

More precisely, let {k} be a set of generators for &, let 3 be the
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ideal in F'S(z, v, 2) generated by z, and let ¥ be the ideal generated
by z together with the k’s. Then FS(z, y) = FS(z, v, 2)/3 and

FS(x, y)/® = (FS(w, y, 2)/3)/(¢/3) = FS(x, v, 2)/¢ .

Each {zyzk(x, y)} or {wyzz} belongs to ¥—the latter is {vyz*} = U, 2y
and the former is a sum of Jordan products of z, ¥, 2 each term of
which has a factor z, so in fact the tetrads belong to 8 — €. Since
FS(z, v, 2)/8 = & has no extreme radical, we apply the Proposition to
conclude ¥ is special.

Note that if L ¢ @ then the extreme radical is automatically zero,
so in that case we obtain the usual Shirshov-Cohn Theorem that any
Jordan algebra on two generators is special. A standard example [2,
ex. 3 p. 12] shows that this stronger form does not hold in general:
if £ is the ideal spanned by 2% «*, «°, " --. in the free algebra

FJ(x) = FS(z) = F(x)

on a single generator over a field @ of characteristic 2 then the coset
Z in FS(x)/$ has Z* = 0 but Z %= 0 so FS(x)/® cannot be special. (Of
course, Z° is in the extreme radical).

An algebra & is power-associative if each subalgebra @[z] generated
by a single element forms an associative algebra under the natural
structure induced from & [5, p. 293], and strictly power-associative
if it remains power-associative under all scalar extensions. Power-
associativity amounts to the condition that a polynomial relation
p{z) = 0 implies 2p(z) = 0. In the previous example it was the failure
of this condition which led to trouble. However, the following example
shows that imposing power-associativity is not by itself enough to
guarantee speciality; the condition is necessary but not sufficient.

Exampre. If & is the ideal in FJ(z, y) over a field @ of charac-
teristic 2 generated by U.y and all monomials of degree =6, then
I = FJ(x, y)/R® is a strictly power-associative algebra generated by
two elements which is not special.

Proof. J = FJ(z, y)/R = FS(x, y)/R is not special by Cohn’s Cri-
terion since &N FS(z, y) > &; indeed, U,U,x = syxyxr = zy(U,y) be-
longs to & and to FS(z, y), yet not to £. To see this, recall that
the ideal generated by U,y is spanned by all M, --- M,(U,y) and
M - M(U;py)m for me FS(x,y) and M, = U, U, U,,, V,, V,, or
I. The part of the homogeneous ideal & of ax-degree 3 and y-degree

2 is spanned by U, (Uy), V.V,(U.y), V,V.(U.), i.e., by

Yy + yoyst, 2eyrys + tyxy + yryad, yaty
+ xyaty + dyay + yaya®,
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hence by a*yxy + yryx® and yr’yr 4 xyx’y in characteristic 2, so that
ryxyx is not in K.

We will show J is power-associative; since any extension &, has
the same form over Q that & does over @, the same argument will
apply to all J,, and consequently & will be strictly power-associative.
We must show that if p(z) e & for some polynomial p then also zp(z) € K.

First we get rid of the constant terms. Let z = a,1 + w where w
contains the homogeneous parts of z of degree >1. Then the degree
zero part of p(z) e & is p(a,), and since & is homogeneous and contains
only terms of degree =3 we have p(a,) = 0. Thus if q(\) = p(A + «,)
we have ¢(0) = p(a;) = 0, so ¢ has zero constant term, and

p(z) = q(z — a,l) = q(w) .
Therefore
2p(2) = a,p(z) + wp(z) = a,p(z) + wa(w) ,

and it will be enough if wq(w) lies in K.
This shows we may assume (after replacing p, z by ¢, w) that
p(\) and z have no constant term:

PN = YN+ cor F VN =2+ oor + 2,

for z; homogeneous of degree 7. We next get rid of the degree one
term 2z, =ax +Qy. If v,= .+ =v,_,=0 but v, = 0 then the degree
r term of p(z)e & is 7,27, so by the homogeneity of &

Z=(ax 4+ BY) =ax" + Y + .-

lies in &. Since all elements of & have x-degree =2 and y-degree =1
we see " = 8" = 0. Thus ¢ = 8 =0 and z, = 0 as desired.

