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ON COMPLETENESS

NORMAN R. HOWES

Hisahiro Tamano asked the following question that
motivated his Some properties of the Stone-Cech compactifica-
tion, J. Math. Soc. Japan, vol. 12, 1 (1960) 104-117. "What
is a necessary and sufficient condition for a uniform space
to have a paracompact completion?". Although he did not
arrive at a solution, he obtained characterizations of com-
pleteness, paracompactness, and the structure of the com-
pletion of a uniform space by means of the radical.

This paper provides an answer to the above question and
related ones. Also included is a development of other types
of completeness in both uniform and non-uniform topological
spaces. These other "complete" spaces yield characteriza-
tions of paracompactness and the Lindelof property as well
as necessary and sufficient conditions for paracompact spaces
to be Lindelof and entirely normal spaces to be paracompact.

Cofinal completeness•

In what follows (X, μ) denotes a uniform space in the sense of
Tukey [13]; ie, μ will be a filter of coverings with respect to <*
(star refinement). A covering ^~ is said to star refine a covering
^ if for each F e 5̂ ~ there exists a Ue <ZS such that Star (F, ^)a
U where Star (F, y) = U {Fe 3*Ί WΠ V Φ φ). This development
of uniform spaces is equivalent to the one given by Bourbaki [1];
confer Isbell [6] p. 12.

A net ψ: D —• X is said to be GO finally Cauchy if for each "2/ e μ
there is a cofinal CczD such that ψ(C)czU for some UeiZS. We
will call a uniform space (X, μ) cofinally complete if each cofinally
Cauchy net quasi-converges (is frequently in each neighborhood of
some point p). When a net quasi-converges to some point p, p is
often called a cluster point of the net.

A family of coverings v in which every member of v has a star
refinement in v is said to be a normal family. Since every collection
λ of coverings contains a largest normal family μ we say the members
of μ are normal in λ. A covering ^ is said to be normal with
respect to λ if it is normal in K where K is the collection of all open
coverings that are refined by members of λ.

Given a completely regular topology τ there exists a finest uni-
formity u for T. It consists of all coverings that are normal with
respect to the family of all open coverings. The open members of
u are called normal coverings, and u is called the universal uni-
formity. A space equipped with the universal uniformity is often
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called a fine uniform space.
If X is a completely regular Tι space there is a uniformity β

for X that has a basis which consists of all finite normal coverings.
The completion of (X, β) is βX, the Stone-Cech compactification of X.
Shirota [10] showed that every completely regular Tι space has a
uniformity that has a basis consisting of all countable normal cover-
ings. He called this uniformity the e-uniformity and proved the
following:

THEOREM. For a completely regular space X the following are
equivalent:

(1) X is e-complete (complete with respect to the e-uniformity),
(2) X is realcompact (X is a Q-space see Hewitt [5]), and
(3) X is homeomorphic to a closed subspace of a product of

real lines.
A directed set D is said to be ω directed if for each {di}T=ι which

is a subset of D there is a d e D such that ĉ  <Ξ d for each i. A net
ψ: D —> X is co directed if D is an ω directed set. The following
theorem shows that cofinal completeness of the e-uniformity is also
of some interest.

THEOREM 1. In a completely regular space X the following are
equivalent:

(1) X is Lindelbf,
(2) X is co finally e-complete, and
(3) each co directed net in X quasi-converges.

Proof. (1) -> (2) Let ψ: D -> X be a cofinally Cauchy net with
respect to the e-uniformity and suppose ψ* does not quasi-converge.
Then for each pe X there is an open set V(p) containing p such
that ψ is eventually in X - V(p). Put y = {V(p) \p e X}. Then
5̂ " has a countable subcovering {ViPi)}?^. Since X is regular and
Lindelof it is also paracompact so that the finest uniformity for X
consists of all open coverings. But then {V(pi)}T=ι is a normal cover-
ing and hence a member of e. But then ψ cannot be frequently in
some member of {V(Pi)}T=ι since it is eventually in X — V(pi) for each
i. Therefore ψ is not cofinally Cauchy with respect to e which is a
contradiction. Consequently ψ must quasi-converge.

