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ON GENERALIZED TRANSLATED QUASI-CESARO

SUMMABILITY

B. KWEE

Let a > 0, β > —1. The (Ct, a, β) transformation of the
sequence {sk} is defined by

_ Γ(β+n+2)Γ(a-\-β+l) ^ Γ(a + k)Γ(k + n + ϊ)
n Γ(n + l)Γ(β + l)Γ(α) έ i Γ(k+l)Γ(a+β+n+k+2) Sk '

and the (Ct, a, β) transformation of the function s(x) is de-
fined by

Q(y) _ na + β + ΐ)
Γ(a)Γ{β + l)y Jo (x + y)*+w dX *

Some properties of the above two transformations are
given in this paper and the relation between the summability
methods defined by these transformations is discussed.

1* For any sequence {μn} the Hausdorff summability (H, μn) is
defined by the transformation

In
= Σ

inhere

Transposing the matrix of the (H, μn), transformation we get the
matrix of the quasi-Hausdorff transformation

which will be denoted by (if*, μn). Ramanujan [8] introduced the
<S, μn) summability, which is defined by the transformation

Thus the elements of row n of the matrix of the (S, μn) transformation
are those of the corresponding row of the (if*, μn) transformation
moved n places to the left.

It is known [8] that if (H, μn) is regular and if μn—>0 as n—> oo,
then (S, μn+1) is regular; conversely, if (S, μn+ί) is regular, then (iJ, μn)
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can be made regular by a suitable choice of μQ.
When

n + a

n

(H, μn) reduces to the Cesaro summability (C, a). Borwein [3] intro-
duced the generalized Cesaro summability (C, a, β) which is (H, μn)
with

( 1 )

n + β

n
n + a + β

n

The aim of this paper is to discuss properties of the (S, μn+1}
summability with μn given by (1) for a > 0, β > — 1 and of the ana-
logous functional transformation. We shall denote this summability
by (Ct, a, β). The case in which β — 0 has been considered by Kuttner
[6] and a summability method similar to (Cu a, β) has been discussed
by me [7].

A straightforward calculation shows that the (Ct, a, β) transfor-
mation is given by

t. = t{n, a, β) = (β
nl

,2\ x v β(g + 1) - (ft + A? - l)(fe + l)(fe + 2) - -«(k + n) c

=̂o (a + β + l)(α + /5 + 2) . . ( α + /5 + ^ + l + &) *

+ 2)Γ(a+β+l) f Γ(a + k)Γ(k + n + 1)
l)Γ(α) έ i *

nl

It is clear that, if (2) converges for one value of n, then it con-
verges for all n. Further, a necessary and sufficient condition for
this to happen is that

(3) Σ - ^ -
v J έί k^2

should converge.
Let s(x) be any function L-integrable in any finite interval of

x ^ 0 and bounded in some right-hand neighbourhood of the origin..
Let a> 0, β> - 1 , and let

( 4) g(y) = g(y, a, β) = ΣjSί+βjtΆyβ^ X"~\{xl+i dx .
Γ(a)Γ(β 4- 1) Jo (x + y)a+?+L

If g(y) exists for y > 0 and if



ON GENERALIZED TRANSLATED QUASI-CESARO SUMMABILITY 733

lim giy) = s ,

we say that six) is summable (C*, α, /3) to s.
It is clear that a necessary and sufficient condition for the con-

vergence of (4) is that

(5)

should converge.

2* The relationship between sequence-to^sequence and func-
tion- to-functions transformations* Given any sequence {sn}y let the
function fix) be defined by

fix) = sn in ^ x < n + 1; n = 0, 1, 2, •) .

Then the (Cf, α, /3) summability of {sn} is equivalent to the (C«, α, /S)
summability of /(a?) for α > 0, β = 0 (see [6] Theorem 4). However,
the proof breaks down when β > 0. We can prove that they are
equivalent for — 1 < β <Ξ 0 as follows. Write

a(n k) = Γ ( a + k)Γ{k + n + l )

S k+1 χa-l

dχ

As in [6], we may suppose that s0 — 0. Then the result would follow
if, corresponding to equation (11) of [6], we proved that, if (3) con-
verges, then uniformly for 0 ^ Θ < 1,

(6) Σ [a(n9k) - b(n + 0, k)]sk = o

Choose an integer Q such that Q ^ β + 3. From equations analogous
to those of the last line and line 6 from bottom of p. 709 of [6], we
find that

where j>(ί) is a polynomial in ^ (which may be different for each term
in the sum), and the sum is taken over those integers q, r which are
such that

q ;> 1, r Ξ> 1, q, r not both 1, q + r ^ Q .

