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ON POINT-FREE PARALLELISM
AND WILCOX LATTICES

SHUICHIRO MAEDA

A VWilcox lattice L is constructed from a complemented
modular lattice 4, by deleting nonzero elements of some ideal
of 4 and by introducing in the remains L the same order as
A, The lattice 4 is called the modular extension of L. Using
the theory of parallelism in atomistic lattices, it was proved
that any affine matroid lattice is an atomistic Wilcox lattice,
that is, an existence theorem of the modular extension in
the atomistic case, The main purpose of this paper is to
extend this result to the general case, by the use of argu-
ments on point-free parallelism,

A matroid lattice is an upper continuous atmistic lattice with the
covering property. In the book [2] of Dubreil-Jacotin, Leisieur and
Croisot, a generalized affine geometry is defined as a weakly modular
matroid lattice of length = 4, satisfying the Euclid’s weak parallel
axiom. This lattice is called an affine matroid lattice in [4] and [5].
In [2], pp. 311-314, it is proved that any affine matroid lattice has
the modular extension and hence it is a Wilcox lattice. One can see
that the key theorems in the proof of this result are the transitivity
theorem of parallelism and theorems on the incomplete elements.

In this paper, we consider a sectionally semicomplemented lattice
L with some join-dense set of modular elements (see §1). This is a
generalization of an atomistic lattice. Instead of the parallelism in
matroid lattices, we use the point-free parallelism introduced by F.
Maeda [6]. In §2, we give some fundamental results on point-free
parallelism. In §3, we introduce three axioms (P 1), (P 2) and (P 3)
on point-free parallelism in L, which are satisfied if L is a Wilcox
lattice. In the subsequent three sections, we assume that L is weakly
modular, left complemented and of length = 4, and that L satisfies
(P 1) and (P 2). The main result in § 4 is the transitivity of point-
free parallelism. In §5, we define the parallel images of incomplete
elements which generalize those defined in [5], §4. In §6, adding
the axiom (P 3) in a special case, we construct the modular extension
of L and we get two main theorems 6.1 and 6.2.

1. Preliminaries. In a lattice L, we write (a, b))M when
evVayANb=cV(aAb for ¢<b.
An element ac L is called a modular element when (x, a)M for every

725



726 SHUICHIRO MAEDA

x€ L. The elements 0,1, if they exist, are modular elements. We
denote by _# the set of modular elements of L except 0 and 1. An
element a € L is called a strongly modular element when every element
a, with a, £ a is modular. We denote by _#Z, the set of strongly
modular elements except 0 and 1.

A lattice L is called M-symmetric when (a, b)M implies (b, a)M in
L. In an M-symmetric lattice L with 0, we write a L b when a Ab =10
and (a, b)M. The following properties are easily verified (see [9]):
(1) a L a implies a =0, (2) a L b implies b L a, (8) a L b, a, < a imply
a, L b, (4) a LbavbdbLlcimply a Lb\e Ifalband aVvbdlec
then we have @ L bV ¢ and b L aV ¢ by (4), and then we write
(a, b,¢c) L.

A lattice L with 0 is called left complemented when for every
a, be L there exists b, € L such that

bb=bavb=aVb,aNd =0 and (b, a)M.

By [10], Theorem 2, any left complemented lattice L is M-symmetric,
and hence if ¢ < b in L then there exists ce L such that a\Ve=2»
and @ 1L ¢. Moreover it is easy to show that L is relatively comple-
mented.

A lattice with 0 is called weakly modular when a A b % 0 implies
(a, b)M.

A subset S of a lattice L is called join-dense when every ac L
is the join of some elements in S. We write ¢ < b when a < b and
there is no element ¢ such that a < ¢ <b. In a lattice L with 0, an
element p is called an atom when 0 < p. Evidently any atom is a
strongly modular element. The set of atoms of L is denoted by 2.
A lattice L with 0 is called atomistic when Q is join-dense. We say
that L has the covering property when p L a, pe 2 imply a <a V p.
It is easily seen that this property is equivalent to (p, a) M for every
peQ and ae L. Hence any M-symmetric lattice with 0 has the co-
vering property.

A lattice L with 0 is called semicomplemented when for every
ae L (with ¢ = 1 if L has 1) there exists ¢e L such that ¢+ 0 and
¢c A a=0. L is called sectionally semicomplemented (in symbols, an
SSC lattice) when every interval L[0, b] is semicomplemented, that
is, for a, be L with a < b there exists ¢e L such that 0+ ¢ < b and
¢ Na=0. Let & be a set of nonzero elements of L. L is called
z-SSC when for a,be L with a < b there exists ce % such that
¢c=<band ¢ Aa=0. The following statements are easily verified:
(1) If p is an atom of a Z-SSC lattice then p must be in &, (2)
L is atomistic if and only if L is ©2-SSC, (8) L is #-SSC if and
only if L is SSC and % is join-dense in L.
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The length of a lattice L is the least upper bound of the lengths
of the chains in L (see [1], p. 5).

LEMMA 1.1 Let a < b in an M-symmetric lattice L. If there
exists a connected chain a =a, < a, < --- < a, = b of length n, then
all chains from a to b have length < n.

Proof. If m =1, the lemma is trivial. Suppose this is true for
n—1. Leta=a<a, <+~ <a,=band a=b,<b < ++-<b, =0,
and we shall show m < n. When a, < b,, we have q, < b, < ++- < b,, =
b. Hence m —1 < mn — 1 by the induction hypothesis. When a, £ b,
let »(<m) be greatest such that a, £b,. For ¢ =1, -+, r, we have
a, \ b, =a and (b;, a,)M, since a, covers a. Then (a, b,)M by M-sym-
metry. If a, Vv b,_, = a, V b;, then

bi = (al V bz) A bl = (bi—l Vv al) A b7, - bi~1 V (a1 A b1) = bi—l ’
a contradiction. Hence we have
a,=a, Vb <a Vb < e <a,Vbh=0b,<b,<<b,=b.

Hence, by the induction hypothesis, we get m — 1 <% — 1. There-
fore the lemma is true for =.

It follows from this lemma that if the length of L[a, b] > n then
there is no connected chain of length » from a to b.

2. Point-free parallelism. Let L be a lattice with 0, and let
a and b be nonzero elements of L. If a A b =0 and there exists
me _ such that m < a and m \v b = a \V/ b then we write a < |, b.
If a <|mbd and b < |, a then we write @ ||;..., b and we say that «
and b are parallel with axes m and n. We remark that al|...., b if
and only if a A 6 = 0 and there exist m, ne _»# such that m < qa,
n<band mVb=aVn.

LEMMA 2.1. If a < .., b then m is maximal in the set {ne _#:
n = al.

Proof. Let n be an element of _# with m < n < a. Then since
n is modular and n Ab < a A b =0, we have

n=@VAn=mVhAr=mVbAR =m.

LemMMA 2.2. Let a < |, b.
(i) If m=a, <a then a, < |md.

! The author is indebted to the referee for this lemma.
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(ii) If b<b, and a A b, =0 then a < |, b,
(i) If b < b, and m < b, then a < b,.

These statements can easily be proved.

LEmMMA 2.8, In an M-symmetric lattice with 0, if @ ||mm b and
a = m then b = n.

Proof. Since L is M-symmetric, we have (m, b)M. Since b =<
aVvVn=mVmnand m Ab=0, we have

b=mVmAb=n\VmAb =n.

