ON NONNEGATIVE MATRICES

M. Lewin

The following characterisation of totally indecomposable nonnegative n-square matrices is introduced: A nonnegative n-square matrix is totally indecomposable if and only if it diminishes the number of zeros of every n-dimensional nonnegative vector which is neither positive nor zero. From this characterisation it follows quite easily that:
I. The class of totally indecomposable nonnegative n square matrices is closed with respect to matrix multiplication.
II. The $(n-1)$-st power of a matrix of that class is positive.

A very short proof of two equivalent versions of the König-Frobenius duality theorem on (0,1)-matrices is supplied at the end.

A matrix is called nonnegative or positive according as all its elements are nonnegative or positive respectively. An n-square matrix A is said to be decomposable if there exists a permutation matrix P such that $P A P^{T}=\left[\begin{array}{cc}B & 0 \\ C & D\end{array}\right]$, where B and D are square matrices; otherwise it is indecomposable. A is said to be partly decomposable if there exist permutation matrices P, Q such that

$$
P A Q=\left[\begin{array}{ll}
B & 0 \\
C & D
\end{array}\right], \text { where } B \text { and } D \text { are square }
$$

matrices; otherwise it is totally indecomposable.
Whereas the notion of indecomposable matrices first appeared in 1912 in a paper by Frobenius [2] dealing with the spectral properties of nonnegative matrices, totally indecomposable matrices were introduced fairly recently apparently by Marcus and Minc [10]. Their properties have been studied in several papers on inequalities for the permanent function.

In [11] Minc gives the following characterisation of totally indecomposable matrices:

A nonnegative n-square matrix $A, n \geqq 2$, is totally indecomposable if and only if every ($n-1$)-square submatrix of A has a positive permanent.

A well-known theorem states:

Theorem 1. If A is an indecomposable nonnegative n-square matrix then

$$
(A+I)^{n-1}>0[3],[9]
$$

An indecomposable matrix is primitive if its characteristic value of maximum modulus is unique.

Wielandt [15] states (without proof) that for primitive n-square matrices we have

$$
A^{n^{2}-2 n+2}>0 .^{1}
$$

By using solely the properties of total indecomposability we establish a different characterisation for totally indecomposable matrices from the one given by Minc. Using part of the characterisation we show that if A is a totally indecomposable nonnegative n-square matrix then $A^{n-1}>0$. This result is best possible as for every n there exist totally indecomposable n-square matrices A for which $A^{n-2} \ngtr 0$. Theorem 1 then follows as a corollary of the latter result.

We should like to point out that Theorem 2 is by no means essential for the proof of Theorem 3. Two independent proofs of Theorem 3 are given in §4. It seems justified however to present Theorem 2 on its own merit.

We conclude with a very short proof of two equivalent versions of König's theorem on matrices.
2. Preliminaries. $|S|$ denotes the number of elements of a given set S. Let M_{n} be the set of all nonnegative n-square matrices, let D_{n} be the subset of M_{n} of indecomposable matrices and let T_{n} be the subset of D_{n} of totally indecomposable matrices. Let $A \in M_{n}$ and let p and q be nonempty subsets of $N=\{1, \cdots, n\}$. Then $A[p \mid q]$, $A(p \mid q)$ is the $|p| \times|q|$ submatrix of A consisting precisely of those elements $a_{i j}$ of A for which $i \in p$ and $j \in q, i \notin p$ and $j \notin q$ respectively. $A[p \mid q)$ and $A(p \mid q]$ are defined accordingly. We can now formulate equivalent definitions for matrices in D_{n} and T_{n} :
D. 1. $A \in D_{n}$ if $A[p \mid N-p] \neq 0$ for every nonempty $p \subset N$.
D. 2. $A \in T_{n}$ if $A[p \mid q] \neq 0$ for any nonempty subsets p and q of N such that $|p|+|q|=n$.

Let us now establish some connections between indecomposable and totally indecomposable matrices.

Lemma 1. If $A \in\left(D_{n}-T_{n}\right)$ then A has a zero on its main diagonal. ${ }^{2}$
Proof. Since $A \notin T_{n}$ there exists a zero-submatrix $A[p \mid q]$ with $|p|+|q|=n$; but since $A \in D_{n}, p \cap q \neq \varnothing$, which means that A has

[^0]a zero on its main diagonal.
Corollary 1. If $A \in D_{n}$ then $A+I \in T_{n}$.
Proof obvious.
3. The main results. Let $A=\left(a_{i j}\right) \in M_{n}$ and let v denote an n-dimensional vector with $a_{i}(v)$ its i th entry.

