
PACIFIC JOURNAL OF MATHEMATICS
Vol. 36, No. 3, 1971

EXPANSIVE AUTOMORPHISMS OF
BANACH SPACES, II

JAMES H. HEDLUND

An automorphism of a complex Banach space is shown
to be uniformly expansive if and only if its approximate
point spectrum is disjoint from the unit circle.

The problem of giving a spectral characterization of the property
that an operator be uniformly expansive was investigated in [2], but
the theorem stated above was obtained only for automorphisms of a
Hubert space. The proof given in this note is both more general and
more transparent than the special version. We also note some
topological properties of the various classes of expansive operators in
the space of all invertible operators.

I* Uniformly expansive automorphisms* If T is an auto-
morphism (a bounded, invertible, linear operator) on a complex Banach
space X denote its spectrum by Λ(T), its compression spectrum by
Γ(T), its approximate point spectrum by Π(T), and its point spectrum
by Π0(T). Denote the unit circle {λ: |λ | = 1} in the complex plane
by C. The automorphism T is said to be

( 1 ) expansive if for each x e X with \\x\\ = 1 there exists some
non-zero integer n with | | Γ ^ | | ^ 2;

( 2 ) uniformly expansive if there exists some positive integer n
such that if xeX with ||a?|| = 1 then either | |Γwίc| | ^ 2 or || T~nx\\^ 2;

(3 ) hyperbolic if there exists a splitting X = Xs 0 Xu, T ~
Ts 0 Tu, where X8 and Xu are closed Γ-invariant linear subspaces of
X, Ts = T\ Xs is a proper contraction, and Tu = T\XU is a proper
dilation.

A discussion of these classes of automorphisms may be found in [2].
It is well-known [2, Lemma 1] that an automorphism T is hyper-

bolic if and only if Λ (T) n C = 0 . The principal result weakens both
conditions.

THEOREM 1. Let T be an automorphism of a complex Banach
space X. Then T is uniformly expansive if and only if Π (T) f]
C = φ.

The proof requires the Banach space version of an interesting
numerical lemma.
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L E M M A 1 . Given any complex numbers cly , cs there exists λ e C

such that Σ ; = i λ ^ > 0.

Proof. [2, Lemma 2]

LEMMA 2. Given any complex numbers c_ r, * , c s with C0ΦO

there exists λ e C such that | Σ l = - r λ/c y | > | c 0 | .

Proof. We may assume t h a t c o > O : otherwise set d̂  = (co/[co |) ĉ

and proceed. Let / ( λ ) = Σ J = i χj'c3> # ( λ ) = Σ7=-r λ ^ , and

Σ ί - i ^ ' c - i Since X~j = (X)j for λ e C it follows t h a t Re g(X) = Re

and therefore Re [/(λ) + #(λ)] = Re [/(λ) + ft(λ)]. Now /(λ) + h(X) is

a polynomial in λ; by Lemma 1 there exists XeC such t h a t /(λ) +

h(X) > 0. Thus /(λ) + h(X) + co> c0, and

> Re ( Σ λ^Λ - Re [/(λ) + ft(λ) + c0]

LEMMA 3. Given any vectors x_r, •••,#, m α Banach space X

with xQ Φ 0 £Λere exists XeC such that

Proof. By the Hahn-Banach Theorem choose a;* e X * with || B* || — 1

and x*(x0) = \\xo\\. I t suffices to find XeC with

S e t ^ = α?*(a? 3 ) a n d a p p l y L e m m a 2 : t h e r e e x i s t s XeC s u c h t h a t

*̂ ( Σ ,Σ >

Proof of Theorem 1. Necessity is proved in [2, Theorem 1].

To prove sufficiency, suppose t h a t T is not uniformly expansive. Then

for each positive integer n there exists xn e X with \\xn\\ = 1 and

max {\\ Tnxn\\, \\ T~~nxn\\} <2. For infinitely many n we produce a

vector 2/w e X and a number λ a e C such t h a t || (T — X~ι) yn | |/| | 2/Λ || —> 0.

This will suffice. In fact, iί μeC is a limit point of {λ^1} choose a

subsequence {λ"1} of {λ"1} with λ"1 —> μ. Then

II ( T - μ ) y m Il/H y m \\ ^ \\ ( T ~ λ " 1 ) τ / m | |/| | y m \ \ + \ χ - i - μ \ .

The right-hand side approaches 0 as m—> oo , so that //G/7 (T).
To construct 2/n we must consider two cases. Define
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Φ(n) = max sup
k~—n,Q λeC

k + n-1

Σ
Case 1. φ(n) is unbounded. Fix n, choose k where the maximum

in the definition of φ is attained, and let λft be the λ e C where the
supremum is attained. Define

e + n—l

Σ
so that || yn || = φ(n). Now

(T - λ-1) yn - λ Γ 1 Tnxn - λ"1 a?, if k - 0 ,

and

- ^ if fc = - n .(T - λ-1) yn - K'Xn - λ-

In either event,

I! (Γ - λ;1) y» il ^ 3. Thus || (T - λ-) yn

Since ^(w) is unbounded, 3/^(%) —> 0 for some subsequence % —> oo.