LEMMA 2.4. In an M-symmetric lattice with 0,
(i) Wfanb=0and a\Vblcthen a N (Ve =0,
(ii) o a<|mb and a\V b L c then a < |, bV c.

Proof. (i) Since ¢ L aVvb we have dbVec)A(@Vb)=0>bV
{e A(aV b} =0>b. Hence a A (b\VVe¢c)=aANb=0.

(ii) We have a A(bVVe¢) =0 by (i). Moreover, m VbV c=
aVbVveby a<|mb Hencea<]|,.,bVec.

LEMMA 2.5. In a weakly modular lattice,
(i) fandb=0,m=a,n=Db where m,ne_~ then a \ (mV

b) H(m,n) b /\ (’I'L \/ a)y
(1) if a<|mb and n < b where ne 7 then ally., b A (nV a).

Proof. (i) We have a A(mVbIHAOA®Va)=aAb=0.
Since a A (m V b) = m >0, we have (a, m VvV b)M and similarly (b,
n \V a)M. Hence

nVi{igAMVb=mVaAN{mVbd=mV{dPAnYVa}.
Thus, a A (1 V b) || & A (2 a). (ii) follows from (i) evidently.

LEMMA 2.6. In a weakly modular, M-symmetric lattice L, if
@ | imomy Dy then there exist mutually tnverse, isomorphic mappings bet-

ween the intervals L|m, a] and L[n, b], which are defined by a,— b A
(n V a) for a,€ Lim, a] and b,—a N (m \/ b,) for b e L[n,b].

Proof. [6], Theorem 2.12.
LEMMA 2.7. Let a < |, ¢ in a weakly modular, M-symmetric,

#-SSC lattice L with 1. If ne ZinANa=0 and nV a <1 then
there ewxists be L such that a||g.,. b-
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Proof. (i) When ¢ £ nV a, we have (n\V a) A ¢ < c. There
exists ' e _# such that #' < ¢ and #' A (n \V a) = 0. Putting ¢’ =
¢ A\ (®V a), we have a ||, ¢ by Lemma 2.5 (ii). Since n» L a and
n\V almn, we have n L a\V#n' = a\V ¢. Hence, by Lemma 2.4 (i),
we have a < |, ¢ V n. Putting b= (Vv n) A (n\V a), we have
@ ||imm b by Lemma 2.5 (ii).

(ii) When ¢ = n V a(<1), we take n' ¢ _Z with (n \V a) A 0w’ = 0.
Then ¢ \V @ 1. »/, since (¢ Va) ANn' < (nVa) An =0. Putting ¢’ =
¢V n', we have a < |, ¢’ by Lemma 2.4 (ii). Since ¢’ £ n V a, by
(i) there exists b such that a ||, b.

3. Parallelism in Wilcox lattices. A Wilcox lattice L is con-
structed in the following manner (see [9] and [6]). Let A be a given
complemented modular lattice whose lattice operations are denoted by
U and N. Let S be a fixed proper ideal of 4 with 0 deleted (S may
be empty). As ordering of the set L = 4 — S we use that of 4. Then
L is a lattice having the following properties, where a, be L and we
denote the lattice operations in L by Vv and A:

W1 avbdb=aUb for all a,be L,
_ janb if anbelL
W2 anb=10" St anbes,
(W 3) (a,b)M in L if and only if anbe L.
By (W 2) and (W 3), L is weakly modular and M-symmetric. More-
over, ¢ L b in L if and only if aNbd = 0.

We call 4 the modular extension of L. An element in S is called
an wmaginary element for L, and when S has a greatest element %
then it is called the imaginary wnit. A nonzero element a of L is
called regular when anNwu =0 for every e S. The set of regular
elements is denoted by R. Evidently, S is empty if and only if 1 € R.

LEemmA 3.1. Let L = A — S be a semicomplemented Wilcox lattice,
and let a be an element of L with 0 < a < 1. The following three
statements are equivalent.

(@) a is regular. (B) a is medular. (7v) a s strongly modulay.

Proof. (a)={(v). Let beL and a,<a in L. If bna,cS, then,
since a is regular, we have 0 = a N (bNa) =0bNa, a contradiction.
Hence b N a, € L, and then (b, a,)M by (W 3). Therefore a is strongly
modular. (v) = (g) is trivial. (B8) = («). Since L is semicomplemented,
there exists ¢e L such that ¢+ 0 and ¢ A @ = 0. Since a is modular,
we have cNaeL by (W 3). Hence cNa=c¢c A a=0 by (W 2). For
an arbitrary u € S, we put b =c U (e N %). Since be L, we have (b, a) M
and hence b N ac L. By the modularity of 4,
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bna={enuwyUcNa=@@nNuUNa) =anNu.

Hence a N ue L, and then a N u = 0. Therefore a is regular.

Lemma 3.22 (i) A Wilcox lattice L= 4 — S 1s left comple-
mented if and only if it satisfies the following condition:

(1) If a<b in L then there exists c€ L such that 0 %= ¢ < b,
cNa=0 and (c, a) M.

(ii) If a Wilcox lattice is _#-SSC, then it is left complemented.

Proof. If L is left complemented then evidently (1) is satisfied.
Conversely, assume that (1) is satisfied in L. Leta, be L. We shall
show that

(2) There exists b,€ L such that 6 = (anbd Ub and (anbd) N

b, = 0.
When anbeS, we take a complement b, of anb in the interval
A]0, b]. Then b, e L, since otherwise b = b, U (a N b) e S, a contradic-
tion. Hence b, has the desired property. When aNbe L, we may
assume a N b < b. By (1) there exists ce L such that 0 ¢ < b, ¢ A
(@and)y =0 and (¢,anNdM. Then we have ¢cN(anNd =0. Let \
be a complement of (@anNb)Uc in 4]0, b], and put b, = ¢ U . Since
(anb,e,N) L in 4, b, is a complement of a N b in A4[0, b]. Moreover,
since 0 == ce L, we have b,e L. Thus (2) has been proved.

By (2), we have a Vb, =aUb, =aUb=a\V b, and since anbd, =
anbnbd =0, we have a A b, = 0 and (b, a) M. Therefore L is left
complemented. The second statement of the lemma follows from the
first one.

REMARK 3.1. Let L =4 — S be a Wilcox lattice with the imagi-
nary unit ¢, and assume that L is SSC. For any nonzero element a
of L, there exists a,€ _# such that a, < a; because a complement a,

of ani in 4[0, a] is regular since a, N7 =0, and hence a,€ _# by
Lemma 3.1. Therefore L is _#-SSC and then it is left complemented.

DEFINITION. An element a of a Wilcox lattice L = 4 — S is called
wrregular when there exist me R and u € S such that a = m U u (see
[6]). We call w an imaginary part of a, and denote it by ¢(a); while
m is called a regular part of a. For a regular element a we put
tf) = 0. It is easy to show that if a Wilcox lattice L has the
imaginary unit ¢, then every nonzero element of L is either regular
or irregular.

LeEMMA 3.3. If a is an irregular element of a Wilcox lattice
L=4-—8, then an imaginary part ¢(a) is uniquely determined by

2 This lemma is suggested by the referee.
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a, and it 1is the greatest element of S contained in a.

Proof. Let a=mUu, meR and ueS. If veSand v =< a, then

since w Uve S, we have m N (v Nv) = 0. Hence by the modularity
of 4,

u=uU{mN@Uv)}=wmUmNwU?) =anN@mUv)=7v.

REMARK 3.2. A regular part of an irregular element o is a com-
plement of ¢(a) in A[0, a]. This is not necessarily unique. It is easy
to show by Lemma 3.3 that a Wilcox lattice L has the imaginary
unit if and only if the unit 1 of L is irregular.