(2) -* (3) Let φ: D —> X be an ω directed net and let ^ e e .
Then there is a countable covering 5^ = {F, }Γ=i such that ^ ' e e and
^ refines ^"(5^ < ^ ) . Suppose ψ is not frequently in some
member of y and put A — de D\ψ(d) e FJ. Then there exists a
di e D such that d <,d{ for each d e A or else D{ would be frequently
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in Vi Since ψ is ω directed there is a d e D such that dι ̂  d for
each i. Now ψ(d) e V3- for some j since Y* covers X. Hence d e D,
which implies d < φ. But dj ^ d which is a contradiction. There-
fore α/r must frequently be in some member of 5̂ " Since 3^ was
chosen arbitrarily, ^ is cofinally Cauchy with respect to e and there-
fore quasi-converges.

(3) —» (1) If X is not Lindelof there is a covering ^ of X having
no countable subcovering. For each countable £ c ^ put F(i3) =
\J{U\UeB) and .FOB) = X - V{B). Let S be the set of all countable
subsets of ^ and for each BeS pick ψ(B)eF(B). The assignment
B —> ψ(B) defines an co-directed net ψ: S —> X that quasi-converges
to some peX where S is directed by set inclusion. Let Ue^S such
that peU. Then ψ is eventually in F({U}) and hence cannot be
frequently in U which is a contradiction. Consequently X is Lindelof.

H. H. Corson [3] showed that a completely regular space is
Lindelof if and only if each filter which is weakly Cauchy with
respect to the coursest uniformity λ, such that all real valued con-
tinuous functions are uniformly continuous, has a cluster point. Hence
Theorem 1. suggests a connection between cofinal completeness and the
property that each weakly Cauchy filter clusters. This connection is
clarified in the following:

LEMMA. Each weakly Cauchy filter in a uniform space (X, μ)
clusters if and only if (X, μ) is cofinally complete.

Proof. Corson defines a filter ^ to be weakly Cauchy if for
each ^ G μ there is a filter Sf containing ^ and a G G ? such
that Gcz U for some Ue^S.

(Necessity) Let ψ: D —* X be a cofinally Cauchy net. Put & =
{GaX\ψ is eventually in G}. Pick ^eμ and a cofinal CczD with
ψ(C) c U for some Ue^S. Let J?~ = {FczX\fc is eventually in F}
where ψc denotes ψ restricted to C Since *& c j ^ ~ and j ^ ~ contains
a set ffsuch that Ha U, 5f is weakly Cauchy and therefore has a
cluster point p. Then p e ψ(R) for each residual R c D which implies
ΊJΓ quasi-converges to p.

(Sufficiency) Suppose (X, μ) is cofinally complete and J?~ is a
weakly Cauchy filter. Let S={(x, F) \ F e J ^ and x e F). Put (x, F) ^
(y, G) if G c F and let ψ: S —> X be the net defined by ψ(x, F) = x.
If *%S e μ there is filter έ%f containing ^ such that Ha U for some
He 3ίf and Ue <ZS. Let F e ^ " and put C = {(α, (?) e S | x e i ϊΠ ί7}-
Then ψ(C) a U and C is cofinal in S. Hence ψ is cofinally Cauchy
and therefore quasi-converges to some peX But then p is a cluster
point of
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Corson also showed in [3] that a Tι space is paracompact if and
only if there exists a uniformity for X such that all weakly Cauchy
filters cluster. Thus the preceding lemma together with Corson's
theorem shows that a 2\ space X is paracompact if and only if there
is a uniformity μ for X such that (X, μ) is cofinally complete. This
leads to the following observation:

THEOREM 2. For a completely regular 2\ space X we have:
(1) X is paracompact if and only if X is cofinally complete

with respect to the u-uniformity.
(2) X is Lindelof if and only if X is cofinally complete with

respect to the e-uniformity, and
(3) X is compact if and only if X is cofinally complete with

respect to the β-uniformity.

Proof. The proof of (1) is contained in the preceding remarks
and the proof of (2) is part of Theorem 1. To prove (3) suppose X is
compact which implies each net has a convergent subnet which is
equivalent to each net quasi-converging. Hence X is cofinally com-
plete with respect to the β uniformity.

Conversely assume X is cofinally complete with respect to the β
uniformity. Let ψ: D —»X be a net and let T' e β. Then there
exists a refinement ^ of Γ such that ^ = {U$=l for some positive
integer n. Put A = {d e D \ ψ{d) e J7f}. Assume no A is cofinal in D
which implies that for each i = 1, , n there is a dt e D such that d ^
di for each d e A . Pick dQ e D such that d{ ^ d0 for each i = 1, , n.

