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SOME RESULTS ON COMPLETABILITY
IN COMMUTATIVE RINGS

MARION MOORE AND ARTHUR STEGER

In this paper, R always denotes a commutative ring with
identity, The ideal of nilpotents and the Jacobson radical of
the ring R are denoted by N(R) and J(R), respectively. The
vector [ai, -+, a,] is called a primitive row vector provided
le(ay, +++, asn); a primitive row vector [a ---,a,] is called
completable provided there exists an n X n unimodular matrix
over F with first row a;, ---,a,. A ring R is called a B-ring
if given a primitive row vector [a, -+, a,], 7 = 3, and

(@1, + -, ans) € J(R),

there exists bc R such that 1€ (ay, -+, u—z, @n-1 + ba,). Simi-
larly, R is defined to be a Strongly B-ring (SB—ring), if d ¢
(@, *++,an),n =3, and (ay, -+, @y—2) £ J(R) implies that there
exists b€ R such that de(ay, -, dp-s, Guy + ba,).

in this paper it is proved that every primitive vector over
a B-ring is completable, It is shown that the following are
B-rings: =-regular rings, quasi-semi-local rings, Noetherian
rings in which every (proper) prime ideal is maximal, and
adequate rings, In addition it is proved that R[X] is a B-ring
if and only if R is a completely primary ring. It is then
shown that the following are SB-rings: quasi-local rings, any
ring which is both an Hermite ring and a B-ring, and Dedekind
domains. Finally, it is shown that R[X] is an SB-ring if and
only if R is a field.

2. B-rings.

LEMMA 2.1. Let R be a ring with A S J(R), A an ideal of R.
Then R is a B-ring if and only if RJ/A 1s a B-ring.

Proof. Necessity: Let R be a B-ring and let
A+Ae@+A4A - a+A4),n=3

and
(@ + A, oov 0, + A) £ J(R/A) = J(R)/A,

where ¢, ¢ R,v=1,+-++m. Then 1 + A= > ab;, + A, b;e R; hence
[a, «--, a,] is primitive. Since (a, ---, a,,) & J(R), it follows that
[a, + A, +++,a,, + A, (a,_, + ba,) + A] is primitive for some be R.
Therefore, R/A is a B-ring.

Sufficiency: Suppose E/A is a B-ring and suppose [a,, +--, a,] is a
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primitive vector with (a,, +++,a,_,) £ J(R). Hence [a, + 4, -+, a, + A]
is a primitive vector; and, since (a,, +-+, a,_,) & J(R), we have (a, +
A, veeya, , + A L JR/A). Since R/A is a B-ring, there exists b +
A€ R/A such that [a, + A, -+, a,_, + 4, (a,_, + ba,) + A] is primitive.
It follows that (1 — u)e A < J(R), where

n—2

U= >ab; + (@ +ba)b,_,b;eR,1=1,+0,m —1.
. =t
Therefore, » is a unit of R; i.e., [a,, -+, @,_s @,_, + ba,] is primitive.

THEOREM 2.1. If R is a B-ring then every primitive row vector
over R 1is completable.

Proof. Let R be a B-ring and let 1€ (ay, +++,a,). The theorem
clearly holds for n =1. If n =2, then 1 = a2 + a,%, @, ¥y € R and the
matrix ( & 0562> is unimodular; hence the result holds for n = 2.

Let n = 3, and suppose the result is established for & < n.

Case 1. If (@), +++,a,,) SJ(R) and 1 = > a;b;,b;€ R, then 1 —
Sitab, = a, b, , +ab, is a unit e R. Let

Ay Ay Ay Ay oee Ay

yo| b b 000
O 1

Then V has determinant «, and it follows that [a,, - - -, a,] is completable.

Case 2. If (ay, +++, a,—) £ J(R), then 1€ (ay, «++, @y a,_, + ba,),
for some be R. By the induction hypothesis, [a,, <+, @, @,_, + ba,]
is completable to an (» — 1) X (n — 1) unimodular matrix D. Let

n

[ 0o .
U={0... 1 olandlet B=| D .
0eer —b 1

0..-0 1

Then BU is an n X n unimodular matrix whose first row is [a,, - -+, a,].

For convenience, we introduce the notation Z(4) to mean the set
of maximal ideals containing the ideal A; Z(a) will denote the set of
maximal ideals containing the element a.