LEMMA 3.4. Let a and b be nonzero elements of a Wilcox lattice
L=4—S8. The following statements are equivalent.

(@) a<<|mb with a + me R.

B anbeS and a = mU (aNb) with me R.
Each of (o) and (8) implies that a is wrregular and ¢(a) = a N b.

Proof. [6], Theorem 3.8.

REMARK 3.3. In a Wileox lattice, if a < ., b with me R then
a =m U ¢a) by Lemma 3.4 and by the fact that a = m implies ¢(a) =0.

LEMMA 8.5. Let a and b be irregular elements of a Wilcox lattice
L=4-8. If a <|wb with me R then t(a) < ¢(b), and if al|m.d
with m, ne R then t(a) = ¢(b).

Proof. This lemma is evident by Lemmas 3.3 and 3.4.

LEMMA 3.6. In a Wilcox lattice L= 4 — S, let a = mUu and
b=mnUu where m, ne R and we S. If etther a N1 =0o0r bAm=20
then a ||, b

Proof. [6], Lemma 3.10.

PARALLEL AxioMms. Let & be a subset of _#Z. We consider the
following three parallel axioms with respect to <.
(P 1) If allnmb and all,,. b, where m,, m,, ne =, then b, = b,.
P 2) If a,{lpwmb and a, ||y, b, where m, ne & and if (a, V a,) A
n = 0, then a, \V/ & ||pm.n b, V D,
®3 If a<|wmb and a, < |, b, where me % and if o, V a, =1,
then for any a with m < a < 1 there exists b such that a < |, b.

LEmmaA 3.7. If L= 4 — S is a semicomplemented Wilcox lattice
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then (P 1), (P 2) and (P 38) are satisfied for any subsets & of _# .

Proof. (i) We have 2 c R by Lemma 3.1. Let all, b and
@ || mymy b2 Where my, m,, ne z c R. It follows from Remark 3.3 and
Lemma 3.5 that b, = n U¢(b;) (1 =1,2) and ¢(b,) = ¢(a) = ¢(b,). Hence
b, = b,.

(ii) Let a|lmmb and a.||um,m b, where m,ne %, and assume
that (o, Va,) An=0. We have a; = m U¢(a;), b; = n Ucb;) and
ta) =¢d;) ¢ =1,2). We put w = ¢(ay) U ¢(a,) = ¢(b) Uc¢(b). Then we
have ueS, o, Va,=a,Ua,=mUJuw and b Vb =b Ub, =nUu.
Hence a, VV @, ||(m,m b, VV b, by Lemma 3.6.

(iii) Let a, <|m b, and a; <|.., b, where m e &, and assume that
a, V a, =1. Since a; = m U ¢(a;), putting w = ¢(a) U¢(a,), we have
weSand mUu=a Ua=a Va=1 If m <a <1, then we have
mU wNa) =(mUu)Na=a, and moreover u N a € S, since otherwise
N a=0and then m = a. Since L is semicomplemented, there exists
ceL with ¢+ 0 and ¢ A a=0. Then ¢NaecS—{0}. Putting b=
¢U (uNa), we have

anbdb={wna)UctNna=wmwna)U(Na)esS.
Moreover,
a=mU@mNae)=mU@mNa)UNa) =mU(@nb).
Hence a < |, b by Lemma 3.4.

4, Transitivity of parallelism. We consider the following con-

dition for a subset & of _.":

(Cl) If me% and 0 < m, < m then m,c & .

For instance, in a lattice with 0, both the set 2 of atoms and the
set _#, of strongly modular elements satisfy (C 1), and also the set
of regular elements of a Wilcox lattice does. Evidently, if & satisfies
(C 1) then & c _#.

In this and the next sections, let L be a weakly modular, left
complemented lattice, with 0 and 1, of length =4 (may be infinite),
and assume that for some fixed subset & of _#, satisfying (C 1), L is
& -SSC and L satisfies the axioms (P 1) and (P 2) with respect to = .

For any me %, L|m, 1] is a modular lattice, since L is weakly
modular. We put &’ = {m e &; the length of L[m, 1] = 3}. Evident-
ly, &’ satisfies (C 1). Since the length of L =4, it is easily seen
that for any m € % there exists m,e %’ such that m, < m. Hence
L is ’-SSC. Therefore, taking &’ instead of &, we may assume
that
(C 2) the length of L|m, 1] = 3 for every me & .
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LEMMA 4.1. In L, if al|lm.m by @ < |y b, and n < b, where m,,
My, W EZE then b, < b,.

Proof. We have a ||, 0, A (n V a) by Lemma 2.5 (ii). Hence
by (P 1), b, =b, A\ (n V a) < b,.

LEMMA 4.2. In L, if allum,up by @] ngny b2 where my, my, nyy n, € &
and (a, n,, n.) L then b, |[w,my 0. and a A (b, V b) = 0.

Proof. Since n, L a \/ n, we have by A b, < (a V1) A (aV n,) =
aV {n, A (aV n)} =a. Hence b, ANb,=a A b, A b, =0. Next, since
aVb =aVmn, we have a \V b, L n,, By Lemma 2.4 (ii), we have
@ < |mpy b, V M. Hence b, <b V n, by Lemma 4.1. Similarly b, <
b, \V m,. Therefore, b, \/ n, = b, \V m,, and hence b, |, ,b,. Moreover,
aN b Vb)y=aA DYV n) =0.

DEFINITION. Let me . An element a of L is called an incom-
plete element over m when there exists be L such that a < |,,b. The
set of all incomplete elements over m is denoted by I,. It follows
from Lemma 4.2 (i) that if ac I, and m < a, < a then a,eI,. The
following theorem shows a fundamental property of incomplete ele-
ments.

THEOREM 4.1. If acl, and n N\ a = 0 where m, n € &, then there
exists a unique element b such that || .. . b.

Proof. The uniqueness follows from (P 1). We shall show the
existence. When a = m, we may take b = n. When n\/ a < 1, the
existence of b follows from Lemma 2.7. Now we assume that m < a
and n VV a = 1.

When % is not an atom, there exist =, n,€ % such that n =
n, V n, and #n, L m,, since L is left complemented and & satisfies
(C 1). Since (a,n, m,) L, we have n;V a < 1(1 =1, 2), and hence
there exist b, b, such that a|., ., b; by Lemma 2.7. By Lemma 4.2 we
have a A (b, VV b,) = 0. Moreover, a Vn =aV 1,V H, = m\ b, \V b,
Hence we have a || .. 0, V b,

When % is an atom, we have a < a \V n =1 by the covering pro-
perty. Since L[m, 1] is a modular lattice of length =3 by (C 2),
there exists a, such that m < a, < a. Since L is left complemented,
there exist nonzero elements ¢, and ¢, such that m v ¢, = a, m L ¢,
a, V¢, =a and a, 1 ¢,. Since (a,, ¢, ) L, we have n VvV a, <1l. Put-
ting a, = m V ¢, since (a, ¢, n)L, we have n\V a, <1. Since a,
a,€ I,, there exist b, b, such that a;||.,. b;. Then by (P 2) we have
a ”(m,n) b1 Vv bz-
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COROLLARY. If a, a,e I, where me& and if a,\V a, <1, then
a, VvV a,el,.

