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SUBALGEBRA SYSTEMS OF POWERS OF PARTIAL
UNIVERSAL ALGEBRAS

A. A. ISKANDER

A set A and an integer n > 1 are given. <S is any family
of subsets of An. Necessary and sufficient conditions are
found for the existence of a set F of finitary partial
operations on A such that S is the set of all subalgebras of
<A; F}n. As a corollary, a family E of equivalence relations
on A is the set of all congruences on <A; F} for some F if
and only if E is an algebraic closure system on A2.

For any partial universal algebra, the subalgebras of its nth.
direct power form an algebraic lattice. The characterization of such
lattices for the case n = 1 was essentially given by G. Birkhoff and
0. Frink [lj. For the case n = 2, the characterization was given by
the author [4] (see also [3]). The connection between the subalgebra
lattices of partial universal algebras and their direct squares was
described by the author [5].

In the present paper we are concerned with the subalgebra
systems from the following point of view: given a set A and a posi-
tive integer n, which systems of subsets of An are the subalgebra
systems of ζA; Fyn for some set of partial operations F on A? The
problem where F is required to be full is Problem 19 of G. Gratzer
[2]. For n — 1, such systems are precisely the algebraic closure
systems on -A[l] The description of the case n ^ 2 is given here by
the Characterization Theorem. We also show that there are partial
universal algebras <A; Fy such that the subalgebra system of
<A; Fy2 is not equal to the subalgebra system of ζA; G>2 for any
set of full operations G. The methods of this paper can be modified
to get similar results for infinitary partial algebras, the arities of
whose operations are less than a given infinite ordinal.

The author is grateful to the referee for a number of valuable
indications.

l Let A be a set and n be a positive integer. The set of all
functions from {1, •••, n} into A will be denoted by An. If F is a
set of finitary partial operations on A, the partial algebra structure
obtained on A will be denoted by ζA; Fy. By <̂ 4; Fyn we will mean
the partial algebra ζAn; Fy such that if feF is an m-ary partial
operation and alf • • ,αweA*> then a^ amf is defined and equal to
a e A71 if and only if a^j) am(j)f is defined and is equal to a(j) for all
1 ίk3 ^ n By a subalgebra of a partial algebra <A; Fy we will mean
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a nonvoid subset of A which is closed under all elements of F. We
denote the set of all subalgebras of a partial algebra ζA; Fy by
S«A; Fy) and we will consider φ e S«A; Fy) if and only if the inter-
section of all nonvoid subalgebras of (A; Fy is empty.

PROPOSITION 1. S(<^4; Fyn) is an algebraic closure system on An.

If n = 1, this follows from the result of G. Birkhoff and 0. Frink
[1]. For any positive n, S«A; Fyn) = S«An; Fy).

We shall consider only the case n ^ 2.
2* Let Sn be the group of all permutations of {1, •••,?&}. Denote

by P(An) the set of all subsets of An. If seSn and BeP(An), we
define

(1) Bs = {a: a e An, 6, b e B, a(i) = δCwΓ1), 1 ^ i ^ w}.

For % = 2, B g 42, ^(12) is the inverse binary relation of B.

PROPOSITION 2. The mapping which associates to every seSn the
operator on P(An) defined by (1) is a group homomorphism of Sn into
the group of all automorphisms of the lattice (S(ζA; Fy)n; g)>.

3 . L e t a be a nonvoid s u b s e t of {1, •••,%}, i = mina a n d
BeP(An). Define

(2) Ba = {a: a e An, b e B, a(j) = b(j) if j $ a,

a(j) = b(i) if j G a, 1 g j ^ w}.

It is easy to verify that if 1 ^ ίx < i2 < < ίk ^ ^ then

(3) S&, , ik} = (

If CGP(iw), we denote by F(C) the subalgebra of <A
generated by C.

P R O P O S I T I O N 3. If CeP(An), a — a nonvoid subset of {1, •••, n)
and se Sn, then

( 4 ) F(C)a^F(Ca)

(5) F(C)s = F(Cs) .

4. We denote by jk the diagonal of Ak,BxA° will be identified
with B.

The Characterization Theorem. Let S S P(An). S = S( < A; Fyn)
for some set of finitary partial operations F if and only if
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(a) S is an algebraic closure system on An

(b) if BeS, 1 ^ i <j ^ n, then B(ij) e S.
(c) j2xAn~2eS
(d) [C] {1, 2} s [C{1, 2}] for all nonvoid finite CeP(An)
(e) if φeS, then <j> = Γ) {B: φ Φ BeS}.
([C] denotes the intersection of all elements of S containing C).

It can be shown that conditions (a), (b), (c), (d) and (e) are in-
dependent.

It is clear that j2xAn~2 is a subalgebra of (A; FY for all F.
That conditions (a), (b) and (d) are necessary follows from Proposi-
tions 1, 2 and 3.

Proof of Sufficiency. For every positive integer m and every
ordered m + 1 — tuple (αx, , αm, a) of elements of An such that
αe [{a,!, •••, αm}] we associate an m-ary partial operation f on A such
that

Df — domain of definition of / = {(a^i), , am(ί)): 1 ^ i ^ n} and

Let F be the set of all such ίinitary partial operations.
The following lemmas constitute the proof of sufficiency:

LEMMA 1. // CeP(An), s e Sn, then [C]s = [Cs].