Define: $J_{k}=\left\{j: a_{k j}=0\right\}, I_{k}=\left\{i: a_{i k}=0\right\}$,

$$
I_{0}(v)=\left\{i: a_{i}(v)=0\right\}, \quad I_{+}(v)=\left\{i: a_{i}(v)>0\right\}
$$

Let R_{n} denote the space of n-tuples of real numbers.
Let X_{n} be the set of all nonnegative vectors in R_{n} which are neither positive nor zero. We then have the following

Theorem 2. A nonnegative n-square matrix A is totally indecomposable if and only if $\left|I_{0}(A x)\right|<\left|I_{0}(x)\right|$ for every $x \in X_{n}$.

Proof. Let $A \in T_{n}$ and $x \in X_{n}$. A necessary and sufficient condition for $a_{i_{0}}(A x)=0$ for some i_{0} is

$$
\begin{equation*}
I_{+}(x) \subseteq J_{i_{0}} \tag{1}
\end{equation*}
$$

If $I_{0}(A x)=\varnothing$, then there is nothing to prove, so we may assume

$$
\begin{equation*}
I_{0}(A x) \neq \varnothing \tag{2}
\end{equation*}
$$

$x \in X_{n}$ implies

$$
\begin{equation*}
I_{+}(x) \neq \varnothing \tag{3}
\end{equation*}
$$

(1), (2) and (3) imply that $A\left[I_{0}(A x) \mid I_{+}(x)\right]$ is a zero-submatrix of A. Since $A \in T_{n}$ by assumption, we have (by D. 2.)

$$
\left|I_{0}(A x)\right|+\left|I_{+}(x)\right|<n=\left|I_{0}(x)\right|+\left|I_{+}(x)\right|
$$

and hence $\left|I_{0}(A x)\right|<\left|I_{0}(x)\right|$ which proves the first part of the theorem. (It is not generally true however that $I_{0}(A x) \subseteq I_{0}(x)$ as it may happen that $a_{i}(x)>0$ and $a_{i}(A x)=0$, a situation which differs somewhat from that in the similar case for indecomposable matrices (5.2.2 in [9])).

Let now $A \notin T_{n}$. Then A contains a zero-submatrix $A[I \mid J]$ such that $I, J \neq \varnothing$ and $|I|+|J|=n$. Choose now $x \in R_{n}$ such that

$$
\begin{equation*}
I_{+}(x)=J \tag{4}
\end{equation*}
$$

Then clearly $x \in X_{n}$. We have $I_{0}(x)=N-I_{+}(x)=N-J$, and hence $\left|I_{0}(x)\right|=|I|$. For $i \in I$ we have $J_{i} \supseteq J$, and hence by (4) $I_{+}(x) \subseteq J_{i}$,
so that for $i \in I$ according to (1) $a_{i}(A x)=0$ and hence $I_{0}(A x) \supseteq I$. Then $\left|I_{0}(A x)\right| \geqq|I|=\left|I_{0}(x)\right|$. This completes the proof.
X_{n} in Theorem 2 may of course be replaced by its subset Y_{n} consisting of the $2^{n}-2$ zero-one vectors.

Theorem 2 admits of two simple corollaries which we present as Theorems 3 and 4.

Theorem 3. If A is a totally indecomposable nonnegative n-square matrix then

$$
A^{n-1}>0
$$

Proof. If for some j_{0} we had $\left|I_{j_{0}}\right| \geqq n-1$ then A would be partly decomposable and hence $\left|I_{j_{0}}\right| \leqq n-2$ for $j \in N$ and the rest follows.

Theorem 1 follows from Theorem 3 as an immediate consequence of Corollary 1. For $A=I+P$ where P is the n-square permutation matrix with ones in the superdiagonal, so that $a_{i j}=1$ if $i=j$ or $i=j-1, \quad a_{n 1}=1$ and $a_{i j}=0$ otherwise, it is easy to show that $A^{n-2} \ngtr 0$, which shows that our result is best possible.

Theorem 4. The product of any finite number of totally indecomposable nonnegative n-square matrices is totally indecomposable.