Proof. Since L is -SSC, there exists n € & such that (a, V a,) A
n = 0. By Thorem 4.1, there exist b, and b, such that a; || ... 0:(z =
1, 2). Hence al \/ a2 H(m,'lb) b1 \/ bz by (P 2)'

LEMMA 4.3. If allmmy b and all.,.,b. where m, n, n,e € and
n=mnV nec& and if a An =20, then & ||mmb V b

Proof. It follows from Theorem 4.1 that there exists b such that
@ ||inm b Since a|lmmy b, @ < |mb and n, = n < b, we have b, < b
by Lemma 4.1. Similarly b, <b. Hence a A (b, V b)=a Ab=0.
Moreover a V n=a \V 1, V 7, = m \V b, VV b.. Hence a||un b V b,.

LEMMA 4.4. If allomn b and al|,.,., b. where m, n, n,€ 2 and
if by A n, =0 then b, \ n, = 0.

Proof. 1If b, A m, # 0, then putting n| = b, A n,, we have n|c &,
n; = b, and n] < b,. Since a < |, 0 (1 =1,2), we have a||ma b A
(n, VvV a) by Lemma 2.5 (ii). Hence b, A (n] VV a) = b, A (n] \V a) by
(P 1), and hence

e A@Va)=nAbAMmVa=nANbANMmnVa=0.

Thus we have (a, n), n,) L. It follows from Lemma 4.2 that b, A
(0] V' @) [|ay,np b, which is a contradiction since 0 < b, A (1] V @) < b,.

THEOREM 4.2. (Transitivity of parallelism) If a|[in,m) b and
@ || gy D2 Where my, my, ny, ny€ E and if b, A\ n, = 0, then b, ||y,,n, b

Proof. (i) When (aV b) A n, =0, we have (a, n,, n,) L. Hence
it follows from Lemma 4.2 that b, ||, D

(ii) When %, < a \ b, < 1, there exists n € & such that a vV b, L n.
Since n A @ = 0, it follows from Theorem 4.1 that there exists b such
that @ ||, 0. Since (a\/ b) An =0, we have b, ||,,»b by (1). On
the other hand, since a \V b, = a \V %, < a \/ b, we have (¢ \ b,) A n =0.
Hence b, |, b by (i). Now, we have (n, b, n)L, since n, V b =
aVb Ln. Since bV #un =0b\Vn we have (b, n,n,) L. Hence,
b |l iny.ny b: by Lemma 4.2.

(iii) When a \v b, <1, we put n; = (a \/ b,) A\ n,. Since L is left
complemented, there exists =i such that %, = n; V n,’ and n; L ny'.
If n;=0 or n) =0 then we have b, ||, b by (i) or (ii). Let n;+ 0
and n) = 0. Then n}, n) e &, and by Theorem 4.1 there exist b; and

i such that allm,my b and allm,., b'. Since a|lmymy b V b’ by
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Lemma 4.3, we have b, = b, \/ b by (P 1). Since 7, =<a V b, we
have b, ||,y b: by (ii), and since n;' A (@ \V b) = m' A (@ V b) A ny =
w,' A\ n; = 0, we have b, ||, 0 by (). By Lemma 4.3 again, we
get bl ”(nl,nz) b; V b;’ = bz-

(iv) Let a v b, =1. When #, is not an atom, there exist nl,
n!’ e such that n, = n] v %) and n L #!. As above there exist b
and b} such that alf,,., b, @limynyn 0 and b, = bV ', Since by An, =0
and ¢ Vb =aVn <1, we have b |/, be. Similarly, bl ny b..
Since b, A m, = 0 by Lemma 4.4, we have b, ||, ., b, by Lemma 4.3.
When #, is an atom, we have a < aV %, =1. Then, by the same
way as in the proof of Theorem 4.1, there exist elements a' and a”
such that m, < ad' Aad”,d’' vVa'=a,a Vn, <land a’ Vv n <1. Since
o' < |y b; and a” < |, b0(i =1,2), by Lemma 2.5 (ii) there exist
bi, b’ = b; such that a’||,.,,., b and a” ||, b). Since a A (b;\V b]) =
a A b, =0 and

aVn,=aVa Vv =m\VDb\VDbd,

we have a ||, 0 vV . Hence b; = b,V b by (P 1). On the other
hand, since o’ v b = a’ \V n, < 1, it follows from (iii) that ||, .., b:.
Similarly, b |, 0. Hence b, ||, b by (P 2).

COROLLARY. If al|imm 0, bln,mc and ¢l ..d where m,n, rec &
then a = d.

Proof. Since b|lwn € 0llmma and ¢ A m =0, it follows from
Theorem 4.2 that ¢||, . a. Hence ¢ =d by (P 1).

LEMMA 4'5' If a H(m,nl) bly bl Il(nl,‘r) c, a ”(m,nz) bz G/}’Ld sz(nz,r) Gy ?/U]’L@?"e
m, N, Ny, *€%E then ¢, = ¢,

Proof. (i) When r A a = 0, it follows from Theorem 4.2 that
A llimm € and @ ||,y € Hence ¢, = ¢, by (P 1).

(ii) When n, < n, and » =< a, then since b, {|u,»b, b, <|w, @ and
r<a, we have ¢, £ a by Lemma 4.1. Moreover we have b, < b,
since @ || in,n) b1y @ < |y b, and m, < M, < b, Since ¢, [0, b, and ¢, A b, =
a A b, =0, we have ¢, < |, b, by Lemma 2.2 (ii). Putting b, = b, A
(ny, VV ¢), we have ¢ ||, b by Lemma 2.5 (ii). Since ¢, < a and
aNb=aNb =0, we have b; < |,, a by Lemma 2.2 (ii). Moreover,
since b, < n, V ¢, < n, V ¢, we have b, < b;, and hence a < m Vv b, <
m \ b;. Therefore a||u,.,b. By (P 1), we have b, = b;, whence
b, 1l in,m ¢« By (P 1) again, we have ¢, = ¢,.

(iii) When %, £ n,, we put ¥ =r A a and take 7" such that
r=7VvV* and ¥ Ar"=0. If ¥ =0 or ¥ = 0, then we have ¢, = ¢,
by (i) or (ii). Let " = 0 and 7" = 0. Then 7/, " € . By Theorem



736 SHOICHIRO MAEDA

4.1 there exist ¢; and ¢;'(i = 1, 2) such that b; ||, ¢ and b; ||, ci'-
Then bill(ni,,) ci Ve by Lemma 4.3. Hence ¢, =¢c; V¢ by (P 1).
Since 7" < a, it follows from (ii) that ¢; = ¢, and since " A a = 0,
it follows from (i) that ¢’ = ¢;’. Hence ¢, = c¢,.

(iv) When =, £b,, then n, A b, < n, and hence there exists
n, €% such that n, < n, and n] A b, = 0. Putting b = b, A (n] V @),
we have a ||,y b by Lemma 2.5 (ii). Since b A r=b A7 =0, by
Theorem 4.1 there exists ¢, such that b ||m1,r) c¢.. Since n, < n,, we
have ¢, = ¢, by (iii). On the other hand, since b, A n] = 0, it follows
from Theorem 4.2 that b, [[u,.)bl. Since ¢ |/;ny b and b [|m;.nci;, We
have ¢, = ¢, by Corollary of Theorem 4.2. Hence ¢, = ¢, When
n, £ b,, then we have ¢, = ¢, by the same way.

(v) When n, <b, and n, < b, we have b, < b, and b, < b, by
Lemma 4.1. Hence b, = b,, which implies ¢, = ¢, by (P 1).

