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THE MATRIX EQUATION AXB = X

D. J. HARTFIEL

This paper considers the solutions of the matrix equation
AXB = X where we specify A and B to be ^-square and
doubly stochastic. Solutions are found explicitly and do not
depend on either the Jordan or Rational canonical forms. We
further find all doubly stochastic solutions of this equation, by
noting that Jn = (1/w), the n-square doubly stochastic matrix
in which each entry is 1/n, is always a solution and that the
doubly stochastic solutions form a compact convex set. We
solve the equation by characterizing the vertices of this con-
vex set.

Matrices considered in this paper are real matrice unless other-
wise stated. Most of the definitions and notation may be found in
[5], although some will be presented below.

If Al9 A2, •••, A, are square matrices, by Σ*=iΛfe we mean the
direct sum of the Aks. If s = 2 we may write Ax 0 A2 for this di-
rect sum. We say that a square matrix A is reducible if there exists

a permutation matrix P so that PAP* = (γ %) where X and Z are

square and P* denotes the transpose of P. If A is not reducible,
then it is said to be irreducible. A square matrix A = (α<y) is doubly
stochastic if ai5 ^ 0 and Σ f c aik = χ f c akj — 1 for all i, j . It readily
follows that if A is doubly stochastic, then there exists a permuta-
tion matrix P such that PAP1 = Σί=i 4b where each Ak is doubly
stochastic and irreducible.

The following two celebrated theorems in matrix theory are used
in the paper.

BIRKHOFF'S THEOREM. The set of all n-square doubly stochastic
matrices, Ωn, forms a convex polyhedron with the permutation matrices
as vertices [5, p. 97].

PERRON-FROBENIUS THEOREM. Let A be an n-square nonnegative
irreducible matrix. Then:

( i ) A has a real positive characteristic root r which is simple.
If X is any characteristic root of A, then |λ | ^ r.

(ii) If A has h characteristic roots of modulus

r : λ 0 = r , Xί9 •• , λ A _ ι

then these are h distinct roots of Xh — rh — 0, h is called the index of
imprimitivity of A. If h = 1 the matrix is called primitive.
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(iii) IfX0,Xlf •• ,λΛ_1 are all the characteristic roots of A, and

θ = eίi2πln) then Xoθ, •••, λw_^ are λ0, •••, λ ^ in some order.

(iv) If h > 1, £A,ew there exists a permutation matrix P such

that

ί 0 A12 0

0 0 A23

PAP' =

0 0

0 0

\

o o o ... o A-!,*
\A,i o o o o j

where the zero blocks down the main diagonal are square [5, p. 125].

If A is a nonnegative matrix and

are all positive elements in A, then A is said to have a loop of length
m. If A = (au) is such that all ai} are equal, then we say that A
is flat. If A is partitioned into block matrices Aa, i.e., A = (A^),
and each Ai} is flat, then a block loop is denned similarly.

1. Preliminary results. First we note that if P and Q are
permutation matrices then AXB = X if and only if

PAP'PXQQ'BQ = PXQ .

Since A and B can each be put into a direct sum of irreducible matrices
by simultaneous row and column permutations we may assume by
the Perron-Probenius Theorem that

A = Σ" Aa , = Σ Bβ

(0 Af 0

0 0 At

0

0

0 0 0

\AL 0 0 0 J

Bβ-

0 B{ 0 0

0 0 Bξ ••• 0

0 0 0

Km. o o o
where Aa is irreducible with index of imprimitivity sa; Bβ is irreduci-
ble with index of imprimitivity rβ. Further the 0 blocks down the
main diagonal on Aa and Bβ are all square.

Note that the dimension of each A% (k — 1, 2, , sa) is the same
for each fixed a. For fixed β the dimensions of the Bβ

k (k = 1, 2,
• , rβ) are also equal. Hence
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where each Ck (k = 1, 2, , sa), Dk (k — 1, 2, , rβ) is a primitive
doubly stochastic matrix. Now let p be a sufficiently large integer
so that Ap and Bp are direct sums of primitive matrices.

