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SOLVABLE AND SUPERSOLVABLE
GROUPS IN WHICH EVERY ELEMENT IS
CONJUGATE TO ITS INVERSE

J. L. BERGGREN

Let © be the class of finite groups in which every element
is conjugate to its inverse. In the first section of this paper
we investigate solvable groups in ©: in particular we show
that if G€© and G is solvable then the Carter subgroup of
G is a Sylow 2-subgroup and we show that any finite solvable
group may be embedded in a solvable group in ©, In the
second section the main theorem reduces the study of super-
solvable groups in & to the study of groups in © whose
orders have the form 2¢pf, p an odd prime,

NoTraTION. The notation here will be as in [1] with the addition
of the notation G = XY to mean G is a split extension of Y by X.
Also, F(G) will denote the Fitting subgroup of G and @(G) the Frat-
tini subgroup of G. We will denote the maximal normal subgroup
of G of odd order by 0,(G). Further, Hol{G) will denote the split
extension of G by its automorphism group.

If K and 7 are subgroups of G we will call K a T-group if
T < Ny(K) and we say K is a 7T-indecomposable 7T-group if K =
K, x K,, where K, and K, are T-groups, implies K, = (i) or K, = {I).

1. Burnside [2] proved that if P is a Sylow p-subgroup of the
finite group G and if X and Y are P-invariant subsets of P which
are not conjugate in N,(P) then they are not conjugate in G. Using
Burnside’s method one may prove a similar fact about the Carter
subgroups. The proof is easy and we omit it.

LEMMA 1.1. Let C be a Carter subgroup of the solvable group G
and let A and B be subsets of C, both normal in C. If A+ B then
A and B are not conjugate in G.

THEOREM 1.1. If G is a solvable group in & then a Carter sub-
group of G is a Sylow 2-subgroup of G.

Proof. Let C be a Carter subgroup of G. If C has a nonidentity
element of odd order then C has a nonidentity central element ¢ of
odd order, since C is nilpotent. Then with A = {g} and B = {g'} the
hypotheses of Lemma 1.1 are satisfied and, since 4= B, ¢ and g
are not conjugate in G, contradicting our supposition that Ge&.
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Hence C is a 2-group. As C is self-normalizing in G, C must be a
Sylow 2-subgroup of G.

Note. This proof implies, also, that Z(C) is an elementary abeli-
an 2-group. However, the theorem of Burnside we mentioned can be
used to show that if T is a Sylow 2-subgroup of any group Ge &
(whether solvable or not) then Z(T) is elementary abelian. Thus, if
Ge® and T is a Sylow 2-subgroup of G the ascending central
series of T has elementary abelian factors.

COROLLARY 1.1. If T is a Sylow 2-subgroup of a solvable group
GeS then Ny (T) = T.

Proof. By Theorem 1.1 T is a Carter subgroup of G. Carter
subgroups are self-normalizing.

COROLLARY 1.2. If G and T are as in Corollary 1.1, and if T
is abelian, then G has a normal 2-complement.

Proof. By Corollary 1.1 and the assumption 7 is abelian, T is
in the center of its normalizer. The result follows from a well-known
theorem of Burnside.

We now investigate two families of solvable groups in &.

THEOREM 1.2. If Ge©& and a Sylow 2-subgroup of G 1is cyclic
then G = TK where K is an abelian normal subgroup of odd order
and T = {a)y with o =1 and g* = g~ for dll ge K.

Proof. As G has a cyclic Sylow 2-subgroup, G is solvable. By
Corollary 1.2 G = TK, T = {a) is a Sylow 2-subgroup of G and K is
a normal subgroup of odd order. By the Note after Theorem 1.1,
a*=1. If a did not induce a fixed-point-free automorphism of K
then C,(T) N KX2<1), so N(T)=2 T, contradicting Corollary 1.1. Thus
g — g% is a fixed-point-free automorphism of K. It is known that if
K has a fixed-point-free automorphism « of order 2 then a{k) =k
for all ke K and hence K is abelian.