5. Parallel images of incomplete elements. Let mec % and
let @« be an incomplete element over m, that is, ael,. For any
ne %, we define the parallel image of a at n, denoted by @,(a), as
follows:

(i) When n A a =0, it follows from Theorem 4.1 that there
exists a unique element b such that a||.... b. We define ¢,(a) = b.

(ii) When n =< a, there exists n,€ & such that n, A @ = 0, since
a < 1. Then there exists b such that a|..,.,b, and since b A n =
b A\ a = 0, there exists ¢ such that b, ., c. It follows from Lemma
4.5 that ¢ is independent of the choice of n,. We define @,(a) = c.
Note that we have 9,(a) < a by Lemma 4.1, since b ||, (@), b < |, @
and 7 < a.

(iii) When » A @+ 0 and n £ @, we have n A a €% and hence
we get @,..(a) by (ii). We define @,(a) = @, ..(a) \V 7.

REMARK 5.1. Let ael,. Evidently ¢,(a) =a, and @, () <aV n
for every ne%. When n A a=+=0 and % £ a, putting n, = n A a,
there exists n,€ % such that n = n, Vv n, and n, A n, = 0. Since
n, A\ a =0, we have ®,(a)|lnny Pnla) by the definition of @, (a).
Hence @, (a) V @,,(a) = 9, (a) V 7, = @, (a) V n = @,(a).

LEmMMA 5.1. Let acl, and n, n,ez. If (aV n) A n, = 0 then
(/Dnl(a) ”(nlynz) @nz(a)'

Proof. (i) When n, Aa=0, we have (a, n,n,)L. Since
@l mmy Puf@)(t = 1,2), we have @, (a) ||, n,) Pula) by Lemma 4.2.
When %, < a, then @, (a) [[@,,4, Puy(@) by the definition of @, ().

(ii) When n, A a0 and n, £ a, we put n, = n, A ¢ and take
n!’ such that
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n, =mn,Vn' and n, A 0 =

By (i) we have @u,(@) [lupmy Po(@) 204 P4(0) [lg g Puf@). Now we
shall show that @,(a) A n, =0. We have n, = n]\V n =< a\V n and
Pa(a) = aV n,. Moreover (a, n;, n,) L. Hence

Pu(@) ANy =(@V m) AlaV al)=aVi{nA@Vn)l=a.

Therefore ¢,,(a) A\ n, < ®,(a) ANa=0. By Remark 5.1, we have

Pa(@) V @, (@) = P, (a). Hence we have 9,(a) ||, n, Pay(@) by Lemma
4.3.

LEMMA 5.2. Let ael,(me%) and ne &. Then nis a maximal
element of & contained in P,(a).

Proof. (i) When n A a =0, we have @,(a)||,.. ¢ By Lemma
2.1, n is maximal in the set {n'e _#Z; % < @,(a)}. Since ¥ < _Z,n
is maximal in {n' e &;n < @,(a)}.

(ii) When % < a, taking n,e & with a A n,=0, we have
Pa(@) |l in 0y Prno(@). Hence n is maximal as in (i).

(iii) When n A @+ 0 and n £ a, we put » A ¢ = n, and take n,
such that n = n, V n, and n, A n, = 0. Then n, n,e Z. Let n' be
an element of % such that n < n' < @,(a). Since p,(a) = ¢, (a) V n
and @, (a) < a, we have ' A a = (P, (a) V) ANa=p,(@)VnAa) =
P, (a). Since n, =n' A ae%, we have n' A a =mn, by (i). If we
had n < n', then there would exists n,€% such that %, < %' and
1, A n = 0. Since (n, n,, n,) L, we have

aANmVn)=aAn A@mVn)=nAMmVmn =0.

Hence (a, #,, 1) L. But n, =% < 9,0 £aVn=aVmn, a contra-
diction. Therefore n» = »/, and hence »n is maximal.

LEmMMA 5.3. LetacI,(me%) and n, < n where n, n€ . Then
q)n(a/) = @nl(a) \/ n.

Proof. We may assume n, < n. Take n,€ % such that n = n, \/ n,
and n, A\ n, = 0.

(i) When n A a=0, we have @ |[m,n Pa(@) and a||m,a, Pa,(@)
(t=1,2). By Lemma 4.3 and (P 1) we have @,(a) = @,,(a) V #,,(a).
Since n, < @, (@) A n = P, (a) and @, (a) A\ n€ &, we have P, (a) \ n =
n, by Lemma 5.2, and hence @, (a) A 1, = @, (@) A n A n,=n, \ 1, = 0.
Hence @, (@) ||n,.ny Puy(@) by Theorem 4.2. Therefore

Pu(@) = P (@) V Puy(@) = P @) V 1 =@, (a) V1.

(ii) When = < a, taking n,e & with a A n, =0, we have
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Puy(@) gy Pu(@) and @, (@) [|(ngnyy Pu,(@)(@ = 1,2). Hence by the same
way as (i), we have @,(a) = @, (a) V n.

(iii) Whenn Aa = 0and n, A @ =0, we have @,.(®) [|ina.n,) Pu,(@).
Hence

Pul@) = Pupe@) V1 =P V,Vau=o,(@V®mVaVn
= @, (@) vV n.

When n, A a # 0, it follows from (ii) that @,..(a) = P, (@) V (0 A ).
Hence

Pu(@) = Pupa(@) V 1= Pouno(@) V0 = Pypa(@) V 1, V0= Ppfa) V1.

THEOREM 5.1. Let acl,(me %) and ne . The mapping x—
P.(x) is an isomorphism of the interval L]m, a] onto Lin, ,(a)].

Proof. (i) When n A a =0, we have a||um.. Pa(@). For any
xe L[m, a], we have xel, and 2 || P.(¥). Hence @,(x) = @,(a) A
(n VvV 2) by Lemma 2.5 (i) and (P 1). It follows from Lemma 2.6
that ¢, is an isomorphism of L[m, a] onto L[n, ®.(a)].

(ii) When = < a, taking n,€e & with n, A a =0, we have
@ g Pry(@) and @, (@) ||y Pul@). It follows from (i) and Lemma
2.6 that the composed mapping  — @, (¥) — P.(®) A (n V @, (®)) is an
isomorphism of L[m, a] onto L[n, ®,(¢)]. On the other hand, since
@V n) Am=aAmn =0, we have @,(®) ||,y Pr,(¥) by Lemma 7.1.
Hence 9,(x) = P.(a) A (nV P (@) by (P 1).

(iii) When n A @+ 0 and n £ a, we put n, = n A a. Then we
have ¢,(a) = ¢,(a) vV 7, and moreover ¢, (a) A n = mn, since n, <
P.(a) N\n=aAn=mn. Since L[n, 1] is modular, the mapping y —
¥y V m is an isomorphism of L[n,, @, (a)] onto L[n, ¢.(a)]. By (i), the
composed mapping & — @, (%) — @,,(¥) \V n is an isomorphism of L[m, a]
onto L[n, ,(a)]. Moreover @, (x) V n = @,(r) by Lemma 5.3.

LEMMA 5.4. Let ael,(me &) and n = n,\ n, where n, n, n, € &.
Then ®.(a) = @, (a) V Pa,(a).

Proof. Since n = n, \V n, = @, (a) V P,,(a), it follows from Lemma

5.3 that @,(a) = @, (@) V n V @) V n =P, (a) V P.(a).

THEOREM 5.2. If @ || b where m, nc & then @.(a) = @.(b) for
every r € <.