LEMMA 1.1. If T is a linear operator on a convex set S whose
vertices are X{ (i — 1, 2, •••, m), then T(S) is a convex set ichose ver-
tices are in {T(Xi)\i — 1, •••, m}.

THEOREM 1.2. The set of doubly stochastic solutions of the matrix
equation APXBP = X (p previously defined) is the convex hull of

\lim(Ap)kPι(Bp)k\Pι is a permutation matrix, I = 1, 2, , nl\ .

Proof. If V is an m x m primitive doubly stochastic matrix,
then Vk = Jm, the flat m x m doubly stochastic matrix,

lim (Ap)k and lim (Bp)k

k l

exist, their limits being direct sums of flat doubly stochastic matrices.
Let L(X) = lim^oo (Ap)kX(Bp)k. This is a linear operator defined on
the set of n x n matrices.

By Lemma 1.1, L(Ωn) is the convex hull of {L(Pϊ)\Pι is a permuta-
tion matrix} i.e., of {lim^*, (Ap)kPι(Bp)k \ Pi is a permutation matrix}.

Now if ApXBp = X, XeΩn, then L(X) = X and by Birkhoff's
Theorem, X is in the convex hull of the {L(Pι)\Pι is a permutation
matrix}. Furthermore, if X is in the convex hull of the {L(Pι)\Pι is
a permutation matrix} i.e., X~ Σ\XL{P^ where Xt ;> 0 and ΣXt = 1,
then

X = ΣXιL{Pι) - ΣXι lim {Ap)kPι{Bp)k

l lim

and X is a solution of the matrix equation.

THEOREM 1.3. Y e Ωn is a solution of AXB = X if and only if
Y = ΣS^AkWBk/p where WeΩn is a solution of APXBP = X.

Proof. If Y =
A YB = Y.

S A" WBk/p, W a solution of A'XB" = X, then
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Further if Y is solution of AXB = X then Y is a solution of APXBP =

X and so Γ = Σί~U*YB*/p.
Let M{Z) = ΣKo AkZBk/p. Then M is a linear operator defined

on the set of w x n matrices.

COROLLARY 1.4. The vertices of the set of doubly stochastic solu-
tions of AXB = X is a subset of {M[L(Pi)]\Pι is a permutation
matrix}.

Proof. The proof follows from Lemma 1.1, Theorem 1.2, and
Theorem 1.3.

COROLLARY 1.5. If one of A or B is primitive, then the only
doubly stochastic solution of the equation AXB = X is Jn.

Proof. Either l i m ^ (Ap)k or l i m ^ (Bp)k is Jn. Thus if X is
doubly stochastic, then L(X) = Jn.

2+ The operator !>• Our primary aim here is to investigate the
structure of the convex set L(Ωn): in particular its vertices.

From § 1 we know for Pt a permutation matrix

UP,) = \im (A-
k->oo

where Jf and Jξ are flat doubly stochastic matrices whose dimensions
correspond to the dimension of the primitive matrices in the direct
sums Ap and Bp respectively.

Suppose ar x aγ is the dimension of Jf and bσ x bσ is the dimension
of Jξ. Set ι(ΣrJt)Pι(Σ*J5)= V%. Partition Fz into blocks Vrσ of
dimension ar x bσ.

LEMMA 2.1. If XeL(Ωn) is partitioned into block matrices Xrσ of
dimension ar x 6σ, then each Xrσ is fiat.

THEOREM 2.2. If XeL(ΩJ is partitioned into block matrices Xrσ

of dimension ar x bσ, then X is a vertex of L(Ωn) if and only if X
does not have a block loop.