Then d <̂  d0 for each de D which implies dQ is a last point of D. But
doeD implies ψ(d0) e X which in ture implies ψ(d0) e U3- for some
positive integer j such that 1 ^ j ^ n. But then dQ e D3 which
implies Dj is cofinal in D after all. Hence ψ is cofinally Cauchy
which implies ψ quasi-con verges. But then ψ has a convergent
subset which implies X is compact.

We are now in a position to give a necessary and sufficient
condition for a uniform space to have a paracompact completion.

We define a uniform space to be preparacompact if each cofinally
Cauchy net has a Cauchy subnet. In the following theorem we will
also be determining a necessary and sufficient condition for a uniform
space to have a Lindelof completion. Hence, the following definitions:
We will call a uniform space countably bounded if each uniform cover-
ing has a countable subcovering and pre-Lindelbf if it is both count-
ably bounded and preparacompact.

Finally we define the derived uniformity. Let (X, μ) be a uni-
form space and (X, μ) be its completion. Let u be the universal
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uniformity for X and let v be the uniformity induced on X by u.
Then v is called the uniformity derived from u or simply the "derived"
uniformity.

THEOREM 3. Let (X, μ) be a uniform space and v be the derived
uniformity. Then:

(1) (X, μ) has a paracompact completion if and only if (X, μ)
is preparacompact,

(2) (X, μ) has a Lindelδf completion if and only if (X, v) is
pre-Lindelbf, and

(3) (X, μ) has a compact completion if and only if (X, v) is
precompact.

Proof of (1). Let (X, μ) be the completion of (X, μ) and let u
be the universal uniformity for X. Then (X, v) is a dense uniform
subspace of (X, u). Assume (X, v) is preparacompact and that ψ: D—>
X is cofinally Cauchy with respect to u. Since (X, μ) is complete,

so is (X, u). Let E = D x u and define ^ on E by (d, &) £ (e, T)

if d ^ e and T <* i k For each (d, ^ ) e £7 put ί(d, § 0 = α for

some α 6 X such that α and ψ(d) both belong to some U e ^ Then

the correspondence (d, ^ ) —*θ(d, *&) defines a net θ: E —> X.

Let ^ G U and pick f e w with T <* ^ . Since ψ» is cofinally

Cauchy there is a cofinal C c ΰ with ^(C) c Ffor some 7 e Γ . Put

A = {(d, ^ ) I d G C and ^ <* T}.

Then A is cofinal in E. Let (d, 3^) e A. Then 0(d, ^ ) =yeX
such that /̂ and τ/r(d) both belong to some W e 'W. Since (d, ^ " ) e A,
deC which puts ψ(d) in V. Consequently we have:

y e Star (F, $ H c Star (V, T)aϋ

for some Ue^. Therefore θ(A)aU which implies θ is cofinally
Cauchy in (X, u). But Θ{E) c X implies # is cofinally Cauchy in (X, v).
Consequently θ has a Cauchy subnet ζ: K-+X. But then f is Cauchy
in X and hence converges to some x e X. Therefore θ quasi-converges
to x. It remains to show that <f quasi-converges to x. For this let

0 be an open set containing x. Then there is a ^ e S such that

x G Star (x, <%f) c 0 where the members of ^ are open sets. Pick

Teu such that T <* Ί Λ Let S be cofinal in Esuch that θ(S)aV

for some f e f containing &. Put
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D(S) = {deD\{d, W") eS for some W" <* T} .

Then D(S) is cofinal in D. For each deD(S), f(d) and θ{d, W") are

contained in some We W" for some (d, W~) e S where Ύ/^ <* 5^, which

implies ^(d) and #(d, 3^") are contained in some VΊ e 3^ for each

(d, 9 π e S. But (<Z, 5^) e S implies 0(<Z, 9 π e V. Hence

ψ(d) e FU F x cStar (F, f ) c ί /

for some Ue&. But #e F implies xei7. Then J7cO since

Star (α?, <%f) c 0. Consequently τ/r (̂ ) e 0 for each d e D(S) which implies
ψ quasi-converges to x. Therefore each cofinally Cauchy net in X
quasi-converges which implies (X, u) is cofinally complete. But then
X is paracompact by Theorem 2.