Proof. (i) When < a, we have b ||, ?.(b) since r Ab=<a A
b = 0. On the other hand, since n A a = 0, we have ¢,(a) ||, b. Hence
@.(a) = @,.(b) by (P 1). When » < b, similarly we have @.(a) = #,(b).



ON POINT-FREE PARALLELISM AND WILCOX LATTICES 739

(ii) When r Aa =7 A b= 0, we have ®,(a)||.m) @, @ ||m.ny b and
b ||, P-(b). Hence ®.(a) = ¢,(b) by Corollary Theorem 4.2.

(iii) When » A @ =0, we put , = A b and take 7, such that
r=nrVmr,and r Ar,=0. If =0 or r,= 0 then 9,(a) = »,(b)
holds by (ii) or (i). Hence we may assume », r,€ 2. Then @.(a) =
?.(@) V ?,,(a) and @,.(b) = 2, (b) V ®,,(b) by Lemma 5.4. We have
P,.(a) =2, (0)(¢ =1,2) by (i) and (ii). Hence 9,(a) = 2.(b).

(iv) When »r Aa+# 0 and r £ a, we put r, = r A\ @ and take 7,
such that »=7r Vv, and », Ar,=0. Then r,r €%, and then
?,(a) = 9,(a) V ?,(a) and 9,(b) = 9,,(b) V #,,(b) by Lemma 5.4. We
have ¢, (a) = #,,(b) by (i) and (iii). Hence @.(a) = @,(b).

LEmMMA 5.5. Let acl,(me%) and nez. If o.(a) <1, then
Pu(a) € I, and P.(P.(a) = P.(a) for every re &.

Proof. (i) When a An =0, we have a|| . P.(a). Hence
p,(a)el,, and @.(a) = @ (P.(a)) by Theorem 5.2. When aV n <1,
we take n,€ Z such that (@ \VV n) A n, = 0. Then P,(a)||nny Pu,(@)
by Lemma 5.1. Hence @,(a)e I,. Moreover, since @ | ny Psl@), We
have ¢,(a) = ?,(P,,(a)) = ?,(P.(a)) by Theorem 5.2.

(ii) When a An+#0 and a V n =1, we put », = a A n and take
n, such that n = n, V n, and n, A n, = 0. Since ¢ < 1, we have n £ a,
-and hence n,, n,€ 2. We have ¢, (a) < a, since otherwise @, (a) = a
-and then @,(a) = @, (a) V 7 =a\/ n =1, a contradiction. Hence there
-exists n,e & such that n, < a and ®,(a) A n, =0. Since n, n, < a
and a Am,=0, we have P,(a) [m,uy Pry(@) and @,(a) ||y Pu(@)-
Moreover @, (@) |[is,,p) Pu,(@) by Theorem 4.2. Since (@,,(a) V n) A n, <
a N\ n, =0, we have (¢,(a), n,, n;) L, and hence @, (a) A (n, \V n,) = 0.
Hence, by Lemma 4.3, we have 9,(a)|lwm,mn P (2) V Pu,(@) = @.(a).
Therefore @,(a) € I,. Since @ ||, ., Pn,(a), Wwe have .(a) = P,.(P,,(a)) =
P(Pn(@) = P (Pn(a)) by Theorem 5.2.

LemMA 5.6. Let acl,(me &) and n,n,c=z. If ¢,(a) \n,=0
the/n g)nl(a) H{nl,nz) (pnz(a’)'

Proof. Since ¢, (a) <1, we have ¢, (a) € I, by Lemma 5.5. Hence
PP (@) inyinp P (@). By Lemma 5.5, we have @, (2, () = @, (a).

DEFINITION. Let &, be the subset of & deleting maximal elements
in & which are not atoms, that is, &, = (& —{maximal elements}) — 2.
Then, it is evident that for any m e & there exists m, € &, such that
‘m, < m. Hence L is %,-SSC.

LeEMMA 5.7. If acl,(mec %) and ne %, then @,(a)ecl,.
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Proof. If we had ®,(¢) =1, then » would be maximal in & by
Lemma 5.2. Hence n would be an atom by the definition of &,. If
aAn=0, then al|,.. ®.(@) =1, a contradiction. If a A % == 0, then
n =< a, and then 1 =9,(a) <acl, a contradiction. Therefore, we
have #,(a) < 1, and hence @,(a) € I, by Lemma 5.5.

LemmA 5.8. If m,ne<, then I, and I, are isomorphic by
mutually inverse mappings @, and @,.

Proof. We have o, (I,) I, and @,(I,) I, by Lemma 5.7. It
follows from Lemma 5.5 that o, (¢,(a)) = ®.(¢) = a for acl, and
Pp(Pum(b) = 9,(b) = b for bel,. Moreover @, and @, are order-pre-
serving by Theorem 5.1. Hence I, and I, are isomorphic.

LEMMA 5.9. Let me%. If m 1s not an atom and if there exist
a, a,€ I, such that a, \/ a, = 1, then m¢e &,.

Proof. Since L is left complemented, there exists b < a, such
that o, vVb=a,V a, and a, L b. Putting a, = m Vv b, we have

a,el,,,a,Va=aVb=aqVa=1
and

aNat=mVbAa=mVbAa)=m.

Hence we may assume that a, A a, = m. Since m is not an atom,
there exists m, e & such that m, < m. Since ¢, (a,) = a,, we have

Py (@) N @y = Py (@) N\ ey A\ @ = Py (@) A M= my

by Lemma 5.2. Since L is weakly modular and ¢, (a) A a, # 0, we
have (@ml(ai’.) vV @ml(al)) N @y = @ml(az’) V (@ml(al) N ay) = ¢m1(a2) N my =
P, (a). Since @, (a;) A m = m,, we have @, (a,) < a,, and hence the
above equation implies that @, (@) V @, (a,) < 1. Putting

a’O - @ml<al) \/ @ml(az) y
we have a,e I, by Corollary of Theorem 4.1, and by Theorem 5.1
we have
@m(ao) = @m@rrq(al) \/ @m(/)ml(a’fz) = @m(al) \/ @m(az) = a’l \/ a2
=1l¢el, .

By Lemma 5.7, we have me <.
LEMMA 5.10. If for some m e %, there exvist a,, a,€ I, such that

a, \V a, =1, then every element n of &, is an atom (hence L is ato-
mistic) and @.(a) V P.(a,) = 1.
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Proof. It follows from Lemma 5.9 that m is an atom. Let ne &.
If we had #,(a) V ®.(a;) < 1, then as in the proof of Lemma 5.9, we
would have m ¢ &,. Hence @,(a,) V ®.(a,) =1, and then » is an atom
by Lemma 5.9.

6. Construction of modular extensions. As in §§4 and 5, let
L be a weakly modular, left complemented lattice, with 0 and 1, of
length > 4, and assume that for fixed subset & of _#, satisfying
(C1l), L is #-SSC and L satisfies the axioms (P 1) and (P 2) with
respect to &. (We may assume that & satisfies (C 2).)

Let &, be the subset of & given in §5. We say that L is of
type A when for some me %, there exist a, a,€ I, such that a, v
a, = 1. It follows from Lemma 5.8, Corollary of Theorem 4.1 and
Lemma 5.10 that we have the following results.

(1) For any m, ne &, I, and I, are isomorphic by the mappings
®, and @,,.

(2) If L is not of type A then I, is an ideal of the lattice
L[m, 1] for every me &,

(3) If L is of type A then L is atomistic and &, = 2. If more-

over L satisfies the axiom (P 3) with respect to @ then I, = L[m, 1] — 1
for every m e &.
Hereafter, whenever L is of type A, we assume that L satisfies (P 3)
with respect to 2. In this case, it is convenient that we set 1e¢1,
and @,(1) =1 for every me =,. Then I, = L|m, 1] and moreover I,
and I, are isomorphic by @, and ®,,.