2. 0(w) is bounded. Assume that φ(n) ̂  4̂ for all n and
define

»» = Σ (n + 1 + i) λ̂ + - 3) K

where we choose λMeC by Lemma 3 to insure that
norm of the term with index 0.

^ w, the

(T-K1)V»\\ = - Σ K'1 τjxn +

Σ λjr%,

3=1

τ( Σ
i=o

Hence

(Γ - λ^) yn
0

Note that the hypothesis that T is not uniformly expansive is
not used in Case 2 But it is easy to see directly (by Lemma 3) that
T is not uniformly expansive if φ{n) is bounded. Note also that it
follows immediately from Theorem 1 that a hyperbolic automorphism
is uniformly expansive.

2* Density* Denote the class of all hyperbolic automorphisms
of a fixed Banach space X by £έf, of uniformly expansive by ^ g 7 , of
expansive by £?, of all automorphisms by ^ and of all bounded linear
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operators by &. If dim X < oo then 3ί? = ^ gf = gf and is precisely
the class of all automorphisms whose spectrum is disjoint from C. In
general the situation is much different.

THEOREM 2. Let X be separable infinite dimensional Hilbert
space. Then:

(1) <§T c <^gf c if c ^ c &\
(2) ^g^ αwcϊ ^ g 7 are open (in &, in the uniform operator

topology) but g" is not;
(3) no class is dense in the next larger.

The tools necessary for the proof are two results on semicontinuity
of pieces of the spectrum due to Haknos and Lumer.

THEOREM A. [4, Theorem 2] Π(T) and Λ(T) are upper semicon-
tinuous: to every Γ e ^ and every open set G containing Π(T)
[respectively, Λ(T)\ there corresponds a positive number ε such that
IΊ(S) c G [Λ(S)<zG] whenever \\S-T\\ < ε.

THEOREM B. [4, Theorem 3] Λ(T)\Π(T) is lower semicontinuous:
to every Te& and every compact set K contained in A(T)\Π(T)
there corresponds a positive number e such that K czΛ(S)\Π(S) when-
ever \\S - T\\ <ε.

Proof of Theorem 2. (2) If Te 3Zf then Λ(T) Π C = 0 . By semi-
continuity, Λ(S)f]C = 0 for S sufficiently near T. Since ^ is open,
Se^f. The proof for ^ g 7 is identical. To see that g7 is not open
fix an orthonormal base {en}T and let T be the diagonal operator
Ten = n/(n + 1) en. T is expansive [2, Example 2]. Given ε > 0 let
Sen = Ten for |1 — n/(n + 1)| ^ ε and Sen = en otherwise. Then
|| S — T\\ < ε but S is not expansive since 1 e Π0(S).

(3) jr is not dense in &: [3, Problem 109].
g7 is not dense in ^\ let {ejϋoo be an orthonormal base and let

T be the backward bilaterial weighted shift defined by Ten — 2en_1 for
n^h Ten = 1/2 en^ for n ^ 0. Then [2, Example 4]

/70(Γ) = {1/2 < | λ | < 2 }

so that Tί ξf. Now /ί(Tr*)\/7(Γ*) = {1/2 < | λ | < 2}; by Theorem B
if || S* - T* || is small then C c A(S*)\Π(S*) c Γ(S*). Hence C c Π0(S)
and Sgg 7 .

JTi s not dense in ^/gf: in fact ^/gf \ ^ is open. If Te ^ g ί \ ^ r
then Π(T)ΠC = 0 but i ( Γ ) Π C ^ 0 . So there exists a compact set
ίΓcCΠM(!Γ)\/7(Γ)]. By Theorem B, KaΛ(S) for || S - Γ| | small, so
that S
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^ g is not dense in g7: let X be represented as H2 (of the unit
circle) and let T be the multiplication operator Tf(eu) = {eu + 3/2)
f(eu). Let Ar = {| λ — 3/2 | ^r}. Either direct calculation or appeal
to the spectral properties of Toeplitz operators ([1], for instance) shows
that Λ(T) = Alf Π0(T) = 0 , Π(T) = bdy Al9 and Γ(T) = int A,. By
Theorems A and B there exists ε > 0 such that if 11 S — T11 < ε then
A3/4 c Γ(S) and Λ(S) c Λ/2 Now the arc α(ί) = e**, 0 ^ t ^ τr/2, on
the unit circle has α(0) e A3β and a(π/2) ί Am. Thus α(ί) e bdy Λ(S)
for some ί hence Π(S) Γ\ C Φ 0 and S i ^ g 3 . To verify that Γ is
expansive let a e [0, π] with | eία + 3/2 | = 1. Fix/e Jϊ 2 with || / | | 2 = 1.
Then either

l/2πΓ I/(β") \2dt^ 1/2 or l/2ττΓ~α | f{elt)\2 dt ^ 1/2 .

If the former holds choose — a <b < c < a with

let i ί = min {| e<6 + 3/2 |, | β<β + 3/2 |} > 1, and choose an integer n with
Kn > 4. If m>n

Tmf\\l = l/2π\"|β" + 3/2 dί

^ Kiml/2π\C\f(eu)\2 dt

If the other alternative holds then || Γ~m/||2 ^ 2 for large m. Hence
T is expansive.
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