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SOLVABLE AND SUPERSOLVABLE
GROUPS IN WHICH EVERY ELEMENT IS

CONJUGATE TO ITS INVERSE

J. L. BERGGREN

Let © be the class of finite groups in which every element
is conjugate to its inverse. Tn the first section of this paper
we investigate solvable groups in (E>: in particular we show
that if G e © and G is solvable then the Carter subgroup of
G is a Sylow 2-subgroup and we show that any finite solvable
group may be embedded in a solvable group in (B. In the
second section the main theorem reduces the study of super-
solvable groups in © to the study of groups in © whose
orders have the form 2apβ, p an odd prime.

NOTATION. The notation here will be as in [1] with the addition
of the notation G = XY to mean G is a split extension of Y by X.
Also, F(G) will denote the Fitting subgroup of G and Φ{G) the Frat-
tini subgroup of G. We will denote the maximal normal subgroup
of G of odd order by O2 (G). Further, Hoi (G) will denote the split
extension of G by its automorphism group.

If K and T are subgroups of G we will call K a Γ-group if
T ^ NG{K) and we say K is a T-indecomposable T-group if if =
ifj. x K2, where Kt and if2 are T-groups. implies Kγ = <1> or K2 = <T>.

1Φ Burnside [2] proved that if P is a Sylow p-subgroup of the
finite group G and if X and Y are P-invariant subsets of P which
are not conjugate in NG(P) then they are not conjugate in G. Using
Burnside's method one may prove a similar fact about the Carter
subgroups. The proof is easy and we omit it.

LEMMA 1.1. Let C be a Carter subgroup of the solvable group G
and let A and B be subsets of C, both normal in C. If A Φ B then
A and B are not conjugate in G.

THEOREM 1.1. If G is a solvable group in @ then a Carter sub-
group of G is a Sylow 2-subgroup of G.

Proof. Let C be a Carter subgroup of G. If C has a nonidentity
element of odd order then C has a nonidentity central element g of
odd order, since C is nilpotent. Then with A = {g} and B = {g"1} the
hypotheses of Lemma 1.1 are satisfied and, since A Φ B, g and g~ι

are not conjugate in G, contradicting our supposition that Ge&.
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Hence C is a 2-group. As C is self-normalizing in G, C must be a
Sylow 2-subgroup of G.

NOTE. This proof implies, also, that Z(C) is an elementary abeli-
an 2-group. However, the theorem of Burnside we mentioned can be
used to show that if T is a Sylow 2-subgroup of any group Ge&
(whether solvable or not) then Z(T) is elementary abelian. Thus, if
G G @ and T is a Sylow 2-subgroup of G the ascending central
series of T has elementary abelian factors.

COROLLARY 1.1. // T is a Sylow 2-subgroup of a solvable group
Ge@ then NG(T) = T.

Proof. By Theorem 1.1 T is a Carter subgroup of G. Carter
subgroups are self-normalizing.

COROLLARY 1.2. If G and T are as in Corollary 1.1, and if T
is abelian, then G has a normal 2-complement.

Proof. By Corollary 1.1 and the assumption T is abelian, T is
in the center of its normalizer. The result follows from a well-known
theorem of Burnside.

We now investigate two families of solvable groups in @.

THEOREM 1.2. If Ge& and a Sylow 2-subgroup of G is cyclic
then G = TK where K is an abelian normal subgroup of odd order
and T = (joe) lυith a2 = 1 and ga = g~~ι for all g e K.

Proof. As G has a cyclic Sylow 2-subgroup, G is solvable. By
Corollary 1.2 G = TK, T = <α'> is a Sylow 2-subgroup of G and K is
a normal subgroup of odd order. By the Note after Theorem 1.1,
a2 = 1. If a did not induce a fixed-point-free automorphism of K
then CG(T) Π K3<1>, so NG(T)^ T, contradicting Corollary 1.1. Thus
g —> ga is a fixed-point-free automorphism of K. It is known that if
K has a fixed-point-free automorphism a of order 2 then a(k) — k~ι

for all k £ K and hence K is abelian.

