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MEROMORPHIC ANNULAR FUNCTIONS

JOSEPH WARREN

The purpose of this paper is to present a definition of
meromorphic annular functions which includes the definition of
holomorphic annular functions. Several equivalent conditions
for meromorphic annular functions are given.

2* Preliminary definitions and remarks* Let D be the disk
\z\ < 1 and C the circle \z\ — 1. We shall, henceforth, assume that
the function f{z) is meromorphic in D.

A boundary path in D is the image of the unit interval 0 ^ t < 1
under a continuous function z = z(t) from 0 <̂  t < 1 into D such that
lim^i \z(t) I = 1. A spiral in D is a boundary path with the additional
condition that l im^ arg z(t) = +co or — oo for any branch of the
argument of z(t).

The set L(λ) = {z\f(z)\ = λ, 0 < λ < oo} is called a level set for
the function / and a component of L(λ) is called a level curve. It
is known [6, Prop. 1] that if C(λ) is a level curve which does not
contain any zeros of /'(#), then C(λ) is either a Jordan curve contained
in D or the union of two disjoint boundary paths. If λ = 0 or λ = oo,
then L(λ) corresponds to the set of zeros or poles, respectively, of

The function f(z) has the asymptotic value a (allowing a— oo)
if there exists a boundary path z = z(t), 0 ^ £ < 1, such that l im^
/(«(«)) = a.

The following definition will be taken for the definition of mero-
morphic annular functions.

DEFINITION 1. Let f(z) be a nonconstant meromorphic function
in D and let {Jn} be a sequence of Jordan curves with Jx contained
in the interior of Jn for n = 2, 3, 4, such that either

lim max \f(z) — a\ = 0 ,

for a finite value α, or, if a — oo,

lim min | f(z) | = oo .
n-*ooze Jn

If, in addition, / has an asymptotic value, then / will be called an
annular function with respect to a.

The class of annular functions with respect to a will be denoted
by J^(α).
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REMARK 1. It is proved in Theorem 1 of [7] that if fe
then given any r, 0 < r < 1, there exists an integer N such that if
n ^ N, then the disk | z | ^ r is contained in the interior of Jn. In
such a case the sequence {Jn} is said to converge uniformly to the
boundary C.

REMARK 2. A subsequence {Jn]c} can be selected such that if
k Φ j then J%h Π Jnj = φ.

From these two remarks it may be assumed that the members
of the sequence {Jn} of Definition 1 are pairwise disjoint and that the
sequence tends uniformly to C.

REMARK 3. It is evident that if fe J^(a) then the asymptotic
value assumed to exist in Definition 1 is α.

REMARK 4. If a Φ 6, then jV(a) Π Jf(b) = φ. The function /
is an J^(α) if and only if

REMARK 5. If / is holomorphic and annular in the old sense
[1, 340] then there exists a sequence of Jordan curves {Jn} which tend
to the circle C and on which / tends uniformly to oo. Since every
holomorphic function has an asymptotic value, which in this case
must be oo, it is seen that /eJ/(oo), Thus there exists a function
in J^(0); the reciprocal of any function annular in the old sense.

The following definitions are needed.

DEFINITION 2. If the nonconstant meromorphic function f in D
has the asymptotic value a on a spiral asymptotic path, then / is a
spiral function with respect to α.

The class of spiral function with respect to a will be denoted by

DEFINITION 3. If the nonconstant and meromorphic function / in
D is bounded away from a on a spiral boundary path, then / is said to
be in the Valiron class with respect to α, provided / has the asymp-
totic value α.

The class of such functions will be denoted by

REMARK 6.

DEFINITION 4. The function f(z) is in the class £f'{a) if /
is nonconstant and meromorphic in D and has the asymptotic value
a as well as the following property: In the case of a finite value α,
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every level curve of f(z) — a which is disjoint from the zeros of f'(z)
is a compact set in D, or, in the case of a = oo, every level curve
of f(z) which is disjoint from the zeros of f'(z) is a compact set in D.

DEFINITION 5. Let Sf{d) be the class of functions / such that
/ is in J*f'(a) and such that every level curve of f(z) — a (or f(z)
if a = oo) is a compact set in D.