Conversely suppose X is paracompact By Theorem 2 (X, u) is
cofinally complete. Let ψ: D —• X be cofinally Cauchy with respect
to v. Since (X, v) is a uniform subspace of (X, u), we know that ^
is cofinally Cauchy in (X, u). Also since (X, u) is cofinally complete,
ψ quasi-converges to some pe X. But then ψ has a subnet (9 that
converges to p. Then θ is Cauchy in (X, u). But ^ c l and there-
fore θ is Cauchy in (X, u) Consequently, each cofinally Cauchy net
in (X, v) has a Cauchy subnet so that (X, v) is preparacompact.

Proof of (2). Assume first that X is Lindelδf. Then X is
paracompact and hence (X, u) is cofinally complete. But then (X, v)
is preparacompact as was shown in part (1). Next let 7*6V. Then
*JΓ has a uniform refinement ^ consisting of closed sets. For each

Ue ^ put 0= Clχ(U) and let <£< = {U\ Ue %f}. Then ^ e a and hence
has a countable subcovering say {£/;}. Then {£7J covers X. In fact,
if p G X then p e l which implies pe U3 for some positive integer j .
Hence p e Cl χ(ί/i). Let 0 be open in X such that p e 0. Then 0 = 0 Π X
for some 0 that is open in X. Now peO which implies 0 Π U3 Φ <j>
since p e C\j (Z7, ). Then there is a t e 0 Π Uj. te ϋό implies t e X so we
have (0 n X) Π ϋs Φ <f>. Hence 0 Π U3-Φ φ so that p e Clx (U3) = U3 .
Since {ί7J covers X there exists some {FJ c ^ " such that \JVi = X.
Consequently X is countably bounded and hence pre-Lindelδf.

Conversely assume (X, v) is pre-Lindelδf which implies (X, v) is
preparacompact and countable bounded. Since (X, v) is preparacompact
(X, μ) is paracompact by part (1) so that (X, u) is cofinally complete

by Theorem 2. Let & eu. Since X is paracompact there exists a

locally finite open refinement 5̂ ~ = {Vβ \βeB}. Since X is normal

we can shrink 3̂ ~ to an open covering 'W = {Wβ\βeB} such that
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Ch(Wβ)cz Vβ for each βeB. Then S^" is also locally finite. Since

Ύ/^ is an open covering in a paracompact space X, it must be a member of

the universal uniformity u. But then Ύ/^ = {W Π X\ We W~} belongs
to v which implies there is a countable subcovering {Wβ.} c <W.

Since Ύ/^ is locally finite in X, {Wβi} is locally finite in X. Hence
U~ i Cl? (Wβ.) = Cl? (UΓ=i Wβ.) = Cl? (X) = X since X is dense in X.
Thererfore [Gl? (Wβ.)} covers%X and

for each positive integer i. Hence {Vβ.} covers X. But since ψ*

refines ^ there exists a countable subcovering {Uβ.} c ^ that covers
X. Therefore (X, u) is also countably bounded. We are now in a
position to show that X is Lindelof. We will use the fact that
(X, u) is cofinally complete and countably bounded to show that each
α)-directed net in X quasi-con verges. We will then invoke Theorem
1 to obtain the desired result. Let ψ: D —> X be an &>-directed net

and let Φ7 eu. Then Ήf has a countable subcovering say {Z7J. Put
Di — {d e D I ψ(d) e Uτ) for each i and suppose Dt is not cofinal in D
for each i. Then there exists a ^ e ΰ for each i such that d <g d,-
for each ώ e A . Since α/r is ω-directed there is a doe D such that
^ <; d0 for each ΐ. Since {i7J covers X, ψ(dQ) e U3- for some positive
integer j which implies d0 e D3 which in turn implies D3 is cofinal
in D since D = UΓ=i A Therefore ψ is frequently in U3 . Hence ψ
is cofinally Cauchy and consequently must quasi-con verge. Thus X
is Lindelof by Theorem 1.

Proof of (3). It is well known that (X, μ) has a compact comp-
letion (X, μ) if and only if μ is precompact. But if v is precompact
then μav implies μ is precompact which in turn implies X is
compact.

On the other hand, if X is compact then μ — u which implies
μ = v and μ is precompact which implies v is precompact.

Theorem 3 has several corollaries. The first is merely a special
case of Theorem 3 when X is equipped with the ^-uniformity; i.e.,
when X is a fine uniform space.

COROLLARY 1. Let u be the universal uniformity for a com-
pletely regular ϊ\ space X. Then:

(1) (X, u) has a paracompact completion if and only if it is
preparacompact,

(2) (X, u) has a Lindelof completion if and only if it is pre-
Lindelof, and
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(3) (X, u) has a compact completion if and only if it is pre-
compact.

