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HOW TO RECOGNIZE HOMEOMORPHISMS AND
ISOMETRIES

CARLOS R. BORGES

We study necessary and sufficient conditions for a given
function f;X->X to be one-to-one, or a homeomorphism or
a topological isometry1, by analyzing the family ί/1,/2, ••*}
of its composition iterates.

In § 1, 2 and 3 we develop the key results. (See Theorems 2.1
and 2.3).

In §4 we obtain a variety of applications, most of which are
known, by various different techniques. They all follow easily from
our key results:

(a) Conditions which imply that locally nonexpansive maps (in
metric spaces or uniform spaces) become local isometries (see Theorem
4.2, Corollary 4.3 and Theorem 4.5, and also [2], [5] and [6]).

(b) Conditions which imply that a given map on a metrizable
space is a topologίcal isometry1 (see Theorems 4.6 and 4.7, and also

[8]).
(c) Some results on compact commutative groups of homeomor-

phisms (or topological isometries) of X onto X (see Theorems 4.11 and
4.12, and also [4], [10] and [11]).

1* Auxiliary results. For each space X we let idx denote the
identity function on X and, for each continuous function f:X—> X,
we let

(a) f1 = / , /• = / o / - 1 for n>l

(c) Γ(f) = {fn\n = 1, 2, •••}", the closure being with respect to
the co. (i.e. compact-open) topology on the function space Xx.

PROPOSITION 1.1. If X is locally compact and Hausdorff then Xx

(and therefore also Γ(f)) is a topological semigroup with respect to
composition.

Proof. Immediate from Theorem 2.2 (p. 259) of Dugundji [3].

LEMMA 1.2. Suppose X is compact Hausdorff and {f\ /2, •••} is

1 We wish to thank Professors J. Dugundji, W. Comfort and A. D. Wallace for
bringing to our attention references [6], [2] and [10] respectively. They strongly mo-
tivated us to sharp improvements of our original results.
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evenly continuous. Then Γ{f) is compact.

Proof. By Theorem 19 (p. 235) of [7], Γ(f) is evenly continuous
since Γ(f) is contained in the pointwise (topology) closure of
{/\ f\ •••}• By Ascoli's Theorem (p. 236 of [7]), Γ(f) is compact.

LEMMA 1.3 Suppose X is compact Hausdorff and {f\ f2, •••} is
evenly continuous. Then Γ{f) has an idempotent e (i.e. β2 = e) such
that e(X) = P and e/P = idP.

Proof. By our Lemma 1.2 and Theorem 3.1 of [9], Γ(f) has an
idempotent e (the unit of the maximal nonempty subgroup K(f) of

We show Pcze(X): Let ye P. Then there exists xneX such
that fn{xn) = y, for each n. Pick a subnet {(/v, O} of {(/*, xn)} such
that limv f" = e. Then there exists we X and a subnet {(/*, xλ)} of
the net {{f\ xj)} such that limλ(fλ,xλ) = (e,w), because Γ(f)xX is
compact. Consequently e(w) = lim^ /^(α^) = lim^ y — y, because of
Theorems 4.71 and 2.5 of [1].

We show e(X)aP: Let xeX and pick subnet {/v} of {/*} such
that lim f» = e. Then e(x) = limv /"(x) and, since each /%(X) is a
closed subset of X (because X is compact), e(x) e P.

Clearly e\P = idP since e(e(x)) = e(x) for each xeX.
It appears that our main results become more meaningful when

stated in terms of a generalization of the concept of "an almost
periodic2 function" introduced by Whyburn [12], especially because of
Lemma 1.5 below.

DEFINITION 1.4. Let / l ^ J b e a function. Then / is said to
be net periodic if there exists a subnet {/v} of {fn} with limv f

v = id^
(in X*).

Clearly net periodicity is equivalent to almost periodicity when-
ever xx is metrizable.

LEMMA 1.5. Let f:X—>X be net periodic. Then f is one-to-one.

Proof. Suppose f(x) = f(y). Then fn(x) = fn{y). for all ^.Pick
subnet {/v} of {/*} such that limv /* = idx. Then idx{x) = lim. fv{x) =
lim, fy(y) = idx{y) implies that x = y. This does the trick.

2 For any metric space (X, p) a function /: X —> X is said to be almost periodic
(see [12]) if for each ε > 0 there exists a positive integer n such that p(fn(%), x) < ε
for all xβX. This is clearly equivalent to saying that there exists a subsequence {fni}
of {fn} which converges uniformly to the identity function of X.
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LEMMA 1.6. Let X be compact Hausdorff and f:X-*X a con-
tinuous function. If f is net periodic then f is an onto homeomor-
phism.