Since the convergence of (3) implies that

sk =
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and since a > 0, Q >̂ β + 3, we see that the contribution to the ex-
pression on the left of (6) of the "0" term in (7) is

Hence the result would follow if (corresponding to Lemma 2 of [6])
we could prove that the convergence of (3) implied that, for relevant
4, r,

(8) Σ
*=Ί (A;

Now write

so that vk—*0 (and this is all we know). The sum on the left of (8) is
0 0 ha+β+2-g

£ (fc + n ) ^ (Vk

(ft -
v k

(n + l)«+t+r hz k I (k + ^) a +^+ r (ft -

The first term on the right of (9) is o(l/V+1) (since r ^ 1, a > 0). The
expression in curly brackets in the second term is

o( * λ

(k + n)a+^r J

(and this result is best possible). This gives the required result when
β ^ 0; but if β > 0, all that we can deduce in the "worst" cases
(which are q = 1, r = 2 or # = 2, r = 1) is that the sum (9) is o(l/n).

Of course, the fact that the proof breaks down does not imply
that the theorem itself is false. My guess is that the theorem pro-
bably is false for p > 0; but I have not actually got a counter example.

3* Theorems* The following two theorems with β = 0 are
Theorem 1' and Theorem 2' given by Kuttner [6]. The proof of
Theorem 1 is similar to that of Theorem 1' in [6], and Theorem 2
follows from Lemma 1 and Lemma 2 of this paper.

THEOREM 1. Let a > 0, β > —1 and r ^ 0 and let s(x) be sum-

mάble (C, r)1 to s and (4) converge. Then s(x) is summable (Ct, a, β) to s.

THEOREM 2. Let a> a' > 0, β > —1, and let s(x) be summable
(Ctr a, β) to s. Then s(x) is summable (Ct9 a!, β) to s.

For definition of the (C, r) summability of s(v), see [7].
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In § 5, we shall prove

THEOREM 3. Let a > 0, β > βf > — 1. Suppose that s(x) is sum-
mable (Cf, a, β) to s and the integral

S°° s(x)
i χP'+2

converges. Then s(x) is summable (Ct, a, βr) to s.

The sequence {sn} is said to be summable Aλ to s if

converges for all x in the interval 0 ̂  x < 1 and tend to a finite limit
s as x—*l—. The Ao method is the ordinary Abel method

It is known (see [1] and [2]) that Aμi) Aλ for λ > μ > — 1. For
other properties of this summability method, see [1] and [6]. We
shall prove

THEOREM 4. Let λ > — 1, β > — 1. Suppose that the sequence {sn}
is summable Aλ to s and that (3) converges. Then the sequence is
summable (Ct,X + l,β)to s.

4. Lemmas*

LEMMA 1. Let a > a* > 0, β > —1. Suppose that (5) converges.
Then

, a', β) = Γ(

The proof of this lemma is similar to that of Lemma 4 in [6].

LEMMA 2. Let

S CO

Φ , v)s(y)dy .
0

Then in order that

s(y)->s (y-+co)

should imply

t(x) —* S (X-+ oo)

for every bounded s(y), it is sufficient that

[°\c(x,y)\dy <H,
Jo
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where H is independent of x, that

\ I c(x, y) \dy -> 0
Jo

when x —> oo, for every finite Y, and that

\ c(x, y)dy -> 1
Jo

when x —* ©o.

This Theorem 6 in [4].

5. Proof of Theorem 3. Let

φ(x) = Jj -^L-du
w

for x > 0. Then φ(x) is continuous in (0, oo), and Φ(x)—>0 as x
hence ^(x) is bounded in (B, oo) for any B > 0, say

for x ^> B, where If may depend on B if B is small, but may be
taken as an absolute constant for large B. It follows that

x^sjx) -M x + t
β

dφ(x)

(10)

dx

+ ty
g (a + β + 2)M.