Proof. It is clearly sufficient to prove the statement for two matrices. Let therefore $A, B \in T_{n}$. Choose an arbitrary element x of X_{n}. We then have

$$
\begin{equation*}
\left|I_{0}(A B x)\right| \leqq\left|I_{0}(B x)\right|<\left|I_{0}(x)\right| \tag{5}
\end{equation*}
$$

by Theorem 2. Since x was arbitrary, (5) applies to all elements of X_{n}. Again by Theorem 2 it follows that $A B$ is totally indecomposable, which proves the theorem.
4. Independent proofs of Theorem 3. A lemma of Gantmacher [3] states that if $A \in D_{n}$ and $x \in X_{n}$, then $I_{0}[(A+I) x] \subset I_{0}(x)$.

The following proof of Theorem 3 assuming the lemma has been suggested by London ${ }^{3}$: Let $A \in T_{n}$. Using the fact that a matrix in T_{n} possesses a positive diagonal d, put

$$
A_{1}=\frac{1}{\alpha} P^{T}(A-\alpha P)=\frac{1}{\alpha} \quad P^{T} A-I \text { where } \quad 0<\alpha<\min a_{i j}\left(a_{i j} \in d\right)
$$

[^1]and $P=\left(p_{i j}\right)$ is an n-square permutation matrix such that $p_{i j}=1$ if and only if $a_{i j} \in d$. Then $A \in T_{n}$ implies $A_{1} \in T_{n}$.

We have $A=\alpha P\left(A_{1}+I\right)$; since $A_{1} \in D_{n}$ we obtain

$$
I_{0}(A x)=I_{0}\left[P\left(A_{1}+I\right) x\right]=I_{0}\left[\left(A_{1}+I\right) x\right] \subset I_{0}(x),
$$

for $x \in X_{n}$. Then $I_{0}\left(A^{n-1} x\right)=\varnothing$, and $A^{n-1}>0$.
Another proof has been kindly suggested by the referee of this paper: We show that if A is totally indecomposable, then if $x \in X_{n}$, then

$$
\left|I_{0}(A x)\right|<\left|I_{0}(x)\right| .
$$

The theorem then follows immediately.
Suppose $\left|I_{0}(A y)\right| \geqq\left|I_{0}(y)\right|$ for some $y \in X_{n}$.
Put $\left|I_{0}(y)\right|=s$. There are permutation matrices P and Q such that

$$
P A y=\left[\begin{array}{l}
0 \\
u
\end{array}\right] \text { and } Q^{r} y=\left[\begin{array}{l}
0 \\
v
\end{array}\right]
$$

where u is an $(n-s)$-dimensional nonnegative victor and v is an ($n-s$)-dimensional positive vector: The 0 's represent s zero components in each case.

We now write $P A Q=\left[\begin{array}{ll}A_{1} & A_{2} \\ A_{3} & A_{4}\end{array}\right]$ where A_{1} is $s \times s, A_{2}$ is $s \times(n-s)$, A_{3} is $(n-s) \times s$ and A_{4} is $(n-s) \times(n-s)$. Then $\left[\begin{array}{ll}A_{1} & A_{2} \\ A_{3} & A_{4}\end{array}\right]\left[\begin{array}{l}0 \\ V\end{array}\right]=\left[\begin{array}{l}0 \\ u\end{array}\right]$ and so $A_{2} V=0$. Thus $A_{2}=0$ and hence $A \notin T_{n}$, a contradiction.
5. König's Theorem. Let A be an $m \times n$ matrix. A covering of A is a set of lines (rows or columns) containing all the positive elements of A. A covering of A is a minimal covering of A if there does not exist a covering of A consisting of fewer lines. Let $M(A)$ denote the number of lines in a minimal covering of A. A basis of A is a positive subdiagonal of A of maximal length. $m(A)$ denotes the length of a basis of A. The j th column of A is essential to A if $M(A(\varnothing J))<M(A)$.

We now give the two versions of König's Theorem and their proofs:
K. T. 1. If A is an $m \times n$ matrix, then $m(A)=M(A)$.
K. T. 2. If A is an n-square matrix, then A has k zeros on every diagonal ($k>0$) if and only if A contains an $s \times t$ zerosubmatrix with $s+t=n+k$.
This is a generalized version of a theorem of Frobenius. The following theorem appears in [8] (we reproduce it here in a hypothetical form).
E. T.: If A is an $m \times n$ matrix and K.T.I. holds for A, then there exists a minimal covering of A (called essential covering) containing precisely the essential columns of A (and may be some rows).