THEOREM 1.3. Let G be a finite solvable group in @ and suppose
a Sylow 2-subgroup T of G has order 4. Then T is elementary abelian,
G has a normal 2-complement K, and K{1) is nilpotent.

Proof. As G is solvable, Corollary 1.1 and 1.2 imply that G =
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TK where | T \ = 4 and K is a normal subgroup of odd order. The
Note after Theorem 1.1 implies T is elementary, say T = <α> x </2>.
Let Ka and Kβ denote the set of fixed points of the automorphisms of K
induced by a and β respectively. Then <(1> = CK{T) Ξ2 KanKβ. Hence,
as T is abelian, Ka is /3-in variant and β induces a fixed-point free auto-
morphism of Ka. Thus Ka is abelian. Then, by [4], Ka) is nilpotent.

Finally, we show that any finite solvable group can be embedded
in a solvable group in @. We shall need the following lemma.

LEMMA 1.2. Let Ge@ and let <(x) be a cyclic group of order p,
where p is an odd prime. Let a be an involution and define H —
ζGwζx), ay, where xa = x~ι and ba — b for all beG. Then He&.

Proof. Let K = G x Gx x x GxP~ι be the base subgroup of
Gw(x). Then Ke& since Ge@. Suppose h^H and

where r ^ 0(p). Writing [j] for α?3' we may write

h = xr-go-9P---g[l£ryr

ri .

Now, if g e G then (# [ ί ])* r = ^ [ ί + r ] implies that

and hence (g^x'g™ = xr(gV+*)-ιgM. Thus if β = g\{Γι)rΛ then (xψ =
xr(g7rTrΊ(g.r)ίι-1)r* Writing Λf = ̂ ./0./M.../^7)V r ], where /, e G
for all i, we see that fir = gir if i Φ e, e — 1 while /β r = 1. Thus
first changing the rightmost g[ir} in hx to 1 by conjugation and pro-
ceeding to the left we may conjugate hγ to an element h = xrg, where

Pick aeG such that ga = g~ι and let u = aax axP~\ Then
with 7 = m6arr we have hr = λ"1. It remains to consider elements
of H of the form A = α &r 0o 0ί1] ••• ^ 1 ] , where [i] denotes α;y. If
r Ξ£ 0 (p) then let e be an integer such that 2β = — r(p). Then h
conjugated by xe has the form ayoy[1] y^s,11 where the yi e G.

We now exploit the fact that, since xa = x~ι and ga — g for all
g e G = G^, gc/-l1] = (s^)*, ^_i« = ( ^ 2 ) % etc. Thus

where y(p — 1) = gψ.^. Performing this computation for

7(p - 1), j(p - 2), . . . ,7( (p + l)/2) ,

where τ(e) = ^ί2'"'3 and observing that u = y(p — !)••• y((p + l)/2)
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has the identity in G[ίJ as its £-th component for i > ((p + l)/2) we
see that hu has the form hx = α /o /ί13 •••/r

M where r = (p - l)/2
and Λ e G for all i. Then &Γ1 = ^•/o~1 ((/Γ1)[1] {f7ψ])a Now for
all i = 0, •••, r pick α4 e G such that f** = ff1 and let w = aQ*vva

where v = αp] a[

r

r]. Taking x = ua it is easy to see that hi = h~\
using the fact that (vva, a) = (g0, vva) = 1. This disposes of all cases.

Theorem 1.4. If G is a finite solvable group then there exists a
solvable group L e @ and a monomorphism τ:G—>L.

Proof. If G is abelian let L = (G, α> where a2 = 1 and #α = g"1

for all g eG. Then in L every element of G is conjugate to its in-
verse and all other elements lie in the coset Ga which consists of
involutions, so L e @ and L is solvable. Hence the theorem is true
for all abelian groups G. Induct on \G\ and assume it is true for
all solvable groups of order less than the order of G. Now let H <\G
such that [G: H] = p, p a prime. Our induction hypothesis says there
is a solvable Ke& and a monomorphism of HwCp into KVJCP, where
Cp is cyclic of order p. By Satz 15.9 [3] (Chapter I) there is a mono-
morphism of G into HwCp, so G may be imbedded in KwCp. If p =
2 then by Theorem 1.1 of [1] KwCpe&, and it is solvable since K
is. If p > 2 then by Lemma 1.2 KVJCP has a solvable extension
<KwCp, a} e @.