THEOREM 1.3. Let G be a finite solvable group in & and suppose
a Sylow 2-subgroup T of G has order 4. Then T 1is elementary abelian,

G has a mormal 2-complement K, and K™ 1is wmilpotent.

Proof. As G is solvable, Corollary 1.1 and 1.2 imply that G =
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TK where |T| =4 and K is a normal subgroup of odd order. The
Note after Theorem 1.1 implies 7' is elementary, say T = {a) x {B).
Let K, and K, denote the set of fixed points of the automorphisms of K
induced by « and g respectively. Then {1> = Cr(T) 2 K.N K;. Hence,
as T is abelian, K, is g-invariant and B induces a fixed-point free auto-
morphism of K,. Thus K, is abelian. Then, by [4], K® is nilpotent.

Finally, we show that any finite solvable group can be embedded
in a solvable group in &. We shall need the following lemma.

LEMMA 1.2. Let Ge® and let {x) be a cyclic group of order p,
where p s an odd prime. Let o be an involution and define H =
{Gulx), ¢), where x* = " and b* = b for all be G. Then He .

Proof. Let K=G x G* X «++ X G**' be the base subgroup of
Guwlx). Then Ke® since Ge&. Suppose k€ H and

hy = a7y g% o0 020",
where » % 0(p). Writing [j] for ' we may write
hy = a7 gor g« -+ gl
Now, if ge G then (¢')* = ¢ implies that
(gi) gl = (gt)'glitTT

and hence (gi*)~'z"g!) = a7(gl*+)*gtl. Thus if g8 = ¢L*~"! then (x7)? =
2 (g )N g ). Writing bl = amfo- fI7 <« fG2707, where fieG
for all 7, we see that f;,, =g¢;, if 1#¢, ¢ —1 while f,, = 1. Thus
first changing the rightmost ¢! in 2, to 1 by conjugation and pro-
ceeding to the left we may conjugate h, to an element h = 2"g, where

geG = G,
Pick acG such that ¢° =g and let w = aa®---a**". Then
with v = auax™ we have A" = h~'. It remains to consider elements

of H of the form h = a-x"-g,-9™" -+ gi*7, where [j] denotes «?. If
r %= 0 (p) then let ¢ be an integer such that 2¢ = —7(p). Then &
conjugated by z° has the form ayyt --- y27" where the y; € G.

We now exploit the fact that, since z* = ' and ¢~ = g for all
geG = G, g7 = (gid)e, gi752 = (gi4,)", ete. Thus

aT(P—l) — a(g;il)fp—l](gp—l)[l],
where v(p — 1) = ¢!4,. Performing this computation for
v —1),v(p —2), -, v((p + 1)/2),

where ~v(e) = ¢'*~! and observing that w = v(p —1) -+ v({(p + 1)/2)
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has the identity in G as its i-th component for 7> ((p + 1)/2) we
see that 2* has the form A, = a-f,-fM .. fI'7 where r = (p — 1)/2
and f;e@G for all 7. Then &' = a-fi - ((f7H -« (7)), Now for
all t =0, ---, r pick a;€¢ G such that f* = f* and let u = aq,-v-2"
where v = a!! ... al"l. Taking = = u« it is easy to see that A} = h",
using the fact that (vv®, @) = (g,, vv*) = 1. This disposes of all cases.

Theorem 1.4. If G is a finite solvable group them there exists a
solvable group L €& and a monomorphism t: G — L.