By (a), S is a closure system hence [C]eS. From (b) [C](ij) e S
for all 1 ^ i < i ^ n. Hence, by Proposition 2, [C]s e S (P{An) =
S«A;φ>n)). But

Cs^[C]seS.

Hence

[C8]S[C]8.

Also

C = (Cs^-1 .

Hence

[C] = [(Cs)^1] S [Cφ" 1

so

[C]β S [Cs] .

LEMMA 2. / / a is a nonvoid subset of {1, •••, w} α.id C e P ( A " ) ,

-is ^w-iίe and nonvoid, then

[C]a S [Ca] .
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First we show Lemma 2 for the case a — {if j}91 ^ i < j ^ n.

[C] {i,j} = (([C](lΐ)(2j)) {1,

= ([C(li)(2j)] {1, 2})(lϊ)(2j) (by Lemma 1)

S [(C(lΐ)(2j) {1, 2})(li)(2j) by (d)

j) {1,

If 1 ^ i, < < ik <: n, then

[C] ft, . . . , i,} = ( .(([C] ft, ij) ft, is}). •) ft^, 4} (by (3)>

S ( ([Cft, ia}]ft, is}) •) {4-i, 4}

LEMMA 3. The definition of F is correct, i.e. every feF is one
valued.

Lemma 3 will be established once we show that whenever
«i, •• , α m e 4 M , / e F a r e such that a,yHi) aJj)f is defined for every
1 ^ i ^ n and if for some 1 ^ p < q ^ n a^p) = αL(g), , αw(p) =
ajq); then

^(p) ajp)f = α^g) αm(g)/ .

By the definition of F, there are cx, , cm9 c e An such that
celic^ « ,cm}],

and

Ci(i) c m ( i )/ = c(ί); l ^ i ^ n .

Hence

So there are s e S w and a nonvoid subset of {1, •••, n) such t h a t

at — ctsa, l g ί ^ m .

Since every at satisfies at(p) = at(q). We have at e ( j 2 x An~2)(lp)(2q) e S
(by (c) and (b)) for all 1 ^ ί ^ m. Then

{α^ , am} Q (j2 x Aw

But

[{<α, , Cm}]sa = [{Ci, , cjs]a
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S [{Cu , cjsa]
= [{al9 , am}]

Define a e An by

a(j) = ax{j) ajj)f l^

Then

α = csα G [{c1? r cm}]sa g G/2 x

Hence

LEMMA 4. If φ ̂  Be S«A; Fyn) then BeS.

Since S is an algebraic closure system it will be sufficient to
show that if C is a finite nonvoid subset of J5, the [C] g J3.

Let &!,•••, bmeB and 6e [&„ , bm]. By the definition of F,
there is / G F such that δ^i)* bm{ί)f is defined and is equal to 6(i)
for all 1 ^ i ^ tι. 5 is a subalgebra of ζA; Fyn, hence k δ .

LEMMA 5. If φ^ BeS then B e S«A; Fyn).

Let feF; a19 , am e B and α^i)- am(i)f = α(i), 1 ^ i ^ w. We
must show that α e 5 .

By the definition of F there are clf •••, cm, c e i " such that ce

and

Ci(i) -cm(ί)f = c(i), l ^ i ^ n .

So

{(ttiίi), , αm(ί)): 1 ^ i ^ 7i} s JD

= {(Φ)> •••» ̂ ) ) 1 S ί g w} .

As in Lemma 3

αέ = ctsa, 1 ^ ί ^ m; α = csd

for some seSn and ^ α s j l , , % } .
B u t

C G [{Cl9 , Cw}] .

Hence

a = csae [{clf , cm}]sa s [fe, , c

THEOREM 5. Let C g P(A2). C is the set oj all congruence
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relations on ζA; Fy for some set of finitary partial operations F if
and only if C is an algebraic closure system on A2 and every element
of C is an equivalence relation on A.

That the set of all congruence relations on (A; Fy is an algebraic
closure system on A2 is well known.

If C ϋ P(A9) is a set of equivalence relations which is also an
algebraic closure system on A2 then C satisfies all the conditions (a),
(b), (c), (d) and (e) of the Characterization Theorem. Hence C =
S(ζA; Fy2) for some set of finitary partial operations F. Since every
element of C is an equivalence relation on A and a subalgebra of
<(A; Fy2, it is a congruence relation on <(A; Fy. Since a congruence
relation on <(A; Fy is an equivalence relation on A which is also a
subalgebra of <A; Fy, the Theorem is proved.

6* The following proposition shows that our Characterization
Theorem does not solve the corresponding problem for full algebras.

PROPOSITION 4. There are partial algebras <(A; Fy such that
S(ζA; Fy2) Φ S(ζA; G)>2) for any set of full finitary operations G.

Let A = {1, 2, 3}, F = {Λ, /2, /3, g}; /„ /2, /3 are full unary opera-
tions, g is a partial binary operation.

fi is the constant function taking the value i, i = 1, 2, 3.

Dg = {(1, 2), (2, 1)}

12flf - 3, (21)0 = 2,

B = A, U {(1, 2)}, C - z/2 U {(2, 1)}

BoC = BΌ C

B,CeS(ζA;Fy2), but

BoC

since any subalgebra of <A; Fy2 containing (1, 2) and (2,1) contains
also (3, 2) and (2, 3).
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