
PACIFIC JOURNAL OF MATHEMATICS
Vol. 38, No. 2, 1971

RADON-NIKODΫM THEOREMS FOR THE
BOCHNER AND PETTIS INTEGRALS

S. MOEDOMO AND J. J. U H L , JR.

The first Radon-Nikodym theorem for the Bochner
integral was proven by Dunford and Pettis in 1940. In 1943,
Phillips proved an extension of the Dunford and Pettis
result. Then in 1968-69, three results appeared. One of
these, due to Metivier, bears a direct resemblence to the
earlier Phillips theorem. The remaining two were proven
by Rieffel and seem to stand independent of the others.
This paper is an attempt to put these apparently diverse
theorems in some perspective by showing their connections,
by simplifying some proofs and by providing some modest
extensions of these results. In particular, it will be shown
that the Dunford and Pettis theorem together with RieffeΓs
theorem directly imply Phillips' result. Also, it will be
shown that, with almost no sacrifice of economy of effort,
the theorems here can be stated in the setting of the Pettis
integral.

For ease of reference the theorems mentioned above are listed
below in a form convenient for our purposes. Throughout this paper
(42, Σ, μ) is a finite measure space and X is a Banach space.

I. (Dunford-Pettis) [2, VI. 8. 10] Let t: U(Ω9 Σ, μ) ~* X be a
weakly compact operator whose range is separable. The there exists
an essentially bounded strongly measurable g: Ω —> X such that

t(f) = Bochner - [ fgdμ fe U(Ω, Σ, μ) .

II* {Phillips) [6, p. 134]. A vector measure F: —>X is of the

form F(E) — Bochner — \ fdμ, EeΣ, for some Bochner integrable
JE

F: Ω —»X if F is μ-continuous, F is of bounded variation and for
each ε > 0 there exists EεeΣ with μ(Ω — Eε) < ε such that

{F(E)/μ(E): EaEε, μ{E) > 0, Ee Σ}

is contained in a weakly compact subset of X.

* Metivier [5] The converse of Phillips' theorem is true.

* (Rieffel) [7]. A vector measure F:Σ-~>X is of the form
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F(E) — Bochner — I fdμ, EeΣ for some Bochner integrable f if
JE

and only if F is μ-continuous, F is of bounded variation, and for
each ε > 0 there exists EεeΣ with μ(Ω — Eε) < ε such that

{F(E)lμ(E): EaEε,EeΣ, μ(E) > 0}

is contained in a compact subset of X.

Most will agree that of the results listed here the two most
powerful are Phillips7 theorem and the necessity part of RieffePs
theorem. This is not meant to obscure the fact that the sufficiency
part of RieffePs theorem is proved by elementary means and therein
lies its beauty. The next two sections constitute the main part of
the paper.

1* Necessary Conditions. Here a simplified version of RieffePs
necessity proof is given. As the proof shows, there is no extra
effort needed to carry the proof through in the context of Pettis [4]
integrals.

THEOREM 1. Let f:Ω—>X be strongly measurable and Pettis

integrable. If F(E) = Pettis - ί fdμ for EeΣ, then

(i) F€μ
(ii) for each ε > 0, there exists EεeΣ with μ(Ω — Eε) < ε such

that
{F(E)/μ(E):EaEei μ(E) >0,EeΣ}

is contained in a compact subset of X.
(iii) If f is also Bochner integrable, then F is of bounded

variation.

