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A SUFFICIENT CONDITION FOR L*-MULTIPLIERS

SATORU IGARI AND SHIGEHIKO KURATSUBO

Suppose 1 < p < oo, For a bounded measurable function
¢ on the n-dimensional euclidean space R” define a transfor-
mation Ty by (Tyf)* =¢f, where fe L2nL»(R") and f is the
Fourier transform of f:

f© :fﬁjn SRnf(ﬂc)e“iEf dz .

If Ty is a bounded transform of L?(R") to L?(R"), ¢ is said
to be Lr-multiplier and the norm of ¢ is defined as the
operator norm of T,

THEOREM 1, Let 2n/(n +1) < p < 2n/(n — 1) and ¢ be a
radial funetion on R", so that, it does not depend on the
arguments and may be denoted by ¢(r), 0 = r < co, If ¢(r)
is absolutely continuous and

d
dr

o) Zdr)”z < oo,

M= Héllw*“(i‘i?RS

2R
g

then ¢ is an L?-multiplier and its norm is dominated by a
constant multiple of M,

To prove this theorem we introduce the following notations and
Theorem 2. For a complex number 6 = ¢ -+ iz, 6 > —1, and a reason-
able function f on R* the Riesz-Bochner mean of order ¢ is defined

by

Put
Gy @) = sp(fy @) — s '(f, )
and define the Littlewood-Paley function by

it = ([ G A am)”,

which is introduced by E. M. Stein in [3]. Then we have the
following.

THEOREM 2. If 2n/(n + 20 —1) <p <2n/(n — 20 + 1) and 1/2 <
g < (n+ 1)/2, then

Al gDl = 1AM <A gz () 1ls
8
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where A and A’ are constants mot depending on f.

The first part of inequalities is proved by E. M. Stein [3] for
p»p=2 and by G. Sunouchi [4] for 2n/(n + 20 — 1) < p < 2. The
other parts will be shown by the conjugacy method as in S. Igari
[2], so that we shall give a sketch of a proof.

Proof of Theorem 2. Foré = o + ic,d > —1, and ¢ > 0let K/ (x)
be the Fourier transform of [max {1 — |[£]*#7%), 0}]°. Since K/(») is
radial, we denote it simply by K/(r), r=|x|. Then K;(r)=2I"(6+1)
Viwmss(rt)t®, where Vi(s) = Ja(s)s™® and J; denots the Bessel function
of the first kind. Considering the Fourier transform of ¢%(f, z) we
get

tlfo0) = =\ FO)Tale = i)y = F<Tatw)
27" Jrn
where T%(x) = RP4KL ' (x) and 4 = 0%/(0x}) + ««+« + 0°/(0x}).
Let H be the Hilbert space of functions on (0, =) whose inner

product is defined by {f, ¢> = Sw frgrRdR. TFor a function g(xr) in
LY(R"; H), that is, H-valued L'(R")-function, define an operator [+’ by

(g, ) = 17% Snn < Tiy), gelx —y) > dy .
By the associativity of convolution relation
(1) | 7@ af@de = | < @), 67,9 > do

for every f in L*(R") and ¢ in L*(R*; H), which implies that »° is the
adjoint of #’.
By the Plancherel formula

s _ o . ﬂ u-zﬁ 1/2 i
e I - ) P
=B, ”.le2 ’
where B, = [B(20 — 1, 2)/2]'*, 6 = ¢ + it, and ¢ > 1/2. Therefore f =
1/B3vit’(f) for fe L*(R"). By Schwarz inequality | < t’(f, x), g(x) > |
< 1(f, 2) ||z llg@)|lz- Applying this inequality with (2) to (1) we
get

(2)

(3) v (@)l = B, ll9ll2em -
On the other hand
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|, I Tée + 9) = Ti@) [lade < Ao
zi>2ly

for 6> a+1,a=m—1)/2 (see [4]), where A, , denotes here and
after a constant depending only on p, ¢ and the dimension #. Thus
by the well-known argument (see, for example, Dunford-Schwartz [1;
p. 1171} we get

(4) ) e = Ago™ P f e
and
(5) v’ (@) |0 = Ace€™ " || 9] aan

for l<g¢g=2and 0 =p+it,0>a+ 1. Fix such a p and a q.

Remark that the Stein’s interpolation theorem (see [5; p. 100]) is
valid for H-valued L*-spaces and apply it between the inequalities
(2) and (4), and (3) and (5). Then we get

(6) () oy = Apo || |lew
and
(7) @) lr = Apo | glloem

for 1 < p=2 and ¢ > (n/p) — a.

Since f = (1/B)v°t°(f), we get Theorem 2 for 2n/(n + 20 —1) <p
=<2 from (6) and (7). The case where 2 < p < 2n/(n — 206 + 1) is
proved by the equality (1) and the conjugacy method.

Proof of Theorem 1. Let fe L*(R"). By definition

1 _ 1 IS( iéx
(8) bl 0) =~ —=| Ll sefgera.
Put
Flro) = F@) = Vaﬂgﬂmw

where r = || and @ is a unit vector. Then

(Tt = o] Fooyde)rar.
Jo wl|=1
The last term is, by integration by parts, equal to

¢(R)S:w—ldr Slwlle(rco)da) _ S:%gj(r)drS:s”‘lds | Few)do .

Jlol=1

Thus
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U(Tof, ) = SRS, 5) = | o) - 67, )

By the Schwarz inequality the last integal is, in absolute value,
dominated by

(&l

Divide (0, R) into the intervals of the form (R/27"', R/2) and dominate
»? by R?/2¥ in each interval. Then the first integral is bounded by

i 1 R SRlzj

1
=0 Q91 Qi+l Jppeitl

d
dr

2dr>12(ég S 6L F, @) w)

) .

—d—ng(T‘)l dr<4supRS
r

R>0

Therefore

g (Tof, o) = 1611.( -‘Eﬂf—x)'?dR)l

+ 2sap Rl s |an)([T i arpear 7 50"

<T‘Mgl(fy x)

Thus, if 2n/(n + 1) <p < 2n/(n — 1), then by Theorem 2 we have

T, 11, < A g3 (To(F) 11, §72_3=A'Mngf(f>|lp < V%AA'MWH,,,

which completes the proof.
Finally the authors wish to express their thanks to the referee
by whom the proof Theorem 2 is simplified.
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