It will be shown that Sf{a) = £f'(a).

DEFINITION 6. A tract {D(e), a} for the meromorphic function
f in D associated with the value a is a set of non-void domains D(ε)
each of which is a component of {z\ \f(z) — a\ <ε}, or {z\ \f(z) \ > 1/ε}
if a = oo, such that D(ε) c D(ε') if ε < ε' and Πe<oD(ε) = Φ-

3* Equivalences for J^(a). The following theorem gives the
main equivalences for the class JZf(a) and corresponds to Theorems 1
and 3 of [6].

THEOREM 1. J^(a) = S*(a) - T{a) = jgf'(α) = £?(a).

Proof. To prove the theorem in the most economical way we
prove the chain of containments Ssf(a) c S^ip) — T'iά) c £?'{ά) c

c Sf{a) c £f\a).

First, l e t / e j y ( α ) , let T be the asymptotic path on which /
tends to a (see Remark 3), and let {Jn} be the sequence of Jordan
curves of Definition 1 on which / tends uniformly to α. Using the
same construction as in Theorem 2 of [6] a spiral may be constructed
on which / has the asymptotic value a. Thus feS*(a). Evidently
every boundary path intersects members of {Jn} for all sufficiently
large n so that / cannot be bounded away from a on any spiral.
Since / has the asymptotic value α, / is not in 5 (̂α) and is in S^(a)
- T(a).

Now let feS^{ά) and let C(λ) be a level curve of f(z) — a which
contains no zeros of f'(z). If C(λ) is not a Jordan curve in D, then
it consists of two boundary paths (spirals) on which / is bounded
away from α, and we may conclude that feT^(ά). Therefore, if
feS^(a) — ̂ (α), then each level curve C(λ) of f(z) — a containing
no zeros of f'{z) must be a Jordan curve in D, and hence fe £fr{a)
and we obtain £f(a) - T{a) c £f'{a).

Let feJzf'(ά). Because / has the asymptotic value a, there is a
tract {D(ε), a} associated with α. Choose a sequence {εj of positive
numbers such that εn j 0 as n—> co and the level set {z\ \f(z) — a =
eΛ}, or {z\ |/(£)| = 1/εJ if α = oo, does not contain any zeros of f'(z)
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for n = 1, 2, .
For each n, D(εn) contains an asymptotic path with asymptotic

value a so that it cannot be contained within a Jordan curve in D.
Thus the set D(εn) is | z | < 1 with a countable or finite number of
Jordan domains removed. Otherwise the boundary of D(εn) would
contain a level curve which is not a compact set in D, contrary to
the hypothesis that / e ^ ' ( α ) .

If D(εn) = D for every n then \f(z) - a\ < εn (or \f(z) \ > l/en)
in D for every n and f(z) is identically constant contrary to the
definition of Sf\d). Thus there exists an integer nx and a point
zLe D which is not in D(εn). Let J : be the Jordan curve in D which
contains zx in its interior and which is a component of the boundary
of D(sni). Let J2 be the Jordan curve which contains zί in its interior
and is a boundary component of D(εni+1). Because of the definition of
tract, D(εni+1) c D(εn) which implies that J2 contains Jx in its interior.
Continuing in the same manner we obtain a sequence of Jordan curves
{Jn} such that Jn contains J± in its interior for n = 2, 3, 4, and
such that \f(z) - a\ = εn (or \f{z)\ = l/εn) for all ze Jn, n = 1, 2, .
Since / is not a constant, J% tends uniformly to C, or min^^ M —>1
as ^,-^CXD, because of [7, Theorem 1]. Thus / has an asymptotic
value and has the sequence {Jn} with all the properties of Definition
1 so that / is in Jzf(a).

If fe S$f{a)y then it is easy to see that any level curve of f(z) — a
is contained inside one of the Jordan curves Jn of Definition 1 and is
thus compact in D. Thus fej*f(a).

Finally, J*f{ά) c Sff(a) by definition, and the proof of Theorem 1
is complete. There is one other characterization of the set J^(d) which
was suggested to me by J. Choike.