Proof, (i) and (iii) are standard facts. For (ii), choose a sequence
{fn} of measurable simple functions converging almost everywhere to
/. If ε > 0 is given, Egoroff's theorem establishes a set EεeΣ with
μ(Ω — Eε) < ε such that fn converges to / uniformly on Eε. In
particular / is bounded on Eε, since all of the fn's are bounded on
Eε. Hence the Bochner integral t(g) = \ gfdμ and tn(g) = \ gfndμ

jEε JEε

exist for all g e L1 and define bounded linear operators of L1 into X.
Now note that is geL1 and \\g\\x ^ 1,

\ \g\\\f ~ fn\\dμ ^ suv\\f(ω) - fn(ω)
J # ε ωeEε
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Thus the uniform convergence of fn to / on Eε guarantees limw tn = t
in the uniform operator topology. But now note that each tn has a
finite dimensional range spanned in X by the finite set of values of
fn. Hence ί is a compact operator. Since χE/μ(E) has norm 1 for
each EeΣ of positive /^-measure and t(χE) = F{E) for EeΣ, EaEε,
one sees immediately that {(F(E)/μ(E)): EeΣ, EaEε} is norm condi-
tionally compact in X.

2. Sufficient conditions* The program here is to use RieffeΓs
necessity condition together with the Dunford-Pettis theorem to
show quickly that every weakly compact operator on Lι(Ω, Σ, μ) has
a separable range. This will prove that the Dunford Pettis theorem
describes the arbitrary weakly compact operator on Lι(Ω, Σ, μ). With
this, it is not hard to recover Phillips' result. This line of reasoning
has some interest because it shows that Phillips' theorem can be
deduced directly, at the discretion of the reader, from the Dunford-
Pettis theorem or from Rieffel's theorem.

As Rieffel emphasizes in his paper, the main hurdle between his
theorem and Phillips' theorem is verifying a nontrivial separability
condition. This separability condition is equivalent to showing that
a weakly compact operator t: & —> X has a separable range. In the
literature the standard proof of this is to show that such an operator
maps weakly compact sets into norm compact sets. The following
proof teams Rieffel's theorem with the Dunford-Pettis theorem to
obtain

LEMMA 2. A weakly compact t: Lι(Ω, Σ, μ) —» X has a separable
range.

Proof. Consider {χE: EeΣ} = S. The closed linear span of this
set in &{Ω, Σ, μ) is all of Lι(Ω, Σ, μ). Hence if it can be shown
that t(S) is separable, then the linearity and continuity of t will
guarantee that t has a separable range. Now to show t(S) is
separable, it will be shown that t(S) is conditionally compact in X
and separable a fortiori.

For this, let {χEJ c S, and let Σo be the σ-algebra generated by
{χEJ- Then since Σo is countably generated, I^ΣQ) = {geLι(Ω, Σ, μ): g
is measurable with respect to Σo} is also separable. Hence

t:D(Σ0) >X

is a weakly compact operator whose range is separable. By the
Dunford Pettis Theorem I, there exists a strongly (Σo-) measurable
essentially bounded function f:Ω—+X such that
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tig) = Bochner - ( gfdμ, g e U(Σ0) .

Now let ε > 0 be given. By Rieffel's Theorem IV there exists a set
Eε e Σo such that μ(Ω — Eε) < ε/(ess sup || / 1 | + 1) and a norm compact
set Aε c X such that

{( fdμ/μ(E): Ee Σo, ECLEXCA..
I J E )

Next note that the set A!ε — {ax: 0 ^ a ^ μ(Ω); x e Aε) is also compact
since Aε is compact. Also note that

t(XSn) = \E fdμ = \E ^fdμ + ^ ^fdμ .

Now

fdμ e μ(En f] Eε)Aε c A'ε

and

fdμϊ ^ ess sup || f \\ μ(Ω - Eε)< ε .

Hence t(χEJ is within ε of a member of the compact set A'ε. It
follows that {t(χEEn)} is totally bounded and therefore norm condi-
tionally compact; i.e., {t(χEn)} has a convergent subsequence. But
this proves t(S) is conditionally compact and separable.