Proof. 1f G is abelian let L, = (G, &> where o = 1 and ¢g* = g~*
for all ge G. Then in L every element of GG is conjugate to its in-
verse and all other elements lie in the coset Ga which consists of
involutions, so L €& and L is solvable. Hence the theorem is true
for all abelian groups G. Induct on |G| and assume it is true for
all solvable groups of order less than the order of G. Now let H<] G
such that [G: H] = p, » a prime. Our induction hypothesis says there
is a solvable K€ ®& and a monomorphism of HwC, into KwC,, where
C, is cyclic of order p. By Satz 15.9 [3] (Chapter I} there is a mono-
morphism of G into HwC,, so G may be imbedded in KwC,. If p =
2 then by Theorem 1.1 of [1] KwC,e®, and it is solvable since K
is. If p>2 then by Lemma 1.2 KwC, has a solvable extension
(KwC,, aye .

Thus, in this case as well, G may be imbedded in a solvable group
in &.

This concludes our investigation of solvable groups in &.

2. In §1 we showed that if Ge®& is a solvable group with an
abelian Sylow 2-subgroup 7' then 7' has a normal complement in G.
Of course, if G is supersolvable then (by the Sylow Tower Theorem)
T has a normal complement XK, regardless whether 7T is abelian or
GeS. If we assume that Ge &, where G is supersolvable, then with
the above notation we assert.

THEOREM 2.1. The Sylow 2-subgroup T s in &, and K and O(T)
are contained in F(G).

Proof. That Te©S was remarked in [1]. Since G is supersolvable
GV < F(G). Now Ge® implies G/G" €& and since G/G" is abelian
G/GY is an elementary abelian 2-group. Thus &(7) < G, and since
2, |K))=1, K< GY.

REMARK. If Ge® is supersolvable Theorem 2.1 implies G is a
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split extension of a nilpotent group K by a two-group T in &. If S
is a Sylow 2-subgroup of F(G) then S<]G, so G/Se&. But by
Theorem 2.1 G/S is isomorphic to a split extension FK of the nilpotent
group K by an elementary abelian two-group E. Thus given a
supersolvable G in & there exists a supersolvable G* €& such that
O,., (G*) = O,,, (G) but G* has an elementary abelian Sylow 2-subgroup.

Now let G = TKe& be given, where G is supersolvable and T
and K are as above. Let P, ---, P, be the Sylow subgroups of K,
so K=P, x «-- x P,. If m, is the projection of K onto P; let H; =
ker (w;). Then H,[>G and G/H; = TP;, a split extension of P; by T
which is supersolvable and in &. We have now reduced the study
of supersolvable groups in & to two questions:

(1) Given a 2-group Te® and a p-group P (p an odd prime)
find the split extensions 7P of P by T which are supersolvable and
in &.

(2) Given split extensions TP, ---, TP, of P,-groups by 7T (where
the p; are distinct odd primes) which are supersolvable and in &,
when is TP, A TP,A -+ ATP,c&? (For a definition 'of the symbol
A see [3], Satz 9.11.)

The answer to (2) is not “Always.” For example let

TP, =<z, y, a, b

where {x, y> is the non-abelian group of order 27 and exponent 3,
{a, by is the four-group, and (v,a) =@, (z,b) =1, (y,2) =1, (y, b) = .
Let TP, = {u, v, a, by where {u, v) is the nonabelian group of order
125 and exponent 5 with (u, a) = u, (u,0) =1, (v,a) =1, (v, d) = .
Then TP, and TP, are supersolvable and in &, but TP, A TP, ¢ &.
The next theorem answers (1) when T and P are abelian. It
may be used to show that for certain P no T exists such that TPe &.

THEOREM 2.2. If G = TX is a group in & such that K 1is abelian
of edd order (K<]G) and T is an abelian two-group then T is element-
ary and we may pick a basts x,, «++, x, for K and a basis a, B, *++, Bu
for T such that xf = x7* for all 1 =1, «+-, n and x)i = xF* for all 1, j.
Conwersely any such group is in S.