We are reduced to considering z = 2, + #; + 2, + 2; (modulo terms
of degree =6); in this case z* for k = 3 consists entirely of terms of
degree =6, s0 p(2) = vz + 7:2* and 2p(z) = 72* mod . If v, = 0 tri-
vially zp(z) e & while if v, = 0 then 7,2 + 7:.2* = 72 + 7.2 + (V2 +
Y,22) 4+ (V125 + Va2 © 25) € & implies z,, z,€ & by homogeneity, so v,2* =
Y7 + 2,0 2,) €. In all cases zp(z) belongs to &, and I is power-
associative.

We can improve slightly on the theorem. In dealing with asso-
ciative algebras U with involution * in situations where 3¢ @ it is
sometimes more convenient to work with certain “ample” subalgebras
of (2, *) rather than just with (2, *) itself. A subspace & of H(A, *)
is ample if & contains 1 and all aka* for a e and ke &®. (In parti-
cular, & contains all norms aa* and traces a + a*, so if €@ then
& = 9). We will say a Jordan algebra is reflexive if J°* is an ample
subspace of H(su(), 7) (and strongly reflexive if J» = H(su(Y), 7)).
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By the Corollary to Cohn’s Theorem & = FJ(x,, -« -, «,) is strongly
reflexive for m < 8, but its homomorphic images may not be. How-
ever, they do inherit reflexivity:

THEOREM [2, p. T7] If § is reflexive so is any homomorphic 1mage.

Proof. Let 9:§— & be an epimorphism. To see that §ou is
ample in H(su(J), #) we use (2) to see that (setting v = su(®)) any
2% for @ = y(a)esu(F) = YeuQ), ¥ = y(@) e Fr = P = (&)
has the form (a)y(x)y(a)” = Y(axa”) € y(J°*) = J°» and hence belongs
to J°«.

COROLLARY. Any quadratic Jordan algebra with three or fewer
generators is reflexive. :

Since any algebra & which is both special and reflexive has § =
Qo+ ample in (su(Y), 7) we have the improved result

SHIRSHOV-COHN THEOREM [2, p. 77]. Any quadratic Jordan algebra
on two generators without extreme radical is isomorphic to an ample
subalgebra of H(U, *) for some associative algebra U with involution.

Again, if 3 € @ the only ample subspace of H(2, *) is H(YU, *) itself.

3. An example. In this section we consider the free special
algebra F'S(x, ¥, 2) on three generators, together with three relations
@) =0, g(y) =0, r(z) = 0 where p(\), ¢(\), (\) are monic polynomials
of degree m, m,l respectively. (We allow any of these to be zero, in
which case we take the degree to be o).

By singling out powers of =, v, z greater than or equal to =, m, [
we can write any monomial in F(z, ¥, 2) uniquely as a word

W = GW,QWy * ¢ * Wilpyy

where (i) each w, is an &%, ¥, or 2" for 1 = n,j = m, k = I; (ii) each
a, is a monomial containing only powers a%, %/, 2* for i < n, 7 < m, k <l;
(iii) there is no coalescing between the w,’s and the a,’s in the sense
that if w, = 2 then a, cannot end nor a.,, begin with a factor z
(similarly if w, is ¥’ or 2z*). Since p, ¢, r are monic it is easy to see
(writing i1 >n as i=ée+mne,j=masj=n+mfik=lask=v+1g
for0<e<m0=<7<n0=<7v<!landef g=1) that F(z, v, 2) has
a basis consisting of the

(4) m = QM My ¢ ¢ © MOy
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where the a, satisfy (ii) and (iii) and the m, are either a*p()°, y’q(y)’,
or zr(z)’. We say m, has weight w(m,) = e, f, or g and m has weight
w(m) = Sw(m,).