THEOREM 2.2 If R is a ring such that for every ideal A & J(R),
Z(A) 1is finite, then R 1s a B-ring.
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Proof. The essentials of the proof are due to Reiner [4]. Let
le(a, ++,a,),n =3, and (a, +++, a,_.) £ J(R). By the hypothesis on
R, Z(A) is finite where A = (@, +--,a,-). Let Z(A) ={M, ---, M.},
and note that if beR and a,_, + ba,e M;,i =1, .., 7, then [a, -+,
sy X,y + ba,] is primitive.

For any M, e Z(A) such that a,e M;,, we have a,_, + ba, € M,, for
all be R; otherwise, a,_, € M;, and (a, ---, a,) S M, which contradicts
the hypothesis that [a,, ---, a,] is primitive.

For those M, e Z(A) for which a,e M; we have (a,, M;) = (1).
Hence there exists an x; such that a,x; = a,_, (mod M;). For these
M;, we can find (by the Chinese Remainder Theorem) an element be R
such that b6 =1 — x; (mod M;). It follows that a,_, + ba,e M, © =
1, .-+, 7. Hence [a, ++- a,_,, a,_, + ba,] is primitive.

It follows from this theorem that quasi-semi-local rings and
Noetherian rings in which every proper prime ideal is maximal (in
particular, Dedekind domains) are B-rings.

LEMMA 2.2. Let R be an F-ring (i.c., a ving in which every
finitely generated ideal is primcipal) which satisfies the condition
that if 1€ (a, a, a)) with a, ¢ J(R) then 1€ (a,, a, + ba,) for some be R.
Then R is a B-ring.

Proof. Let le(a,---,a,),n =3, and let (a) = (a, +++, a,) &
J(R). Hence 1€(a,a,_,a,. By the hypothesis on R,1¢ (a,a,_, + ba,);
hence, R is a B-ring.

THEOREM 2.3. If R is an F-ring which satisfies the condition
that for every a,ce R with aeJ(R), there is an re R such that
Z(r) = Z(a) — Z(¢c), then R is a B-ring.

Proof. The proof is essentially the same as the proof of Theorem
5 of [2]. Let le(a,b,¢),aeJ(R). By the hypothesis on R there
exists » e R such that Z(r) = Z(a) — Z(c). Hence (c, r) = (1), so there
exists ge R such that 1e(r,b + qc). We claim (a,d + gc) = (1).
Otherwise, there exists a maximal ideal M of R such that (a,b + qc) &
M. Hence Me Z(a) and Me Z(b + gc). Since 1e (v, b + gc) it follows
that Me¢ Z(r), so Me Z(c). But we now have Me Z(b), contrary to
(@ b,¢) = (1). Therefore (a,b + g¢) = (1). Lemma 2.2 completes the
proof.

THEOREM 2.4. FKvery adequate ring is a B-ring.

Proof. In the proof of Theorem 5.3 of [3], Kaplansky shows that
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if R is an adequate ring and if 1€ (a, b, c), a + 0, then there exists
ge R such that 1€ (a,b + g¢). Since an adequate ring is an F-ring,
the result follows from Lemma 2.2.

THEOREM 2.5. Every m-regular ring s a B-ring.

Proof. If R is a m-regular ring, and if ae R/N(R), then by
Lemma 2.2 of [5], a is an associate of ¢ + 3, ¢ an idempotent and g
a nilpotent of the z-regular ring R/N(R). Since 8= 0,a = ue, v a
unit of R/N(R). Therefore, o’ = u’% and w'a®>= ue¢ = a. Hence,
R/N(R) is a regular ring and therefore an adequate ring ([1, Th. 11]).
Theorem 2.4 and Lemma 2.1 complete the proof.

THEOREM 2.6. Let D be an integral domain, K its quotient field.
Let R={(a,++-,ara,a,+++):a;€ K, aec D}, where k is a nonnegative
integer (k may be different for distinct elements of R). The operations
i R are component-wise addition and multiplication. If R is a B-
ring then D is a B-domain.