COROLLARY. The function f is in Jzf{a) if and only if f has an
asymptotic value and every boundary path contains a sequence of
points an such that lim^o*f(zn) = a and lim^oo]zn\ = 1

Proof. If / 6 Sz?(a) the conclusion follows immediately.

Let fί S^f(a). Then by Theorem 1 there exists a level curve
C(λ) of the function f(z) — α, or f(z) if a = oo, which is disjoint
from the zeros of ff(z) and is not a Jordan curve in D. Hence, C(λ)
contains a boundary path T on which | f(z) — a \ ~ λ, or | f(z) \ = λ if
a = oo, and so there does not exist a sequence zne T such that lim^co
f(zn) = a and / fails to satisfy the conditions of the corollary. This
completes the proof.
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4* A short proof of a corollary of McMillan* The proof given

in this section is elementary in the sense that it uses only the clas-
sical results of Fatou and F. and M. Riesz. The theorem of McMillan
[4, p. 151] to which this corollary refers is very complicated and uses
many measure theoretic concepts.

The method of proof uses a result of MacLane [3, p. 13] which
was used to prove several results in [7].

DEFINITION 7. The end of the tract {D(e), a} is Πε>o D(e) where
D(ε) represents the closure of D{ε).

THEOREM 2 (McMillan). // f(z) is a holomorphic function in D
which has a finite number of tracts, the union K of the ends of the
tracts associated with oo is the circle C: \z\ = 1.

Proof. Let 7\(oo) = {A(e), <*>}, Γ2(oo) = {D2(ε), oo}, . . . , τm(oo) =
{Dm(ε),oo}9 2\(a,), T2(a2), , TP(a9), be the tracts for/where a{ Φ oo, % =
1,2, . . . , p .

Assume the contrary of the conclusion: that is K Φ C. Because
K is closed there exists a disk JV about a point of C such that K Π
JV = φ. If for some i and every ε > 0, A(s) Π N Φ Φ, where D^ε) is
the set of domains for Γ<(oo), select a sequence {εn} with εn [ 0 and
a sequence {zn} such that zn e Di(εn) Π N. By Definition 6 {zn} has a
limit point ζeC which is also in N. Then ζ e Π?=i A( ε i) c K, in viola-
tion of K Π N = φ. Thus for each n = 1, 2, , m there exists an
eΛ > 0 such that Dn(εn) f) N = φ. For ε = Minfe, ε2, , εm}, we have
DJμ) f) N = Φ, for each n, n = 1, 2, , m.

If /(«) were bounded in JV Π -D, then f(z) has radial limit almost
everywhere on N Γ) C by the theorem of Fatou [2]. These limits
must be selected from {ax, α2, , ap}. Let Aι be the set of ζ e JV Π C
for which / has radial limit a{. By the F. and M. Riesz theorem [5]
the measure of A4 is 0. Hence the measure of U?=i^« * s B^so 0 a n c ^
/(s) has radial limit on at most a set of measure 0 on JV Π C. Thus
f{z) is unbounded in JV ΓΊ 2) and it is possible to choose z0 e JV Π I?
such that I f(z0) \ > 1/ε, /'(^0) Φ 0, and /(^0) ^ α, for ΐ = 1, 2, , p .

By methods of MacLane [3, p. 13] there exists an arc T from
f(z0) on the Riemann surface of f"1 which ends at oo. The arc Ί
can be chosen so that its projection in the w-plane is a ray on which
|w| ^ |/(30)l The inverse image of T has a component 7 which
contains z0. Because \f(z)\ ^ \f(z0) I ̂  1/e for all zey and because 7
is an asymptotic path with oo as asymptotic value, 7 c Dn(ε) for
some n between 1 and m. This implies z0 e Dn(ε) Π JV. But it has
been established that Dn(ε) f] N = φ. This contradiction implies that
the assumption K Φ C is false and the theorem is proved.
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REMARK. The proof just given goes through for holomorphic
functions with finite tracts associated with oo and a countable num-
ber of tracts associated with finite values. By another corollary of
McMillan [4, p. 151] no such function exists. If f(z) has finite tracts
associated with oo and infinite tracts, then / has point asymptotic
values (values which are approached along a path that ends at a point
of C) on a set of positive measure.
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