THEOREM. If R is the (Jordan) ideal in FS(x, y, z) generated by
the elements p(x), ©p(), 9(¥), ¥a(y), 7(2), 27(2) for some monic p(\), ¢(N),
r(\) then FS(z,y, 2)/8 is special.

Proof. By the Corollary to Cohn’s Criterion it suffices to show
&N FS(z, y,2z) — K. So suppose flw, y, 2) e R is symmetric. It is easy
to see that the elements m (as in (4)) of weight =1 form a basis for
& (they are all contained in &, and they span an associative ideal
containing p, xp, q, ¥q, 7, 2+ which are the Jordan generators for & and
associative generators of &). Since the reverse m* of an element m
again has the form (4), flz, v, 2) is a linear combination of elements
m + m* and of symmetric elements m = m*.

Consgider the homomorphism of the free algebra F(z,y, 2, », q, 7)
on 6 free generators onto F(x, ¥, 2) sending ¢ —x, y — ¥, 2— 2z, p — (%),
q—q(y), r—r(z). Each m + m* has a pre-image of the form » + »n*
where if m is as in (4) then n = am,a;n, -+ n,0,, for a, as before
and %, either x°p°, y7¢’, or 2'r?; such n + »n* is symmetric in F(x, ¥,
2, P, q,7), hence by Cohn’s Theorem a Jordan product of z,w,z, p,q,*
and n-tads {x; -+ w;} for 4 < n < 6, where we order the variables
r<p<yYy<q<z<r. Applying the homomorphism, m + m* is a
sum of Jordan products of =z, y, 2, p(x), ¢(¥), 7(2) and n-tads. But all
the n-tads reduce to Jordan products of x, y, 2, p(x), 9(y), r(z) together
with zp(z), yq(y), zr(z)—for example, the 6-tad

{2 p(®) ¥ 9(v) 2 7(2)} = {xp(®) ya(y) 2r(2)} .

Thus m 4+ m* is a sum of Jordan products at least one factor of
which is a p(x), q(y), 7(z) or zp(z), yq(y), 2r(z) (since m is of weight =1
and so has at least one factor p(%), ¢(y), or »(z)). This means that
m + m* falls in the Jordan ideal K.

A similar but more involved argument works for the symmetric
m = m*. Consider the homomorphism of the free algebra on 9 gen-
erators F(x,y,z,»,q,7,9,q¢,7) to F(z,y,2) sending z— 2z, y— vy,
z—z, p— p(®), ¢ — q(¥), r—7(2), P’ — xp(@), ¢’ — YY), v —2r(z). We
claim m = m* has a pre-image n = n* which is symmetric in F(z, v,
z, 0,9 7 9,¢, 7). (Once we have this we argue as before; we have
to worry about n-tads for 4 < n <9 now, where we order the varia-
bles z < p<p <y<qg<qg <z<r<r, but again all n-tads reduce
to ordinary Jordan products in FS(z, y, 2) since xzpp’ — xp(x)x, p —
xp(x), pp’ — p(x)xp(x) etc.—for example, the 7-tad {x ¥y g ¢z » '} reduces
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to {z vy q(v) ya(y) 2 r(z) zr(2)} = {x yq(y)*y 21(2)°’2}—and thus again m = m*
falls in &). If m = ama, -+ M., = m* = @i, my; +++ aima we
have a, = ajf., a, = aff, +++, Aps, = aF and m, = my, My = My_y, =+~ by
uniqueness of the representation (4). Therefore n = am,a, « -+ N0,
will be a symmetric pre-image of m if the n, are symmetric pre-images
of m.. So consider m, = x*p(x)’. Now x‘p°® is not symmetric when
2, p are free variables, so we must find an alternate representation.
If ¢ = 2¢’ is even then a*p(x)’ = x“'p(x)°x" has the symmetric pre-image
a ' pa, similarly if ¢ = 2¢’ is even then a*p(x)® = p(x) x*p(x)” has
pre-image p“x‘p’, while if ¢ =2¢’ + 1 and ¢ = 2¢’ + 1 are both odd
x*p{x)” = ' p(x)” (ep{x))p(x) s’ has symmetric pre-image x'p*p'p 'z’
(here we need the extra free variables »’, ¢/, ). We also note that
since m is of weight =1, n contains at least one factor p, q, » or
', ¢, 1. As we said above, this is enough to allow us to complete
the proof that m = m™ falls in R.