Another application of the Dunford-Pettis theorem yields

THEOREM 2. Let F: Σ —* X be a μ-continuous vector measure
such that for each ε > 0 there exists Eε e Σ, with μ(Ω — Eε) < ε such
that

Bε = {F(E)/μ(E): EaEε,Ee Σμ{E) > 0}

is contained in a weakly compact subset of X. Then there exists a
strongly measurable Pettis integrable function f:Ω—+X such that for
EeΣ

F{E) - Pettis -[fdμ.
JE

If, in addition, F is of bounded variation, then f is Bochner integrable
and for EeΣ,

F(E) = Bochner - f fdμ .
JE
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Proof. For each ε = 1/n, n a positive integer, choose Eε as
above. Define t on the simple functions of the form Σ?«i ^CLE^ &i real,
{E{} c Σ, disjoint by

Π

Usual arguments show t is linear. Moreover, if Σ?=i I α ί
then the above computation shows ί(Σ?=i oc^{E^)) c closed convex hull
of (5, — Bε)

1 which is weakly compact by the Krein-Smulian theorem
[2, p. 434]. Hence t maps a dense subset of the unit ball of
L'(Ω, Σ, μ) into a weakly compact set and thus has a weakly compact
extension to all of 1/(42, Σ, μ). By the above lemma, t has a separable
range and by the Dunford-Pettis theorem there exists a strongly
measurable fε vanishing off Eε such that

t(g) - Bochner — \ gfεdμ
}ES

for all ge Lϊ{Ω, Σ, μ). Now if this is done for each ε = 1/n, one can
produce an increasing sequence of measurable sets {En} such that
μ(Ω — En) —> 0 and a sequence of strongly measurable Bochner inte-
grable functions {fn} such that F(E Π En) is given by the Bochner

integral \ fndμ for EeΣ. Clearly fnχE = fm a.e., for n^>m
JEΠEn

 m

since En ] . Also since En ] Ω, it is evident that there exists a
strongly measurable function / such that fnχs% = fχEn a.e., Now note
that if EeΣ is arbitrary, the ̂ -continuity of F and the fact that
limΛ μ(Ω - En) = 0 imply

= lim F(E n ̂ ) = lim ( ΛdjM - lim ( fdμ
n n JEf]En n JEί)En

strongly in X. Thus x*F(E) = lim. ( x*fdμ for all a;* e X*, the
dual space of X. Next note that for &*eX*, #*JF is a bounded
signed measure on Σ. Hence it is of finite variation |α?*.F|, and

( I x*f\ dμ = lim ( | χ*f\ dμ = lim | x*F\ (En) = | a?*F|(i2) < oo .
Ji2 n JEn n

Therefore x*fe L\Ω, Σ, μ) and by the dominated convergence theorem,

x*F{E) = lim [ x*fdμ = [ x*fdμ .
n JEOEn }E

This shows that F is the indefinite Pettis integral of /.

An obvious modification holds if X is a complex .B-spaee.
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To prove (b), suppose in addition that F is of bounded variation.
Replacing \x*f\ by | | / | | and \x*F\ by \F\, the variation of F, in
the above paragraph shows that WfW^L^μ), and hence t h a t / is
Bochner integrable; i.e., F(E) = I fdμ for all EeΣ.

JE

4. Concluding remarks* Here some observations and theorems
are given without full proofs.

Fact 1. If f: Ω—>X is strongly measurable and Pettίs integrable

then Pettis — \ fdμ can be realized as an "improper" Bochner inte-

r
gral = strong limw Bochner — I fdμ for some sequence {En} c Σ such

JEΠEn

that En t Ω.
Fact 2. If X is reflexive and F: Σ —• X is a vector measure

whose variation is o'-finite, then F has a separable range.
Fact 3. If X is reflexive and F: Σ —>X is μ-continuous, then F

is representable as a μ-Pettis integral if and only if its variation is
σ-finite and as a μ-Bochner integral if and only if its variation is
finite.

Finally it is noted that RieffeFs interesting Radon-Nikodym
theorem [8] dealing with dentable subsets of Banach spaces does
not seem to fit conveniently into the treatment of this paper. It
would be interesting to see how this theorem relates to the others.
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