Proof of $K . T$. 1. $m(A) \leqq M(A)$ holds trivially. The theorem is clearly true for $1 \times n$ matrices for all n. Assume that the theorem is true for all $\mu \times n$ matrices, $\mu<m$ and all n. Let A be an $m \times n$ matrix. Consider $A^{\prime}=A(\{m\} \mid N] . A^{\prime}$ is an $(m-1) \times n$ matrix so that K.T.1, holds for A^{\prime} and hence E.T. holds for A^{\prime}. Let Q be the essential covering of A^{\prime}.

Case 1. $\quad Q$ is a covering of A. Then $m(A) \geqq m\left(A^{\prime}\right)=M\left(A^{\prime}\right) \geqq$ $M(A)$.

Case 2. Q is not a covering of A. Then there exists $j_{0} \in N$ for which $a_{m j_{0}}>0$ which is not covered by Q and hence the j_{0} th column is not essential to A^{\prime}. Then clearly there exists a basis b^{\prime} of A^{\prime} without elements in the j_{0} th column. Then $b=b^{\prime} \cup\left\{a_{m j_{0}}\right\}$ is a subdiagonal of A and hence $M(A) \leqq M\left(A^{\prime}\right)+1=m\left(A^{\prime}\right)+1 \leqq m(A)$. This proves K.T.1.

Proof of K.T.2. Necessity. If A has k zeros on every diagonal then $m(A) \leqq n-k$. By K. T.1, $M(A) \leqq n-k$. Apply a minimal covering to A. Then there remains an $s \times t$ zero-matrix of A which is not covered, with $s+t \geqq 2 n-M(A) \geqq n+k$.

Sufficiency. Let A contain an $s \times t$ zero-submatrix with $s+t=$ $n+k$. Then there are positive elements on at most $2 n-(n+k)=$ $n-k$ lines, meaning that there are at least k zero-rows, which proves the sufficiency.

References

1. R. A. Brualdi, S. V. Parter and H. Schneider, The diagonal equivalence of a nonnegative matrix to a stochastic matrix, J. Math. Anal. Appl. 16 (1966) 31-50.
2. G. Frobenius, Über Matrizen aus nichtnegativenE lementen, Sitzb. d. Preuss. Akad. d. Wiss, (1912), 456-477.
3. F. R. Gantmacher, The Theory of Matrices, vol. 2 Chelsea, New York (1959).
4. D. J. Hartfiel, A simplified form for nearly reducible and nearly decomposable matrices, (To appear in the Proc. Amer. Math. Soc.).
5. J. C. Holladay and R. S. Varga, On powers of nonnegative matrices, Proc. Amer. Math. Soc., 9 (1958), 631-634.
6. D. König, Theorie der endlichen und unendlichen Graphen, New York, Chelsea (1950).
7. R. Sinkhorn and P. Knopp, Concerning nonnegative matrices and doubly stochastic matrices, Pacific J. Math., 21 (1967), 343-348.
8. M. Lewin, Essential coverings of matrices, Proc. Camb. Phil. Soc., 67 (1970). 263-267.
9. M. Marcus and H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Boston (1964).
10. M. Marcus and H. Minc, Disjoint pairs of sets and incidence matrices, Illinois J. Math., 7 (1963), 137-147.
11. H. Minc, On lower bounds for permanents of (0,1 -matrices. Proc. Amer. Math. Soc. 22 (1969), 233-237.
12. H. Minc. Nearly decomposable matrices, (To appear).
13. H. J. Ryser, Combinatorial Mathematics, The Carus Mathematical Monographs (1963).
14. R. Sinkhorn, Concerning a conjecture of Marshall Hall. Proc. Amer. Math. Soc., 21 (1969), 197-201.
15. H. Wielandt, Unzerlegbare nicht negative Matrizen, Math. Z., 52 (1950), 642-648.

Received January 27, 1970.
Technion. Israel Institute of Technology
Haifa, Israel.

[^0]: ${ }^{1}$ A proof is supplied in [5].
 ${ }^{2}$ Lemma 1 is part of Lemma 2.3 in [$\mathbf{1}$] but the shortness of our proof seems to justify its presentation.

[^1]: ${ }^{3}$ D. London, oral communication.