Thus, in this case as well, G may be imbedded in a solvable group
in @.

This concludes our investigation of solvable groups in @.

2. In § 1 we showed that if G e @ is a solvable group with an
abelian Sylow 2-subgroup Γ then T has a normal complement in G.
Of course, if G is super solvable then (by the Sylow Tower Theorem)
T has a normal complement K, regardless whether T is abelian or
G e @. If we assume that (ϊe@, where G is super solvable, then with
the above notation we assert.

THEOREM 2.1. The Sylow 2-subgroup T is in @? and K and Φ(T)
are contained in F(G).

Proof. That Te@ was remarked in [1]. Since G is supersolvable
G(1) ^ F(G). Now G G 6 implies G/G{1) e@ and since G/G(υ is abelian
G/Gω is an elementary abelian 2-group. Thus Φ(T) ^ G(1), and since
(2,

REMARK. If G e @ is supersolvable Theorem 2.1 implies G is a
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split extension of a nilpotent group if by a two-group T in @. If S
is a Sylow 2-subgroup of F(G) then S<\G, so G/Se&. But by
Theorem 2.1 G/S is isomorphic to a split extension ^ iΓ of the nilpotent
group K by an elementary abelian two-group E. Thus given a
supersolvable G in @ there exists a supersolvable G* e @ such that
Or, (G*) = O2/, (G) but G* has an elementary abelian Sylow 2-subgroup.

Now let G = TKe& be given, where G is supersolvable and T
and ϋΓ are as above. Let Pu •••, P r be the Sylow subgroups of K,
so ϋΓ = Pί x x P r . If π* is the projection of iΓ onto P* let Hi =
ker (TΓ,). Then H{ > G and (?/#< = ΓP*, a split extension of P, by T
which is supersolvable and in @. We have now reduced the study
of supersolvable groups in Θ to two questions:

( 1 ) Given a 2-group T e @ and a p-group P (p an odd prime)
find the split extensions TP of P by T which are supersolvable and
in @.

( 2) Given split extensions TPly , TPn of P r groups by T (where
the Pi are distinct odd primes) which are supersolvable and in @,
when is TP, A TP2 A λ TPn e @ ? (For a definition [of the symbol
A see [3], Satz 9.11.)

The answer to (2) is not "Always." For example let

TP, = <x, y, a, by

where <x, y} is the non-abelian group of order 27 and exponent 3,
ζa, by is the four-group, and (x, a) = x, (x, b) = 1, (y, a) = 1, (y, b) = y.
Let TP2 — (u, v, a, by where (u, vy is the nonabelian group of order
125 and exponent 5 with (u, a) = u> (u, b) = 1, (v, a) = 1, (v, b) = v.
Then TP, and TP2 are supersolvable and in @, but TP, A ΓP2 ί @.

The next theorem answers (1) when Γ and P are abelian. It
may be used to show that for certain P no T exists such that TP e @.

THEOREM 2.2. If G — TK is a group in €5 such that K is abelian
of odd order (K <] G) and T is an abelian two-group then T is element-
ary and we may pick a basis xu , xn for K and a basis a, βu , βm

for T such that x^ = xjι for all i = 1, •• , n and x*J — x~tι for all ί, j .
Conversely any such group is in @.