Since FJ(x, y) = FS(z, y) by Shirshov’s Theorem, specializing z — 0
gives

COROLLARY. If p(\), g(\) are monic polynomials then FJ(x, y)/S
is special for £ the ideal generated by p(x), xp(x), ¢(v), yoly).

It is essential (in the general case where 3 ¢ @) that we take xp(x)
and yq(y) along with p(x) and ¢(y). Indeed, in our pathological one-
generator example we divided out by 2* but not 2?, and it was this
&’ that came back to haunt us. However, the Example of §2 shows
that the condition p(z)e & = zp(z)e & is not by itself enough to
guarantee speciality.

It is also essential that the relations involve only one variable at
a time. The situation becomes much more complex when the variables
are intermixed. For example, if & in FS(z, y, z) is generated by
x* — y* then FS(z, v, 2)/® is not special, but it & is generated by
U,y — x, U,y* — 1 then F/ is special. Thus speciality depends very
much on the particular relations chosen.

4. Applications to Peirce decompositions. We define the free
Jordan algebra on X with n (supplementary, orthogonal) idempotents
FJ(X;e, +--,e,) to be the quotient FJ(X U Y)/R where ¥ = {y,, -+, Y.}
is disjoint from X and R is the ideal generated by 1 — Xu., ¥* — Y.
U,y;, v o y;(i # j). The cosets e; = y; + & are supplementary ortho-
gonal idempotents in FJ(X;e, ++-,¢,) = FJ(X U Y)/®, and one has
the universal property that any map X — & of X into a Jordan alge-
bra § with n supplementary orthogonal idempotents fi, - -, /., extends
uniquely to a homomorphism FJ(X;e, -+, ¢,) — & sending e; — f;.
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Consider the following properties of the Peirce decomposition of
an arbitrary Jordan algebra  relative to a supplementary family of
orthogonal idempotents e, ---, ¢, [2, p. 120-1; 4, p. 1074-5].

(PD 0) E;=U,, and E; = U.,., = E; form a supplementary
family of orthogonal projections on &, so & = @BJ,; for
f\ojij = Eu(%) = SM!