Proof. Because of Lemma 1.5 we only need prove that / is
onto: Suppose not. Then X — f(X) is an open nonempty subset of
X. Let {fv} be a subnet of {/»} such that lim / v = idx. Then for
any aeX-f(X), lim, f\a) = a while p(X)af(X) (i.e. f»(X)Γi
[X-f(X)] = 0) for all v. This is a contradiction.

2* Main results*

T H E O R E M 2 .1 Let X be compact Hausdorff and f: X —> X a func-
tion. If {f\ /2, •••} is evenly continuous then f \ P is net periodic
(and therefore a homeomorphism).

Proof. By Lemma 1.3, there exists an idempotent eeΓ(f) such
that e\P = idP. Consequently there exists a subnet {/"} of {/*} with
limv f

v = e (even if e = fn for some n) which implies that limv f
v\P~

e\P = idP. Since f(P) = P (because fn(X) z> fn+1(X) => P for all n)
we get that fv\P= (f\P)v. Therefore lim,(/ | Py = id? and f\P is
net periodic.

COROLLARY 2.2. Let X be compact Hausdorff and f:X—*X an
onto function. If {f1, f2, •••} is evenly continuous then f is net
periodic (and therefore a homeomorphism).

Since the converse of Theorem 2.1 is false (for example, let
/ : ! — > ! be defined by f(t) = t\ where / denotes the closed unit in-
terval), the following seems worthy of mention.

THEOREM 2.3. Let X be any space and f:X-^ Y a continuous
function. Then f is one-to-one if and only if Γ(f) contains a one-
to-one function.

Proof\ The "only if" part is clear. To prove the "if" part let
e: X —>X be any one-to-one function such that eeL(f). Assume
f(x) = f(y). Then fn(x) = fn(y) for all n and one easily sees that
e(χ) = e(y). (This is clear if e — fn for some n. Otherwise there
exists a subnet {fu} of {fn} with limv f

υ — e. Therefore e(x) =
fu(x) = limv f

u(y) = e(y)). This shows that / is one-to-one.)

3* Generalizations* With some additional restrictions on /,
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Theorem 2.1 remains valid for a larger class of spaces.

Throughout this section we let E be a noncompact, locally com-
pact, space, and E = £ Ί J { M } be its one-point compactification. Also
for each onto map f:E—>E we consider the three conditions:

(A) For each sequence {xn} in E, limw xn = x Φ oo and limu fin(x) =
oo implies that lim% fin(xu) = ^ ,

(B) For each sequence {xn} in i?, limn a?Λ = <*> implies that

/ H < > = oo,
(C) For each sequence {xn} in i£, limw xn = ^ implies that
/(α n ) - oo.

In Example 5.1, it is shown that conditions (A) and (C) do not
imply (B).

LEMMA 3.1. Condition (C) is satisfied if f is either (a) uniformly
continuous with respect to some compatible metric on E (assuming E
is separable metrizable), or (b) a homeomorphίsm.

Proof, (a) Since E is completely metrizable we can continuously
extend / to f:E—>E. Since E is not compact, /(oo) = oo. This
shows that / satisfies (C).

(b) Suppose l i m ^ = oo but limv f(xv) Φ oo. Then there exists
a subsequence {xσ} of {?cv} such that limσ xσ = oo limσ/($σ) = y for
some yeE. Then f~ι{y) = limσ /

- 1 /(&σ) = limσxσ = oo, which is im-
possible.

LEMMA 3.2. Condition (B) implies (C). (The converse is false-
see Example 5.1.)

Proof. Simply let all in = 1 in (B).

LEMMA 3.3. // E is metrizable and f:E~^E is nonexpansive
(with respect to some compatible metric d on E) then f satisfies con-
ditions (A) and (C).

Proof. (That / satisfies (A) is essentially proved in the proof
of Theorem 1.1 of [8]. We present a simpler argument.) Suppose
that limn xn = x e E, limΛ fin(x) = oo but limn fin(xn) Φ oo. Then there
exists compact CaE, zeC and subsequence {β} of the integers such
that fXxβ) e C and lim^ fιβ{xβ) = z. Since d(f%β(xβ), f*β(x)) ^ d(xβ, x),
we get that lim^ fiβ(Xβ) = z, a contradiction. Similarly, one can easily
see that / satisfies (C).

THEOREM 3.4. Let f:E-+E be an onto function such that
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{/\ f2, •*•} is evenly continuous and f satisfies conditions (A) and (B).
Then f extends continuously to an onto function f:E-^E such that
{f\ f\ * •} is evenly continuous. (Therefore, / and / are net periodic.)

Proof. Since / satisfies (C), by Lemma 3.2, we can extend / to
f:E-+E continuously, by letting /(oo) = co. Because of (A) and (B)
it is easily seen that {/\/2, •••} is evenly continuous. Therefore, by
Theorem 2.1, / is net periodic. This completes the proof.