As is well known, (3) of the above corollary is not dependent
upon X having the ^-uniformity. The following corollary could
actually be considered a lemma in the proof of Theorem 3, and is
recorded here because it is of sufficient interest itself. It provides us
an analogy with precompactness; i.e., both precompactness and pre-
paracompactness are properties that are carried over into the com-
pletion.

COROLLARY 2. The completion of a preparacompact uniform
space is cofinally complete (and hence paracompact and pre-para-
compact).

COROLLARY 3. A countably bounded cofinally complete uniform
space is Lindelbf.

COHOLLARY 4. A paracompact space is Lindelbf if and only if
it is countably bounded with respect to the universal uniformity.

Additional results along these lines can be obtained and may be
of some interest. We state two of them below without proof.

PROPOSITION 1. A completely regular 7\ space is paracompact
if and only if it is complete and preparacompact with respect to
the universal uniformity.

PROPOSITION 2. A uniform space (X, μ) is countably bounded if
and only if each co-directed net is cofinally Cauchy.

Cofinal A completeness. A net ψ: D —-• X in a topological space
X will be called cofinally Δ Cauchy if for each open covering ^ of
X there is a p e X and a cofinal CczD such that f{C) c Star (p, ^).
X will be called cofinally Δ complete if each cofinally Δ Cauchy net
quasi-converges.

A space is said to be entirely normal if the collection of all
neighborhoods of the diagonal in X x X forms a uniformity for X
in the sense of Bourbaki [1]. Mansfield [8] calls a space X almost-
2-fully normal if for each open covering ^ of I there is an open
refinement T of ^ such that if pe Ve %" qeWe 3^ and V 0 WΦ
φ then there exists a Uei^f containing both p and q. H. J. Cohen
[2] showed that entire normality and almost-2-full normality are
equivalent properties.
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PROPOSITION 3. An entirely normal space is paracompact if and
only if it is cofinally A complete.

Proof. A simple proof of the necessity can be obtained after
proving Proposition 4, since a paracompact space is known to be
both entirely normal and metacompact.

The sufficiency part of the proof will consist of showing that in
an entirely normal space, the cofinally Cauchy nets are also cofinally
A Cauchy and hence when entire normality is encountered in the
presence of cofinal A completeness we get cofinal completeness and
hence paracompactness.

Let X be entirely normal and let ^-/έ be the uniformity con-
sisting of all neighborhoods of the diagonal. For each F G ^ # put
T = {V[x] \xeX}. Then μ = {T \ V"e ̂ £) is a covering uniformity
for X. Let <2S be an open covering of X and let W= Ό{UxU\Ue <&}.
Then We^. Hence there exists a Ve^£ with F o 7 c W and V—
V"1. Let p e l . Then V[p] = {xeX\(p, x) e V} = {x eX\(x,p)eV} =
{x 6 XI p e V[x]} c Star (p, T). Let y e Star (p, T) which implies there
is a q e X such that y e V[q] and p e V[q] which in turn implies that
(Qi P)> (QI v) e V. But then (p,g), (g, y) e V which implies (p, y) e Vo Va W.
Hence {p, y) e U x U for some Ue^f which implies p, ye U and hence
y e Star (p, <&). Therefore V[p] c Star (p, T) c Star (p, &).

Let ψ: D-+ X be cofinally Cauchy with respect to /̂ . Then there
exists a cofinal Ccz D such that ψr(C) c V[z] for some 2 e l , But
then ψ(C) c Star (p, ^ ) . Therefore ψ* quasi-converges. Hence (X, μ)
is paracompact.

Finally we observe the following:

PROPOSITION 4. A metacompact space is cofinally A complete.

This gives us the following diagram:

paracompact

/ \
/ \

entirely normal metacompact

collectionwise normal cofinally A complete

E. Michael [9] showed that collectionwise normality and meta-
compactness is a factorization of paracompactness; i.e., both are
conditions strictly weaker than paracompactness such that the pair
of conditions together is a sufficient condition for paracompactness.
Our Proposition 4 shows that entire normality and cofinal A com-
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pleteness is a similar factorization.

Added Note. Kitti Morita, in his paper entitled Topologίcal com-
pletions and M-spaces presented at the 1970 Pittsburgh Topology con-
ference, listed five unsolved problems in Section 7. It should be noted
that our Corollary 1 provides an answer to the first and third parts
of Morita's First Problem.
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