and for elements x,, of the Peirce spaces J,, and distinect indices
7,7, k, 1,

(PD 1) a% e so I C Ju

(PD 2) 2 eJiu + Jisr 50 Jf C s + oy

(PD  3) @i v €Jiss 80 Jis © Jis C s

(PD 4) @0y €Jin S0 Jij o ok s

PD 5) @po¥s=0,80 JpoFs =0 if {p, ¢} N {r,s} = D

(PD 6) U, ¥iu€Ju s0 U, 3 C Sii

PD 7) U, y:eJii so Ug, I C Jis

(PD 8) Uxijyij = x50 U (%550 Yiy) — Y5 0 U, (23,), 50 U&-,S::j =3

®D 9) U, Y. =0,s0 Ug, 3. =0if {r,s}  {p, ¢}

(PD 10) {wiy:25,} = (@ss0 Ysy) 0 255 =Tiz 0 (Ys5°255)s SO {FiaVi8071 =S5

(PD 11)  {@;9:,25) = (@is 0 Yii) © 20 = @5 0 (Ys;,0%50), S0 {05370t S

(PD 12) {29525 = (@5, 0 Y5)) o5 = Tij 0 (Yj5°20)s 50 AJrS 170501 S i

(PD 13) {2;ui2u} = (Zi5 0 Yir) © 2y = @ij 0 (Y,00%)s 50 A5t & s

(PD 14) {w;yp2n} = Uei{(xif ° Yir) © R} = Uei{xij o (Y » Z1)}s SO
{0y © Jis

(PD 17) {wyii2i} = a5 © (Ui © 235), 80 {JuSidai} € Sy

(PD 18) {zy,¥,:2u} = @5 0 (Yii © Zin)y 80 {Jii30:3in} © Jir

(PD 19) {2,,¥,:%0) = 0, 50 {FpeSrssist = 0 unless the indices may
be linked

(PD 20) Ul,e, = Uzt

(PD 21) e;0 ¥y = Yujy Tls © Ysj = Tis o (Wg5 © Ysy), Uy Ris 0 Yy = 5 0
(255 © (i © ¥,y)) SO that Vo, =1, Vat, = V.2, Vi, e =
ini V%’i V’”ii on I

It is an easy matter to verify these for special Jordan algebras, since
if A = X, 2;; is the Peirce decomposition of the associative algebra A
then § = X,.,Sy; for & = A,; + U, is the Peirce decomposition of the
Jordan algebra & = U+

We claim that if these relations hold in & = FJ(&; &, ---, &,)
(taking X = {%} to consist of one element) they hold in any . (This
is why there are two “missing” relations

(PD 15) {w;y,%:} = Uei{(mii ° Yjj) © R} = U.{xs; o (yj; © 2,0}, s0
IR TTRYZR P7 a9

(PD 16) {xyy:2:5 = U f(wi; 0 Yii) © 25} 80 {JuSiSist © Suis
these do not seem to follow from &, and must be verified directly).

The reason for this is that for any collection of elements ., from
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distinct Peirce spaces J;; there is an element x = Yz;; having the z,;

as its Peirce ij-compoments; there is a homomorphism § — & sending
Z— 2 and &, —e;, so the Peirce components Z%;; of ¥ map into the
Peirce components x;; of x. Hence any relation holding among the
%;; will also hold for the z;;. That is, any relation involving elements

from distinct Peirce spaces will hold in & if it holds in &. This im-
mediately applies to (PD 1-5), (PD 7), (PD 9-14), (PD 19-20), and the
first two parts of (PD 21) The same argument works for (PD 0): i
I=23E, E} =E,;, EME’,S =0on % then I = YE;;, B} = E;;, K,,E,, = 0
an any z, so the E;; are supplementary orthogonal idempotents).

The remaining formulas can be derived from the previous ones
by various stratagems. For (PD 17-18) we use the relation

{abb} = a o b* {abc} + {acd} = a o (b o c)

valid in any Jordan algebra. In (PD 18) {x;;¥;iz:} = @i o (Yj: © 2s) —
{52000} = 35 0 (Yis © 2) since Ug;Ji = 0 by (PD 9), and similarly
in (PD 17) since Ug, J;; = 0. (This argument also shows either one
of (PD 15), (PD 16) implies the other).

For (PD 6), (PD 8), and the last part of (PD 21) we use

0fe’ . = Uy + U, o= Uy + {exy} = Uy + &> oy

Now the relations

(PD o) Ux”xiiESii

(PD 8) U,y = ;0 Ul (1)

(PD 21) VU(acii)x“ = Vfﬁ on J;;
will be inherited from &, and this remains true over any scalar ex-
tension 2 of @, so we can linearize to get

U.,. Y T @k o Yis € Jus
Um”yu + X% o Yis = Yij © Uei(x?ij) + @50 Uei(xij ° Yi;)
Viwipe + Vit = V%i Vzu ini + szii Vzii + Vzii sz“ .

13’211 Titez;

The first of these 1mphes (PD 6) via (PD 1), the second implies (PD 8)
via (PD 2), and the third implies (PD 21) since we already know
Vi =Vzand so V.., = V..V, + V.. Vo,

Thus the task of vemfylng Peirce relatlons for an arbitrary Jordan
algebra & reduces to verifying them for the free Jordan algebra & on

one generator with idempotents. The whole point of this reduction is

that & is special, and we already remarked that the relations were
easily verified in any special algebra.