Since s(x) is bounded in some right-hand neighbourhood of the
origin, there exists Bo > 0 such that

\s(x)\^K

for 0 < x < Bo. By partial integration, we obtain

(11)
o (x + t)a+ί>+ί

K(a + 2/3 + 2)
a{β + 1)

By combining (10) and (11) it follows that git, a, β) is bounded
in any finite interval (0, T). Since it tends to s as t-+ °°, g(t, a, β)
is bounded in (0, oo). Thus, for y > 0, the integral
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+ β + 1) Jy

converges. In view of the definition of g(t, a, β) it follows that

(12) / = lim I(A)
A->oo

where

[A \~ x*~l8(χ) dx .\
Jo (x + £)α+

It follows from (10) by dominated convergence that, for fixed A,

Γ (t -
(X + t

as B—>oo. Hence, by Fubini's theorem

0

(13)

We will now show that, for fixed y>

(14) (°° a ? - 1 ^ ) ^ ! " (* ~ yy~β'~1 dt — 0

as i - > o o . It is clear that for large A the inner integral in (14) is
0{A~a-β'-1) uniformly in 0 ^ a? ̂  1, so that the contribution to (14) of
the range 0 < x < 1 tends to 0 as 4->oo, Now write

thus we are given that ψ(x) exists and that it tends to 0 as x
The contribution to (14) of x > 1 may now be written

(15) - (~ x"+W&lr(x)\~ ΰ ~ V)β~β'~l dt .

It is easily seen that, for fixed y, A and large x, the inner integral
in (15) is 0{x~a~β'~1)) thus, integrating by parts, (15) becomes

(16)

(X + ί) α +ί+ 2

Now for fixed y and large A, uniformly in 0 <^ x <L A, the inner in-
tegral in (16) is
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Hence

JA (a? + t ) β + ' +

J/logA PJ

+
1 Jj/log.l

-a-β'-lΓAβogA

I

J
/ Δ β l Γ A

-a-ι>'-1 sup lt(«0lΓ aj«+'W) = 0(1) .
xi(ΛllogΛ) JA/logΛ /

Nothing that for fixed y and large t

(t - yy-r-1 = t^-f'-1 + 0(t^'~2) ,

and also t h a t

f- V-r-'Ka + β' + l)t -(β- β')x)dt = 0

Jo (x + ty+w

we see that, for large A uniformly in x 2Ϊ A, the inner integral in
(16) is

A t'-f'- β' + l)t - {β-β')x\
o (x + ί)«

, 0(f" ^"ίi'-2l(« + ̂  + l)t - (β - /3')
IJ-t (x + ί)

(except that, in the case β — β' = 1, we must insert an extra term
Oix'^^logx)). It is now clear that the expression (16) tends to 0
as A—>oa, and this completes the proof of (14). We deduce from
(12), (13) and (14) that

=\~x^s(x)dx\~ «
Jo )y (X

dt
(X

= Γ(β - β')Γ{a + β' + ϊ) f- x°->s(x)
Γ(a + β + 1) Jo (x + 2/)α+-s'+

Thus, in view of the definition of /, we have
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g(y, a, β') = —-Πβ±^——y^ t~^(t - yy~^g{t, a, β)dt .

The kernel of this last transformation can easily be verified to satisfy
the conditions of Lemma 2, and the theorem now follows.

6* Proof of Theorem 4* It follows from the convergence of
(3) that for β> — 1, su = o(vβ+2). We can easily prove that the func-
tion tn+k(l — t)λ+βt+1 has a maximum when

+ _ k + n
0 :

For large k + n, this maximum is O((k + n)~~λ~~β'~ι). Hence, if β' >
β + 2, we have, the inversion in the order of integration and sum-
mation being justified by absolute convergence,

(0 ) y ( 1 _ t ) i + , + ι | ( )
Γ(n + l)Γ(β' + 1) Jo V ' ΨA k I ί

(17) " Γ(n + l)Γ(β' + 1) έ i

= t{n, λ + 1, /§') .

By analytic continuation, (17) holds for β' ^ /3. Hence

By Lemma 2 the result with follow if

n + 2)( i ) j
Γ(n + l)Γ(β + 1) JO

where i7 is independent of TO,

(ii)

when π —* co, for every finite Y, and

(iii) —A/3 + w + 2)
Γ(n+ l)Γ(β

when w —» co. Since
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Γ(/9 + rc + 2)

(i) and (iii) are satisfied. We have Γ(n + β + 2) ~ nβ+1Γ(n 4- 1), and
the integral in (ii) is, by changing the variable,

tn{l - ί)'dί .
jo

Hence (ii) is satisfied.
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