Proof. Since G/K = T, Te&. Being abelian T must be element-
ary. Since K is a finite Tigroup we may write X = K, X «+- X K,
where each K, is a T-indecomposable T-group. Now pick any ve T.
Since |v| £ 2 and K; is abelian of odd order, XK; = I. x F', where

I ={xeK;|ler =27} and F,={xecK;|a" =ua}.
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(For clearly K; = I, x F,. For any z€ K, let z = 22" and w = x(z™)".
Observe that ze F',, we I, and 2* = zw. Since 2*c I x F, and K, has
odd order, zel, x F,. Thus K, = I, X F,.) Since T is abelian and
K; is a T-group, I, and F', are also T-groups. But K, is T-indecom-
posable so I, = (1> or F, = (1). This means that each ve T either
inverts every element of K; or fixes every element of K,;. Hence in
any decomposition of K; as a direct product of cyclic groups each
direct factor is a T-group. As K, is T-indecomposable we conclude
K, is cyclic. Let K; = {x;>. Because G €& there exists ae T such
that (x, ---x,)* =2 ... 2;'. Hence zf = z;* for all 7 and therefore
z* = o for all xe K. Now let «, 8, *++, B» be a basis of T, where
« is as above. We found that for an arbitrary v e T and an arbitrary
xeK;, =2 or " = x~'. Hence for each j and ¢, x} = x;, where
e = +1.

Conversely, if G = TK is as in the conclusion of the theorem
then ge G either has the form a2 -.- 2 (which is conjugated to its
inverse by a) or the form vzt - x¢», with ve T. In this case it is
easy to see that ¢g° = ¢!, where g = va.

As an example of how this theorem might be applied we shall
show that if P = (&, y|a*" " = y» = 1, 2’ = &'**" "), where p is an odd
prime and n = 8, then there is no two-group T and supersolvable ex-
tension TP such that TPe &. For suppose there were such a T, with
TPe&. We may assume, by previous remarks, that T is elementary
abelian. Then TP/®@(P) € © and by the foregoing theorem there exists
a e T such that 2 = x~'z** and y* = y~'«**. Then

(xz/)a — (xl-}»p""_z)a = gl-Pn Tk

while (z%)*" = (x~'w?*)* ™ = ()Y 'w?* = ¢+ g%, Since (27)* = (x%)*"
we conclude that 2" = 2*"°. Therefore 2*"* =1, contradicting
the supposition that p is odd. Hence no such G exists.

3. We now give an example of a solvable group satisfying the
hypotheses of Theorem 1.3 which does not have a nilpotent normal
2-complement. Thus the second assertion of Theorem 2.1 does not
generalize to solvable groups with a normal 2-complement. Let

H=<x,y,z]x7:y3:z2= 1,90”2562,902:90_1,?/::?0,
so H = Hol (C;), where C, is a cyclic group of order 7. Let
C, = Cujut = 1>

and define K = HwC,. In Klet a=2,b = 2* ¢ = y#)*, d = 2z%, e =
u, and consider the subgroup G = <a, b, ¢, d, e>. Then G has defining



SOLVABLE AND SUPERSOLVABLE GROUPS 27

relations " =" =¢¢ =d*=¢e=1,(a,b) = (¢,d) = (d,e) = 1, a* = a7,
=01 a°=a? b =10 ¢ =c*, and a° = b.

Consider the subgroup <a, b, d, ¢). Elements of the form ead’,
a’d’, da'd’, and eda’d’ are conjugated to their inverses by, respectively,?
a’dea, d, 1 and e. We may now consider elements ce'd‘a*b™, ¢ = +1.
Such an element is always conjugate to an element of the form !
ce'dia*db™. Now cedad™ and cea*d™ are conjugated to their inverses
by ce and ced respectively. TFinally ca*d™ and cda*db™ are conjugated
to their inverses by a*b*mea=*b—°" and a*b*"ea2*b~*™ respectively.

This completes the proof that Ge&. Notice G satisfies the hy-
potheses of Theorem 1.3 but the normal 2-complement K = {q, b, ¢>
is not nilpotent. In fact F(K) = K%.
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