THEOREM. The free Jordan algebra FJ(x;e, -+, ¢,) on one gen-
erator with n supplementary orthogonal idempotents is special.
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To show FJ(x;e, ++-,e,) = FJ,(;e, -+-, e,) is special it will be
enough if it is imbedded in a special algebra FJ,(z;e, -, e,), =
FJ (x; e, «++,e,). We choose 2 as follows. Consider the polynomial
ring @[\, +++, N\,]. The element ¢ = [[;; (\; — \;) is homogeneous in
the \’s and the coefficient of A "\y=2-..\,_, in ¢ is 1, so ¢ is not a
zero divisor in @[\, ++-,)\,]. This guarantees @ is imbedded in Q =
D[Ny, « oy N ][1/¢]; the important thing about 2 is that each )\; — \; is
invertible in Q. Since g is not a zero-divisor in

FJ0(X’ €y *° en)®®[>"iy *t >\’n] ’
FJ (X;e, -+, e, is imbedded in FJ(X; e, -+, €,) = FJ(X; e, -+,¢,).

PROPOSITION. For any X, FJ(X; e, ---, ¢,) = FJy(X, y)/R where &
18 the ideal gemerated by p(y) = [I (¥ — M1) and yp(y).

Proof. Consider the polynomials p(\) = T[T (A — ;) and p;(\) =
TLiei v = X))/ ILies v — 2y) in 2. We have p,(\;) = 1, p;(x;) =0 if
j # 1. Therefore 1 — 3 p,(\) is of degree <m — 1 yet has % roots
Ay ***, Ay, S0 it must be identically zero, and similarly for A= N;p;(\):

i) =1, X npi(h) = M.

(We always assume n > 1 since for n = 1 FJ(X; e) = FJ(X; 1) = FJ(X)
has only the trivial idempotent ¢, = 1). Also

Upi(l)pj()\’) = p:(VDi(N), (V) o D (V) = 20,0 p;(V),
p:(\)° — pi(V) = p:(V)° — 2 pi(V)P;(N) = D D:(N)Pi(N)

are all divisible by p(A) and belong to the (Jordan) ideal generated
by p(Z) and Ap(\).

These conditions imply that the elements €; = p;(y) in FJ (X, y)
satisfy 3.8 =1, 3 M8 =y, U, 0;eR, ¢, 08;cR, & —&;eR, so the
cosets ¢, = &, + & in FJ, X, y)/® form a supplementary family of
orthogonal idempotents. (Note p;(y) is defined since we are allowed
to divide by N; — \; in Q). We show FJ,(X, y)/& is isomorphic to
FJ (X;e, ++-, e, by showing it has the universal property of the
latter. Given any map @ of X into a Jordan algebra & with idempo-
tents fi, -+, f, we have a homomorphism FJ,(X, y) — & sending z —
@(x), ¥y — >, N;f;. Then &€; = p,(y) is mapped into

PN S5) = 20N = i

p(y) into p(32 N, f5) = 3% p(\;)f; = 0, and yp(y) into > A;p(\;)f; = 0. Since
»(y) and yp(y) generate & we have an induced homomorphism

FI (X, ))& — I
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sending e; — f;. The uniqueness follows since FJ (X, y)/8 is generated
over 2 by X and the e¢; (because > \e; = ¥).

Applying the Proposition when X = {x}, we have
FJy(x; e, -, ) = FJy(x, y)/R

where & is generated by »(y) and yp(y). By the Corollary to the
Theorem of the previous Section (with ¢(\) = 0), FJ,(x, y)/! is special.
Therefore FJ(x; e, «--,¢,) C FJ.(x;e, -+, ¢,) is special too, completing
the proof of the theorem.

The algebra FJ(zx, y;e, --+,e,) on two generators is no longer
special, since it has the exceptional algebra 9(€;) as a homomorphic
image (€ a Cayley algebra); indeed, the exceptional algebra can be
generated by two elements z, ¥ and the idempotents e, e, ¢, [2, ex.
1 p. 51].
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