Example 5.1 shows that if / does not satisfy (B) then / is not
necessarily net periodic.

4* Applications.

DEFINITION 4.1. Let (X, p) be a metric space. A function
/ : X —•> X is said to be locally nonexpansive if each pe X has a neigh-
borhood Np such that ρ(f(x), f{y)) ^ p(x, y) for all x, ye Np. If Nn =
X then / is said to be nonexpansive. If, for come ε > 0, p(x, y) < ε
implies that p(f(x), f{y)) ^ p(x, y), then / is said to be ε-nonexpansive.
Replacing " g " by " = " above, we get the definitions of local isometry
and of ε-isometry.

THEOREM 4.2. Let (X, p) be a compact metric space and f: X —> X
a locally nonexpansive onto function. Then f is almost periodic2 and
therefore a local isometry.

Proof. By compactness of X9 there exists ε > 0 such that / is
ε-nonexpansive. By the net characterization of even continuity (cf.
exercise L on p. 241 of [7]) it is easy to prove that {f\ f2, •••} is
evenly continuous (for each net (in this case, sequences suffice)

{(f\ xv)} a {f\ f\ •} x X, lim xu = x and Km, f\x) = y

implies that

p (f"(xu), y) S P (Γ(x>), Γ(x)) + p (Γ(x), y) ^ p (xv, x) + p (fv(x), y)

for all v with p (xv, x) < ε, since each fn is also ε-nonexpansive;
therefore \imvf

u(x1/) = y, which does the trick).

Since / is onto, we get that P — X and therefore that / is almost
periodic, by Theorem 2.1 (and footnote 2).

It is now easily seen that / is a local isometry (pick subnet {/v}
of {/*} with lim, fu = idx. Since
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P fo y)^ρ (x, Γ{x)) + P (p(x), f(y)) + p (f»(y), y)

we get that p (x, y) ̂  lim, p (fu(x), p(y)) for all x,yeX. If

P (/(α), PΦ)) < P (α, δ ) < e ,

for some α, 6 e X, then

|0 CΛ(α), />(&)) ^ <o (/(α), /(&)) < /o (α, 6) , for all v ,

which implies that \imu p (f*(a), fv{b)) < p(a, b), a contradiction). This
completes the proof.

COROLLARY 4.3 (Satze Ib of [6] and Theorem 1 of [5]). Let (X, p)
be a totally bounded metric space and / : X — > X an ε-nonexpansive
map such that f(X) is dense in X. Then f is an ε-isometry and X
is dense in f(X).

Proof. Let X be the usual metric completion (in terms of Cauchy
sequences—see Theorem 27 on p. 196 of [7]). Since f(X) is dense in
X then X is also the completion of /(X). Clearly X is compact
metrizable by a metric p which extends p, and / is extendable to a
continuous function (because / is uniformly continuous) / : X —> X such
that / is an onto map (because of compactness). It is also easily
seen that / is ε-nonexpansive (Let x, y e X with p (x, y) < ε. Pick
nets (sequences suffice) {xu}, {yv} in X with limy xu = x, limv yu = y and
P {Xv, y») < ε for all v (this can be done because of the definition of
p). Then p(f(x), f(y)) = limv p{f{xυ), f(yu)) ^ limv ρ(xv, yu) = fi(x, y)>
because p(x,y)<ε). Theorem 4.2 completes the proof.

DEFINITION 4.4. Let (X, W) be a uniform space and θ = {px}λeA

a gage (see p. 188 of [7]) for ^ . A function / : X—> X is said to be
ε-nonexpansive with respect to θ (ε < 0) if pλ(x, y) < ε implies that
Px(f(x), f{y)) ^ Px(x, y)i for each XeΛ. If / is ε-nonexpansive with
respect to θ for all ε > 0 then / is said to be nonexpansive with
respect to θ. Replacing " < " by " = " above we get the definitions of
ε-isometry and of isometry with respect to θ.

THEOREM 4.5. Let (X, ̂ ) be a uniform compact Hausdorff space
and f:X—*X an onto ε-nonexpansive map with respect to some gage
0 =z {pλ}λeΛ for '2/. Then f is net periodic and an ε-isometry with
respect to β.

Proof. All the statements in the proof of Theorem 4.2 which in-
volve p remain valid when p is replaced by any pλ e θ. Therefore,



HOW TO RECOGNIZE HOMEOMORPHISMS AND ISOMETRIES 631

by use of Theorem 19 on p. 189 of [7], one immediately gets that
{f\ f2j ••*} is evenly continuous, and / is net periodic and and an ε-
isometry with respect to θ. This completes the proof.

Brown and Comfort [2] have obtained a similar result for totally
bounded Hausdorff uniform spaces.