DEFINITION. For an incomplete element @, we denote by [a] the
set of parallel images of a at all elements of =7, that is, [a] = {®.(a);
me &,}). We denote by S the set of all [a] deleting [m]. For [a],
[b6] € S, we define [a] < [b] by @..(a) < 9,.(b) for some m € &, (and hence
for every me %,). Hence S is isomorphic to I, — {m} for every
me %, If L is of type A, then S has the greatest element [1] and
S = L[m, 1] — {m}.

LEMMA 6.1. In the set A = L~ S, we define a partial order by
the following conventions:

(O1) For a,be L, we have a < b in A when a <b in L. For
[a], [0] € S, we have [a] < [b] tn A when [a] < [0] in S.

(O 2) For [ale S and be L, we have [a] < b when ®,(a) < b for
me &, with m < b. (Especially, [1] < b only when b = 1.)

(O 8) For [a]eS and be L, we have b < [a] only when b = 0.

Then A is a lattice where the lattice operations U and N have
the following properties:

(1) If a,beL then aUb=a\ b.
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(2) If 0s=acL and [b] e S then for me &, with m < a we have
alU[b]l =aV @,0).

(8) If [a], [b]€ S then for me &, we have [a] U[b] = [p.(a)
Pn(d)].

(4) If a,beL and a Nb~0 then anNbdb=a Ab.

(5) If a,beL and a ANb= 0 and if m, ne &, such that m < a
and n < b then anb=[a A (mVbdl=I[bA (n\Va)l

(6) If ac L, [b]eS and if me &, such that m < a then aN[b] =
[a A P. ()]

(7) If [a], [b]€ S and me &, then [a] N [b] = [Pn(@) A P.(D)]-
Note that in (5), (6) and (7) we set 0 = [m] for convenience. (If L is.
of type A then especially we have a U[1] =1, [a] U[1] =[1],an]l] =
[¢] and [a] N [1] = [a].)

Proof. (1) Let a,be L. To prove (1), we may assume a # 0
and b = 0. By (O 3), any upper bound of {a, b} in 4 belongs to L.
Hence a U b exists and (1) holds.

(2) We have [b] < ®,(b) by (O 2). Hence aV @,(b) is an upper
bound of {a, [b]} in 4. If ¢ is an upper bound of {a, [b]} then ce L
by (O 8). Since m < a =¢ and [b] < ¢, we have @,(b) < c. Thus
a U [b] exists and (2) holds.

(8) This follows from (O 1) evidently.

(4) Take me &, such that m <a A b. If ce L is a lower bound
of {a,b} in 4 then ¢e<a Ab by (O 1). If [d]eS is a lower bound of
{a, b} in 4, then ®,(d) < a A b and hence [d] < a A b. Therefore a N b
exists and (4) holds.

(5) We have a A (m V b) llimmd A (nV a) by Lemma 2.5 (i).
Hence, [a A (m VvV B)] =[b A (nV )] is a lower bound of {a, b}. Since
a A b =0, any lower bound is either an element of S or 0, and hence
it has the form [c¢] where ¢ = m. Since [¢] < a, b, we have @,(c) < a
and @,(c) < b. Since @,(c) An=<=a N\b=0, we have ®,(¢) ||(n,» P.(c)
by Lemma 5.6. Hence @,(c) = a A (mV @) =a A (m\Vb). There-
fore [¢] < [a A (m \/ b)]. Thus a N b exists and (5) holds.

(6) It is evident that [a A @,(b)] is a lower bound of {a, []}.
Any lower bound of {a, [b]} has the form [¢] where ¢ = m. We have
[c] £ [a A @,.(b)] since @,(c) < a, P,(b). Hence a N [b] exists and (6)
holds.

(7) TFor [a], [b]e S, taking me &, [P.(a) A @,.(b)] is a lower
bound of {[a], [b]}. For any lower bound [¢] of {[a], [b]}, we have
[c] = [Pa(@) A .(b)], since ,(c) = P,(a), P,(b). Hence [a] N [b] exists
and (7) holds.

LEMMA 6.2. The lattice A constructed in Lemma 6.1 is comple-
mented.



ON POINT-FREE PARALLELISM AND WILCOX LATTICES 743

Proof. (i) Let 0+# ae L. Since L is left complemented, there
exists be LsuchthatavVb=1and ¢« L b. We have aUb=aV b=1
by Lemma 6.1 (1). We take me &, with m < a. Since (b, a) M, we
have a A(mVDb)=mVbdAa=mVObAa =m. Hence, by Lemma
6.1 (), anbd=[aA (m\V b]=][m]=0. Therefore, b is a complement
of a in 4.

(ii) Let [a]eS. We take me &, with m < a¢. Since L is left
complemented, it is relatively complemented. Hence there exists be L
such that a Vb =1 and a A b=m. By Lemma 6.1 (2), we have
[@]lUb=®,(e) Vb=a\V b=1. By Lemma 6.1 (6), we have [a]Nb=
[Pm(@) A D] =[a A D] =[m] =0. Hence b is a complement of [a] in 4.
(Especially, if L is of type A, then m is a complement of [1].)

LEMMA 6.3. The lattice A constructed in Lemma 6.1 1s modular.

Proof. (i) Leta,be L and we shall show (¢, )M in 4. When
aANb+#0, we have anNbdb=a A b by Lemma 6.1 (4), and hence the
interval Ala N b, 1] of A coinsides with L[a A b, 1] which is modular
since L is weakly modular. Hence (a, b))M in AJa N b, 1] and then
(@, 5)M in A. When a A b= 0, we may assume ¢ = 0 and b+ 0. Let
A be an element of 4 with 0 <A < b. If Ane L, then we put » = b,
and take ne &, with n <b,. Since (Vv a) A b=n >0 and since L
is weakly modular, we have (n \V a, b)M in L. Hence

GuUuanb=0B:VvVanb=0OBVa)yAb=0BVnvaAb
=b,V{nVa Ab}.

On the other hand, by Lemma 6.1 (5) and (2), we have
byUu(@nd) =bUbAmVa)]=bV{bdAM®RVaL.

Hence b,Ua)Nd=05,U (anb).

If xe S, then we put A = [¢] and take m, n € &, with m < ¢ and
n < b. We shall prove (@,(¢c) V a) Ab=0. Since [¢] < b, we have
?,(¢c) < b, whence m A @,(c) <a Ab=0. Hence ©,(¢) ||mmn Pulc) by
Lemma 5.6, while a A (m V 0) ||im.m d A (® VV @) by Lemma 2.5 (i).
Since (@ le) VDAV ) AmZbAa=0, by (P 2) we have

(*) P,V {a N (m b)}(mlylm%(c:) VDA @YV a).

Now we have (a, m \/ b)M since L is weakly modular. Since @, (c) =
m\ @,(c) <m\ b, we have

P.{e) V{a A (m Vb)) = (Pale) Va) A (mVb).

Moreover, since (n \/ a, b)M, we have
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Pu0) VDA (V@) = (Pulc) ViV a) Nb=(Pufc) Va)ND.