Proof. Suppose X has a block loop

Add ε > 0 to each element in the 71σ1 block. Subtract (bσjbσ2)e from
each element in the Ti^2 block. All the row sums of the matrix are
now one. Now add (aribσjar2bσ2)ε to each element in the y2σ2 block.
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All the column sums of the matrix are now one. Now subtract

from each element in the Ί2σz block. All the row sums of the matrix
are now one. Continuing in this manner we see that in the Ίmσm

block we add (α r m _ l J % ^ i bσjarjbam bθ2)ε = ε. This is exactly
what is in the Ύmσm or rYx(J1 block. Now all rows and columns sum
to one. Call this generated matrix Xf. Now considering the same
block loop we generate X" by replacing ε by — ε in X'. Again all
rows and columns sum to one. Now X — \{X* + X"), and since Xf

and X" eL(Ωn) for ε sufficiently small, X is an interior point.
On the other hand if XeL(Ωn) and interior to it, there are X'

and X" in L(Ωn) so that X = ^{Xr + X"). We may pick Xr and X"
in L(Ωn) so that they have zero blocks in the block position if and
only if X does. Now if X' Φ X" then there is a Ύ1σ1 block so that
X;iσi < Xl[ύχ where X}lO1 is a block in X\ X'[Oί is a block in X" and
the relation is elementwise. Hence there is a X/1<72 > X"lθ2 and so on.
This generates a block loop in X.

COROLLARY 2.3. X is a vertex of the convex set of doubly stoch-
astic matrices if and only if X does not have a loop.

Proof. Consider the matrix equation IXI — X and apply the
Theorem 2.2.

We are now in a position to find the vertices of L{Ωn). Partition
each permutation matrix Pt into blocks P}a of dimension aγ x bσ. Let
nlσ be the number of ones in the jσ block of Pt. Then

and Vγa has all its elements equal to nrσ/arbσ. We may now use
Theorem 2.2 on this finite set to establish exact vertices.

EXAMPLE.

\

i έ

lίh h
i i

\
0 vi

Partitioning the matrices Px we have
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( 1 )

( 2 ) L

01

00
\00

/oo
00

10
\oi

00\
00'

10

oiy
10\
01

00
00/
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(hh
hh

0

\

(0

11

°\
hh
hh)

hh\
hh

0

, a vertex ,

, a vertex .

All vertices are of the form L(Pt) for some permutation Pt. However,
L{Pt) is not always a vertex for every I. For example,

( 3 )

/10
00

01

\oo

00\
10

00

01

—

/ii
ii

ii
\ii

ii

ii
ii/

an interior point .

We can further note by Theorem 2.2 that 1 and 2 are the only ver-
tices of L(Ωn).

3* General solutions of APXBP = X We already know from
Theorem 1.2 that for each WeΩn, L(W) is a solution of APXBP = X.
Actually we have shown that if W is any n x n matrix then L(W)
is a solution of APXBP = X. Further if W is a solution of the equa-
tion then L{W) = TΓ. i.e., (ΣV Jf)W(ΣiΌJ?) = W. Partition W into
blocks Wΐσ as in §2. Now JfWϊσJ

B

σ = ΐF,σ implies that Wrσ is flat.
Also if each Wrσ of W is flat, then TF is a solution. Hence we know
all solutions of the matrix equation APXBP — X.

4. Orbits in matrices* Let C = (ci3) be a p x q matrix. Sup-
pose we pick some c ^ . Then by the orbit of cilJ1 we mean the set
of positions {i1 — k,j1 + k) [k = 0, 1, •••] where the row index is
modulo p and the column index is modulo q.

EXAMPLE.

The numbers in the positions of
the orbit of

( 1 ) 5 are 5, 3, 7
( 2 ) 2 are 2, 9, 4
( 3 ) 1 are 1, 8, 6
( 4 ) a are α, β, c, d,b,f.

Consider the group Z/p 0 Z/q where Z is the additive group of
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integers. Note that K — {( — k mod p, k mod q) \ k e Z] is a subgroup
of (Zjp 0 Z/q). Hence we can consider orbits as cosets in (Zfp ©
Z/q)/K by looking at indices. We now see:

1. The number of elements in each orbit is the same.
2. If two orbits intersect, they are the same.
3. If one orbit contains a row index k times then all orbits con-

tain that row index k times. The same property holds for columns.
4. Each row index and column index appear at least once in

each orbit.
5. If p and q are relatively prime, then there is only one dis-

tinct orbit.
Finally we note that since orbits are defined by indices, we may

consider block orbits in partitioned matrices.