With respect to topological isometries we get the following results,
of which the first shows that the hypothesis that / be a homeomor-
phism in Corollary 1.2 of [8] is superfluous; the second complements
Theorem 1.1 of [8].

THEOREM 4.6. Let fiM-^Mbea function from the compact
metrίzable space M onto itself. Then f is a topological isometry if
and only if {f1, f\ •••} is evenly continuous.

Proof. Immediate from Corollary 1.2 of [8] and our Theorem 2.1.

THEOREM 4.7. Let f:E—>E be a function from the separable
locally compact metrizable space E onto itself. Then f is the restric-
tion of a topological isometry f : E—> E if and only if {f\ /2, •} is
evenly continuous and f satisfies conditions (A) and (B).

Proof. Immediate from Theorems 4.6 and 3.4.

Finally we get some results on transformation groups. But first
we need the following three lemmas.

LEMMA 4.8. Let f: X —* X be a function from a compact Haus-
dorff space X onto itself. If {f\ f\ •••} is evenly continuous then
{f~\ /~2, •• }aΓ(f) and it is evenly continuous.

Proof. By Corollary 2.2, f~ι is a well-defined function and there
exists subnet {fv} of {/*} with lim, p = lx. Therefore

lim f~ι Γ = lim /"-1 = /-1 lx = /- 1 e Γ(f) .

Similarly one proves that {f~\ f~2-..} c Γ(f). Therefore {f~\ /~2 •}
is evenly continuous, since Γ(f) is compact by Lemma 1.2. This
completes the proof.

LEMMA 4.9. Let f: X—> X be a function from a compact Haus-
dorff space X onto itself. If {f\ / 2, •••} is evenly continuous then,
lim, fv(x) — y if and only if limv f~u(y) = x, for any given net {fv}.

Proof. (Essentially contained in the proof of Corollary 1.3 of [8].)
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Let limv f
v{x) = y and assume lim, f~*(y) Φ x. Then there exists a

neighborhood ^ of x, some zeX — ^ , and a subnet {/"%)} of
{/"%)} with limβ /""%) = z. Since limα /"(a) = y, by the net cha-
racterization of even continuity (of {f~\ f~\ •••}, by Lemma 4.8) we
then get that

z = lim f~afa(x) = lim x = x ,
a a

a contradiction. This does the trick.

LEMMA 4.10. Let f:X—>X be a function from the compact
Hausdorff space X onto itself. If {f\ f2, •••} is evenly continuous,
then any g e Γ(f) is an onto homeomorpism of X.

Proof. Pick net {fv} in the (evenly continuous family) {fL, f\ }
with limv f

v = g and assume g(p) = limv f
v(p) = limv f

v(q) = g(q). Then,
by Lemma 4.9, p = \imvf~

v(g(p)) = limv/~v(^(g)) = q, and this shows
that g is one-to-one.

For any p e X and each v, there exists pve X with fv{pv) — p.
Pick subnet {fσ} of {fv} and w, z e X with limσ pσ = z and limσ f

a(z) = w.
Then, by even continuity, w = limσ f

σ(pσ) — limσ p = p.

THEOREM 4.11. Let f:X—>X be a function from the compact
Hausdorff space X onto itself. If {f\ / 2, } is evenly continuous
then Γ(f) is a compact commutative group of homeomorphisms of X
onto X.

Proof. Immediate from Lemma 4.10. (Γ(f) is commutative
because it is the closure of a commutative group.)

This result is similar to Theorem 2 of Wallace [10] and a result
of Wallace [11].

THEOREM 4.12. Let f: M-+M be a function from the compact
metrizable space M onto itself. If {f\ / 2, •••} is evenly continuous
then there exists a compatible metric d for M such that Γ(f) is a
commutative group of d-isometries acting on M.

Proof. By Theorem 4.6, / it a d-isometry for some compatible
metric d for M. It is easily seen that also each g e Γ(f) is a d-
isometry.

5* Counterexamples* The following example illustrates that
most of the hypothesis in our main results are not superfluous.
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EXAMPLE 5.1. There exists a nonexpansive onto function / :
E1 -> E1 (E1 is the real line) such that

(a) / is not net periodic and dose not satisfy (B),
(b) of course, / satisfies conditions (A) and (C), and {f\ f\ •••}

is evenly continuous.

Proof. Let / : E1 -> E1 be defined by

f(x) = x for each x < 0

f(x) = 0 for all 0 ^ x ^ 1

f(x) = x - 1 for all α > 1 .

Clearly / is onto and nonexpansive. (Note that fn{x) = x for x < 0,
/w(x) — 0 for 0 ^ x ^ n and fn(x) — x-n x > n. Therefore lim% n — ^
but limn/ (w) - 0).
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