We illustrate the proof. Suppose R is a B-ring anAd let 1€ (a, b, ¢),
a,b,ceD,1=aa + bb + cc'. LeE a=({1,a,a, +++), 6 =(0,b,b, +-+),
c=(0,¢ )0 =1,a,a, ), =0,0,0, ), & =0,¢,¢,--°).
Then 1 = ad’ + b0’ +éé¢’. If GeJ(R), then 1—da=(0,1—a,1—a,---)
is a unit of R. Since this is false, & ¢ J(R), hence le @, b + gé) for
some je R. Therefore 1= dad + (b + §6)é, whered, é,é6e R. Letd =
(du "'vdm d, d’ ...), e = (el, e, e, 88, ...)’g: (yl’ ...f\y” /y\’ Y, ...)
and let x = max (1, p, ¢, 7). In the (A + 1)st entry of ad + (b + %é)e,
we have ad + (b + yc)e; i.e., 1€(a, b + yc). Hence, D is a B-domain.

THEOREM 2.7. R[X] is a B-ring if and only if R is a completely
Primary ring.

Proof. Sufficiency: Let R be a completely primary ring. Since
R/N(R) is a field and since (R/N(R))[X] = R[X]/N(R)[X], it follows
from Theorem 2.2 that R[X]/N(R)[X] is a B-ring. Since N(R)[X] =
N(R[X]), the result follows from Lemma 1.2.1.

Necessity: Assume that R is not completely primary and that
R[X] is a B-ring. Let » be a nonunit, nonnilpotent element of R.
Then 1e(r,1+ X, X* and r¢ J(R[X]). By the assumption that R[X]
is a B-ring, we have le (r,1 + X + X*(X)) for some f(X)e R[X].
Let @ denote the image of a e R under the natural homomorphism of
R[X] onto (R/rR)[X]. Then 1e€(0,1+ X + X*f(x)) and 1+ X +
X?*f(X) is a unit of (R/rR)[X]. This is a contradiction since the coe-
ficient of X is not nilpotent.
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Since R[X] cannot be completely primary, (clearly, X is neither
a unit nor a nilpotent) it follows that for every ring R, R[X, Y] =
R[X][Y] is not a B-ring.

3. Strongly B-rings. We now turn our attention to the study
of SB-rings. Our main objective here is to compare the theory of
this particular subclass of B-rings with that of B-rings given in the
last section.

LEMMA 3.1. R is an SB-ring tf and only if for every s, c, ¢,
c;€ R with se (¢, ¢, ¢;) and ¢, € J(R), it follows that se (c, ¢, + bey)
for some be R.

Proof. The necessity clearly follows from the definition of an SB-
ring.

Sufficiency: Let r€(a, +++,a,), n = 3, with (a,, +++, a,_.) L J(R).
Without loss of generality, we may assume that a,_,¢ J(R). Suppose
r=>r,ax; and let s=a, 2,, + a,_%,_, + a,x,. Then r¢e (a, ---,
@ps, 8) and se (a,_y t,_y, a,). Since a,_,€ J(R), s€ (@, o, A,y + ba,) for
some be R. Therefore r€(a, -+, apy, 8) S (ay, +-+, a,_, + ba,), and
the proof is complete.

In view of Lemma 3.1, we need only consider triples instead of
arbitrary m-tuples in our study of SB-rings.

LEMMA 3.2. The homomorphic image of an SB-ring 1s an SB-
ring.

Proof. Let R be the image of R under the homomorphism ¢, and
let d e (@, @, a@,) with @, e J(R), @, @, a, dec R. Suppose d = 3} @7,
Z;eR and let a9 = @, w9 =%,,1=1,2,3. Let d= 3%, ax,. Since
(J(R)g = J(R), we have a,¢J(R); hence, de¢(a, a, + ba;) for some
be R. Since d¢ = d, we have d ¢ (@, @, + ba@,), where bs = b. Hence
R is an SB-ring.

THEOREM 3.1. FEvery quasi-local ring is an SB-ring.

Proof. Letdce (a, a, a,), with a, ¢ J(R), R a quasi-local ring. Since
a, € J(R), a, is a unit of R; hence, d < (a,, a, + ba;) = (1) for every be E.

LEMMA 3.3. Let A= (a, --+,a,),n =3, be an ideal in a Dedekind
domain R. If B=(a, -+, a,_.) = (0), then A= (a, ++*, @y s @y, +
ba,) for some be R.
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Proof. Let A = I[‘., M% and let B = [[._, M} be the representa-
tions of the ideals A and B as a product of powers of distinct maximal
ideals. Since B < A, we may order the M; so that 0 < «; < B; for
I1<igr,and ;=R forr+1 <1<t Let 1<k <r. We claim
that either a,_, or a, does not belong to M. For suppose both a,_,
and a, belong to Mg+, Then A & Mg, a contradiction. Since the
Mg+t are relative prime, the Chinese Remainder Theorem guarantees
the existence of a bec R satisfying:

=0 (mod M) if a, e Mg
b=1 (mod My if a,.,eMpt,

for k=1,2,.-.,r. It follows that a,_, + ba, & Mg fork =1,2, «+-, 7.
Let (a0, +++y Qpsy @y + ba,) = [T, MY, Since (a,, «++, ayyy @y + ba,) S
A = T[i., My, it follows that p, = a;,1=1,2,.--,¢. Since B = [[i,
M S lie M S 1., Mii = A, and since B, = a;,,r +1 <1 <¢, it
follows that g, = g, = a;, r+ 1<t =¢ If pu, > «a; for some 7 with
1<7< 0, then a,, + ba, e M" & M{*', a contradiction. Hence, p; =
a;,1=1,2, -+, t. Equivalently, (@, +++, @, a,_, + ba,) = A.
As an immediate consequence, we have:

THEOREM 3.2. A Dedekind domain is an SB-ring.

LEMMA 3.4. Let Rbe a B-1ing, let e = ¢*c R, and let ec (a, ++ -, &)
With (¢, *++, @) L J(R),n =3. Thenec(a, «++, @y_s A, + ba,) for
some be R.

Proof. Since the case ¢ =1 is covered by the hypothesis, we
may assume ¢ %= 1. Let e= > ax; = >, (a;e)(we). Hence, 1=
(e +1—e)xe+1—e + S5, (ae)(xe). Thus,

le(ae+1 —e, a0 +--,a,0) .

If ae+1—ecJ(R), then 1 — (e +1—¢) =e(l —a,) is a unit of R,
a contradiction since ¢ = ¢ ¢ == 1. Thus, since R is a B-ring, we have
le(ae+1—e a8 -+, a,0, a,_¢ + ba,e) for some be R. Therefore,
e (e, A, * ) Ay s, Gy + ba,e) S (ay, gy =+ +, @y @, + ba,).

COROLLARY. If R s a regular ring then R 1is an SB-ring.

Proof. The result is immediate from Theorem 2.5 and Lemma
3.4; since, for every r <€ R, » is an associate of some idempotent ec R
(1, Lemma 10]).

THEOREM 3.3. If a B-ring R 1s also an Hermite ring, then R
is an SB-ring.
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Proof. Let de(ay, a,as) = (@), a,€ J(R). By Corollary 5 of [1],
there exist b,, b,, b, such that a, = b,a, a, = b.a, a; = bya, and (b, b,, b;) =
(1). Since R is a B-ring and since b, ¢ J(R), there exists a q¢e R such
that (b, b, + gb;) = (1). Therefore, (a) = (b,a, ba + gbsa) = (@, a; + qas).
Hence, de (a,, a, + qa,).

COROLLARY. FEuvery adequate domain is an SB-ring.

Proof. An adejuate domain is both an F-domain and a B-ring.
Since every F-domain is an Hermite ring, the result follows from
Theorem 3.3.

COROLLARY. If R is an F-ring with infinitely many maximal
ideals and, if for every ideal A & J(R), Z(A) 1s finite, then R is an
SB-ring.

Proof. R is necessarily a B-ring by Theorem 2.2. By the proof
of Corollary 2 of [2], R is also an Hermite ring. Theorem 3.3 com-
pletes the proof.

THEOREM 3.4. R[X] ts an SB-ring if and only if R is a field.

Proof. The sufficiency follows from Theorem 38.2. To prove the
necessity, let re R, = 0. Then re(X® X, ) and X*¢ J(R[X]). If
R[X] is an SB-ring then »e (X? X + 7b(X)) for some b(X)e R[X].
Let » = X*f(X) + (X + »b(X))g(X), where f(X) and ¢g(X) e R[X], and
let fi, g9, b; represent the coeflicient of X' in the polynomials f(X),
g(X), b(X), respectively. KEquating coefficients in the above equation
gives r = #b,g, and 0 = ¢, + r(b,g, + gb). Hence » divides g, and
therefore » = +*k for some ke K. Hence rk = (rk)’; therefore, rk is
an idempotent of R. Since R[X] is a B-ring, R must be a completely
primary ring by Theorem 2.7. It follows that the idempotent 7k is
either 0 or 1. Since 7k =0 and » = 7’k imply » = 0, we conclude
that »k = 1; i.e., » i3 a unit of R. Hence, R is a field and the proof
is complete.
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