5* The operator ikf Our aim here is to investigate the struc-
ture of the convex set M[L(Ωn)]: in particular to find its vertices.
Let XeL(Ωn). Partition X into blocks Xrσ of dimension ar xbσ1 then

M(X) = ±-
P

= —ΣΣ"
p fc0

0 0 2

0

0

0

0

0

0

•• 0\
... o

• •• 0/

k

Λ. 2-1

/O B

0 0 i

0

0

0

0

0

0

0\k

0

0/

and since the blocks Xra of X are flat we may write

M{X) =
1 P-1

JL y

/0 /? 0 0
0 J ? 0

0\k

0

o o o

(0 J[ 0 0

0 0 J? 0

\ j ; , o o o o/

where J% (k = 1, 2, , sa) and J{ (k = 1, 2, , rβ) are flat doubly-
stochastic matrices whose dimensions are the same as those of At and
B{, respectively. Suppose the irreducible blocks Aa of Σ «-4« have
dimension pa x pa and the irreducible blocks Bβ of Σβ Bβ n a v e the
dimension qβ x qβ. Partition X into blocks X'aβ of dimension pa x qβ.
We call these blocks the major blocks of X. Now since X is already
partitioned into blocks of dimension ar x £>„, we see that the major
blocks are partitioned into the Xra blocks in the first partitioning.
We call each block in the original partition a minor block. Note that
inside each major block, all minor blocks are of the same dimension.

Now suppose X'aβ is a major block of X. Then we see the sequence
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/O J? 0

0 0 j :

v ? β o o
/O Jΐ 0

0 0 J?

O\XL

0/

0 Jf 0 0\

0 0 J{ 0

Jβ

rβO

0\f-1 / O J f 0 ••• OX"

0

\J" 0 0 . . . 0 /

0 0 Jξ . . . 0

o o

is such that each minor block in X'aβ moves through its orbit in X'aβ

at least once.
By the definition of M and the remarks made above we see that

M(X), XeL(Ωn), is found as follows. Let X be partitioned into major
and minor blocks. Consider the orbit of the minor blocks in each
major block. Sum the blocks in each orbit with sufficiently many
copies in order that there are p blocks. Then divide the sum by p
and replace each block in the orbit by this block. From this we see
that XeM[L(Ωn)] if and only if

1. XeL(Ωn).
2. If Xji<7l and XΪ2<,2 are in the same major block and in the same

orbit in the major block, then they are equal.
We now find necessary and sufficient conditions for X to be a

vertex of M[L{Ωn)\.

D E F I N I T I O N . I f Xaiβlf Xaiβ2, ••*, Xamβm — - X ^ a r e m a j o r b l o c k s of
X, XeM[L(Ωn)] and each Xajtβk (Jc = 1, 2," , m), Xajch+1 (k = 1, 2, . . ,
m — 1) has exactly one positive minor block orbit, then

is an orbital block loop in X.

THEOREM 5.1. Xe M[L(Ωn)] is a vertex if and only if
1. there do not exist two different positive minor block orbits in

any major block of X, and
2. there does not exist an orbital block loop in X.

Proof. First suppose X e M[L(Ωn)\ and X has two positive block
orbits in a major block Xaβ of X. Then we add ε > 0 to each ele-
ment in each block of one of these orbits and subtract ε from each
element of each block in the other orbit. Call this matrix X\ To
generate the matrix X" replace ε by — ε in X'. Now for ε sufficiently
small, X' and X"eM[L{Ωn)\. Since X= \{X' + X"), X is interior
and therefore if X is a vertex it must satisfy 1.