Proof. Since G/K~ T, Te&. Being abelian T must be element-
ary. Since K is a finite Γ-group we may write K — K, x x Kn

where each Kt is a T-indecomposable T-group. Now pick any 7 e T.
Since 17 \ ̂  2 and Kt is abelian of odd order, Kt = Ir x i^r where

7r = {x e Ki I α;r = x"1} and i^r — {α; e K{ \ xr = x) .
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(For clearly K{ :> Iγ x Fr. For any x e K{ let z = xxr and w = x{x~ι)r.
Observe that zeFr, we Ir, and x2 = zw. Since # 2 e / x Fr and JBΓ̂  has
odd order, xelr x F7. Thus Kt = / r x F r .) Since T is abelian and
if* is a T-group, Ir and F r are also T-groups. But Ki is T-indecom-
posable so Iy — <1> or F r = <T>. This means that each 7 e T either
inverts every element of Ki or fixes every element of K{. Hence in
any decomposition of K{ as a direct product of cyclic groups each
direct factor is a T-group. As K4 is T-indecomposable we conclude
Ki is cyclic. Let Kt = <&*>. Because G G S there exists ae T such
that («!-•• a?n)

α = a Γ1 ^n1. Hence x" = a?Γι for all i and therefore
^α = x~ι for all x e K. Now let α, /3L, , βm be a basis of T, where
α is as above. We found that for an arbitrary 7 6 T and an arbitrary
xe K^ xr = x or xr = x~ι. Hence for each j and i, x*s — x\, where
ε = ± 1 .

Conversely, if G = TK is as in the conclusion of the theorem
then g eG either has the form xl1 xe

n

n (which is conjugated to its
inverse by a) or the form 7&S;1 xe

n

n, with 7 e T. In this case it is
easy to see that gβ = g~\ where β = ya.

As an example of how this theorem might be applied we shall
show that if P = <α?, y\x*n~~ι = y* = 1, xy = α;1+?)W~2)>, where p is an odd
prime and n ^ 3, then there is no two-group T and super solvable ex-
tension TP such that TPe&. For suppose there were such a T, with
TPe&. We may assume, by previous remarks, that T is elementary
abelian. Then TP/Φ(P) e @ and by the foregoing theorem there exists
ae T such that xa = αr 1 ^* and τ/α = y~lxv\ Then

while (ajβ)tfίt = (x-'x^y'1 = (x-1)^"1^^ = αr-1+?)n-Vfc. Since (α;y)α = (a?α)yβf

we conclude that x~~pn~2 = xp7l~\ Therefore x2pn~~2 = 1, contradicting
the supposition that p is odd. Hence no such G exists.

3* We now give an example of a solvable group satisfying the
hypotheses of Theorem 1.3 which does not have a nilpotent normal
2-complement. Thus the second assertion of Theorem 2,1 does not
generalize to solvable groups with a normal 2-complement. Let

H = ζx, y, z I x7 = y3 = z2 = 1, &* = # 2, xz = x" 1, y* = y> ,

so if = Hol(C7), where C7 is a cyclic group of order 7. Let

and define K = ίf^C 2 . In ίΓ let α = x, b = α;tt, c = i/d/2)*, d = zzu, e =
u, and consider the subgroup G = <α, 6, c, d, e>. Then G has defining



SOLVABLE AND SUPERSOLVABLE GROUPS 27

relations a7 = b7 = & = d2 = e2 = 1, (α, 6) = (c, d) = (d, β) = 1, αd = cr 1,

6d = ft-1, a

c = a2, bc = 6\ ce = c~\ and ae = b.

Consider the subgroup <α, 6, d, β>. Elements of the form ecfb3',
cfb3', da%j, and edaΨ are conjugated to their inverses by, respectively,^
ajdea~j, d, 1 and e. We may now consider elements cζeidjakbm, e = ± 1 .
Such an element is always conjugate to an element of the form ί
ce^'α^δ1*. Now cedakbm and ceαfcδm are conjugated to their inverses
by ce and ced respectively. Finally cakbm and cdakbm are conjugated
to their inverses by aΨmea~kb-5m and a2kb4mea~2kb-4m respectively.

This completes the proof that Ge@. Notice G satisfies the hy-
potheses of Theorem 1.3 but the normal 2-complement K = <α, 6, c>
is not nilpotent. In fact F(K) = K{1).
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