Hence, by (*), we have 0 = (@,(¢c) V a) A (m \V b) A (P.lc) V a) AN b=
(®Pnlc) V a) A (P.(c) V a) Ab. Since

Pa(O) Va=mV @) Va=,)Va,
we get (p,(c) Va) Ab=0. By Lemma 6.1 (2) and (5), we have
([lUa) Nb = (Pale) V a) N b= [(Pulc) V @) A (m \V b)]
= [Pul0) V {a A (m V B)] .
On the other hand, by Lemma 6.1 (5) and (3),
[eJU(@nbd) =[c]Ula A (mV b)] = [p.l)V {a A (m\ Db} .

Hence ([cJUa) N b =[c]U (@nbd). Therefore, WU a)Nbd=xU(anNb)
for any ne 4 with A < b.

(ii) Let [a]e S and be L, and we shall show ([a], b)) M. We may
assume b = 0. Let ve 4 with 0 <X <b. If A\ =0b,e L, then we take
ne &, with n £5,. Since @,(a) A b = 0, we have

G UfadNbd= (b V P(@) Nb= (b V Pula) ANbD=10,V (Pu(@) N\ D),
while by Lemma 6.1 (6) we have
b, U ([a] N b) =bU [QDn(a) A\ b] =b, V (?n(a) A b) .

If X\ = [e]e S, then we take ne &, with n < b. Since @,(c) < b, we
have

([l U la]) Nb = [Pule) V Pul@)] N b = [(Pule) V Pul@)) A D]
while

[l U (el Nb) = [c] U[Pu(@) A D] = [P.(0) V (Pul@) A D)] -

Hence WU [a]) Nd =nU(a] Nbd) for any ned with A < b.

(iii) Let ae L and [b] €S, and we shall show (a, [0])M. We may
assume @ #= 0. Let ve 4 with 0 <\ < [b]. Then, since v e S, we put
A= [¢]. We take me &, with m < a. Since @,(¢c) =< #,(b), we have

([elU @) N [b] = (@ule) V @) N [b] = [(Pnle) V @) A P (0)]
= [Pule) V (@ A 2.(0)] ,
while
[elU (@n[b]) = [c] Ula A ®.(b)] = [Pale) V (@ A 2. ()] -

(iv) Let [a], [b] € S and let [¢] < [b]. We take m € &, with m < a.
Since ¢,.(c) < #,.(b), we have
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(el U [a]) N [8] = [u(e) vV a]l N [b] = [(@ule) V @) A P.(b)]
= [@ule) V (@ A 2.0)] ,
while

[l U (al N [B]) = [e] U [a A @.(0)] = [Pnlc) V (@ A P, 0))] -
Hence ([a], [b]) M.

REMARK 6.1. We shall show that if an _#-SSC lattice, with 0
and 1, has a finite connected chain from 0 to 1, then it is atomistic.
It suffices to prove that any nonzero element a includes an atom, since
the lattice is SSC. Let 0 =ay < a, < ++- < a, =1 and let »(<n) be
greatest such that a £ a.. Since a A a, < a, there exists me _#Z such
that m < a(Za,.,) and m Aa,=0. If 0 <2< m, then a, <a, V=<
a,.., whence a, \V © = a,.,. Hence

m=mAa.,=@Va) \m=aV@ A\m=2o.

Therefore m is an atom included in a.

THEOREM 6.1. (Non-atomistic case) Let L be an _#,-SSC lattice
with 0 and 1 which is not atomistic. Then, L s a Wilcox lattice if
and only if L is weakly modular, left complemented and satisfies two
parallel axioms (P 1) and (P 2) with respect to _#,.

Proof. If L is a Wilcox lattice, then evidently L is weakly
modular and it is left complemented by Lemma 3.2. Moreover L
satisfies the parallel axioms by Lemma 3.7. We shall prove the con-
verse statement. We remark that L is of infinite length by Remark
6.1 and that L is not of type A. Putting & = _#, L satisfies all
the conditions stated at the beginning of this section. Hence it fol-
lows from Lemmas 6.1, 6.2 and 6.3 that L is a Wilcox lattice.

THEOREM 6.2. (Atomistic case) Let L be an atomistic lattice,
with 0 and 1, of length = 4. Then, L is a Wilcox lattice if and only
iof L is weakly modular, left complemented and satisfies three parallel
axtoms (P 1), (P 2) and (P 3) with respect to Q.

Proof. As the proof of Theorem 6.1, the “only if” part follows
from Lemmas 3.2 and 3.7 and the “if” part follows from Lemmas 6.1,
6.2 and 6.3, by putting & = Q.

REMARK 6.2. We remark that two axioms (P 2) and (P 3) can be
replaced by the following one axiom (assuming that L satisfies (P 1)):
P4 If a,<|imb, a, <|mb where mez and if m<a=a,Va,
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then for any ne & with a A n = 0 there exists b such that
@ [limm b-

Proof. Since L is &-SSC, it is evident that (P 4) implies (P 3).
We shall show that (P 4) implies (P 2). Let a; || 0:(2 = 1,2) and
(@, Va,) An=0. By (P 4) there exists b such that a, \V @, {|m,m 0-
Then, @;||mmd A (n\V a;) by Lemma 2.5 (i), whence b, = b A (n A a;)
by (P 1). Therefore, b, \/ b, < b, and hence (a, \V a,) A (b, \V b)) = 0.
On the other hand, we have a,\VVa,\Vn=mV b \Vb. Hence a,V
@ || (m,m 0, \V by Conversely, we assume that (P 2) and (P 3) are satisfied.
Then we may use the results in §4. Let a; < |, 0:(1=12), m<a=
a,Va and a An=0. If a,\V a, =1 then acI, by (P 3). If a, Vv
a, <1 then a,V a,¢ I, by Corollary of Theorem 4.1 and hence acI,.
Therefore it follows from Theorem 4.1 that there exists b such that
a |l m,m b-

REMARK 6.3. We can show that an application of Theorem 6.2
to the upper continuous atomistic case implies the theorem on affine
matroid lattices given in [2], p. 314. A matroid lattice is defined as
an upper continuous atomistic lattice with the covering property ([4],
Definition 1.8), which is left complemented and M-symmetric (see [8]).
In an matroid lattice we write a < |b when a < |, b for some atom
» = a, and write a||b when a < |b and b < |a. (In [2], p. 272, it is
written b/« instead of a < |b.) A weakly modular matroid lattice L
of length = 4 is called an affine matroid lattice ([4], Definition 3.3)
when L satisfies the following axiom (the join of two different atoms
is called a line):

(EP) If [, k, and k, are lines such that ||k, 1| k, and if &k, Ak, = O
then k, = k,.

THEOREM. Let L be an upper continuous atomistic lattice of
length = 4. Then, L is a Wilcox lattice if and only if L is weakly
modular, M-symmetric and satisfies the axiom (EP), that is, L is an
affine matroid lattice.

This theorem follows from Theorem 6.2, by Remark 6.2 and by
the results given in [2], pp. 307-309 (Theorem 5 and Prop. 9). Note
that our definition of an incomplete element (1) coinsides with that
in [2], p. 307.

REMARK 6.4. About the uniqueness of the modular extension of
a Wilcox lattice, we can prove the following results (see [11]). Here
the proofs are omitted.

(1) Let L=4— S be a semicomplemented Wilecox lattice of
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length = 8. Then L is modular if and only if S is empty.
(2) Let L be an _#-SSC Wilcox lattice of length = 3. The
modular extension of L is uniquely determined up to isomorphism.
We remark that any _#-SSC Wilcox lattice of length 2 has ex-
actly two modular extensions and that a Wilcox lattice of length =3
may have two modular extensions if it is not _Z-SSC.
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