Now suppose XeM[L(Ωn)] satisfies 1 but not 2. This means X
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has an orbital block loop, say Xaiβl, Xaιβft, •••, XΛmβm = X*^- Each of
these major blocks has a positive orbit by definition. Flatten each
major block; i.e., if Xaβ is a block in the orbital block loop and has
s different orbits, divide the element c in the positive orbit by s and
replace all elements in the major block by c/s. If we call this matrix
Xr then Xf eM[L(Ωn)]. We may now use the scheme of Theorem 2.2
to alternately add and subtract ε>0 from this major block loop, the-
reby generating X[ and Xζ e M[L(Ωn)] and Xf = 1{X[ + Xζ). Now
absorb the flat major blocks back into the original orbits, i.e., if Xaβ

is a major block in the orbital block loop with s different orbits then
replace each element c in each block of the original positive orbit by
sc. Put zero blocks in all other orbits in this major block. Doing
this to X\ X{, and XI we generate X, Xίf and X2, respectively. Note
X19 X2 e M[L(Ωn)]. Further X = l(Xι + X2). Hence X is interior.

Finally suppose X satisfies 1 and 2. Suppose that there exist
Xly X2eM[L(Ωn)] so that X= i(X, + X2). We may suppose X, and
X2 have the same zero pattern as X. If Xt Φ X2 and Xu X2 satisfy
1 we can see by an argument similar to Theorem 2.2, that X has an
orbital block loop. This contradicts X having property 2. Hence we
see that X is a vertex.

Using this theorem and the remarks preceeding this theorem we
see that we have characterized the vertices of M[L(Ωn)\.

EXAMPLE.

jθ 1 0\ /0 1

0 0 1 1 0 0 1

\1 0 0/ \1 0

There are three orbits for X given in the following diagram.

They are the positions occupied by 1, 2 and 3 respectively. Consider
the vertices of L(Ωn). Using 1 of Theorem 5.1 we see

( a )

has a one in each orbit; hence
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1/3 1/3 l/3\

= [ 1/3 1/3 1/3

α/3 1/3 1/3/

which is interior.

( b )

has 3 ones in the same orbit, hence

0 0

M

which is a vertex. The other vertices are

and

6* General solutions of AXB — X. Partition X into the major
and minor blocks. Since AXB = X would imply APXBP — X we see
that each minor block of X must be flat. If we add the further
condition that minor blocks on the same orbit are all equal then we
see from § 5 that X is a solution and all solutions are of this form.

7* General remarks* It is interesting to note that in order to
obtain solutions of AXB = X it is only necessary to know the block
form of A and B, i.e., if Ax is doubly stochastic and has the same
block form as A and Bx is doubly stochastic and has the same block
form as B then AXB = X if and only if A1XB1 = X.

From § 4, property 5, we see that if A and B are irreducible,
where the index of imprimitivity of A and the index of imprimitivity
of B are relatively prime, then Jn is the only doubly stochastic solu-
tion. The only general solution is flat. This follows since there is
only one orbit in X. Each block in the orbit is flat and all blocks
in the orbit are equal.

Finally we point out that our result can be extended to a more
general setting by considering the following result due to Sinkhorn
(7):

THEOREM. Let D be the set of all n x n matrices with row and
column sums equal to 1, Mn_x the set of (n — 1) x (n — 1) matrices.
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Let R — 1 © M"^. Then there is a nonsingular matrix P so that
POP-1 = R.

From this we know that if Ax and A2 are (n — 1) x (n — 1)
matrices then there are nonsingular matrices P and Q so that P~\l φ
A2)P and Q(l φ ^.JQ"1 have row and column sums equal to 1. If
P~ι(l φ A2)P and Q(l φ AJQ"1 are nonnegative and real and hence
doubly stochastic, then since

, 2 - X

if and only if

(1 φ Λ)(l Φ X)(l Φ A2) = 1 φ X

if and only if

Q(l Φ Λ)Q~Ό(1 Φ X)PP-\1 φ Aa)P - Q(l φ X)P ,

we can also find the solutions to the matrix equation

AXXA2 = X.
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