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THE POLYNOMIAL HULL OF A THIN TWO-MANIFOLD

MICHAEL FREEMAN

Let M be a smooth real two dimensional submanifold of
C2. Near a point of M where its tangent space is complex
linear it may, after a certain local biholomorphic change of
coordinates, be represented as the graph near 0 in C2 of a
smooth function

in which z is the first coordinate of C2 and Q is a real
valued quadratic form. This paper is concerned with the poly-
nomially convex hull of a small compact set K in M near 0
and associated descriptions of the Banach algebra PίM) of
continuous functions uniformly approximate on K by poly-
nomials in two complex variables. It treats the very special
case where / has rank ^ 1 near 0 (as an R2-valued map).
It is shown that if Q has nonzero eigenvalues of opposite
sign, then all sufficiently small compact sets K are polyno-
mially convex, and P(K) is the full algebra of continuous
functions. If Q has nonzero eigenvalues of the same sign,
the polynomial hull of K is described in terms of a foliation
by certain simple analytic sets in C2, and P(K) is isomorphic
to the algebra of continuous functions on the hull whose
restriction to the interior of each analytic set is holomorphic.

1* This paper studies the function theoretic properties of the
graph of a smooth complex valued function

(1.1) f(z) = Q(z) + o(\z\>)

near zero in C2, where Q is a real valued quadratic form with no zero
eigenvalues and rank /<; 1 near 0. The last condition refers to / as
a map into R2, and simply means that the ordinary Jacobian deter-
minant of / vanishes in a neighborhood of 0. It is emphasized that the
term o(\z\2) may take complex values. The form Q is elliptic if both
eigenvalues have the same sign, and hyperbolic if the signs are dif-
ferent. The latter case is the principal object of study here.

THEOREM 1.1. // Q is hyperbolic and rank f<L 1 near 0, there
exists a compact neighborhood D of 0 such that any compact subset
of the graph

(1.2) M={(z,MY- *e£>}

is polynomially convex.
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The function f(z) = z2 + z2 = 2(&2 - ?/2) provides a simple example.
Many others can be constructed from it, as follows. Let g: jβ—»C be a
smooth function such that #(0) = 0 < g'(0). Then /(z) = g(z2 + z2)
satisfies Theorem 1.1. In general, however, functions which satisfy
the theorem will exhibit a more elaborate structure. An example
which, in view of §2, is "worst possible" is found in [3, Case 2].

Any smooth real two-dimensional submanifold M of C2 may, after
a local biholomorphic coordinate change due to Bishop [1, p. 5], be
represented near a point where its tangent space is complex linear
as a graph near 0 of a function having the form (1.1), but in general
with no constraint on the eigenvalues. While it is likely [4] that
only a relatively few manifolds admit a thin representation (1.1) where
rank / g 1 near 0, there are nevertheless enough which do to make
positive results for this case interesting.

The conditions on the eigenvalues of Q can be reformulated in a
manner that is seen to be invariant under local biholomorphic coordi-
nate changes of C2 [1]. However, the rank condition is definitely not
such an invariant, as a simple example [4, § 1] will show. The methods
used here, which for technical reasons depend heavily on this condition,
are thus not appropriate to a general study of the local function
theory of a two manifold in C2 near a point where its tangent space
is complex linear. However they do yield the result on approximation
below, and may also be used where Q is elliptic. Bishop [1] developed
the representation (1.1) (in greater generality, applicable to a wider
range of dimensions for M and the ambient space) to study the
polynomially convex hull of M near an elliptic point. He found that
this hull is larger than M, and exhibited an analytic structure in it.
He also made further conjectures about the structure of such a hull
which are verified here in § 4 for elliptic points subject to the rank
condition.

Theorem 1.1 and the following result of J. Wermer can be com-
bined to yield a statement on uniform approximation to continuous
functions by polynomials in z and /. Given a compact set D in C
and a continuous function /: D —• C, denote by [z, f] the uniform
closure of polynomials (with constant term) in z and /. That is, [z, f]
is the smallest closed subalgebra with identity of C(D), the Banach
algebra of all continuous complex valued functions on D.

THEOREM 1.2. (Wermer [10, Appendix]). // U is open in C, f:
U-^>C is continuously differentiate, and D c U is a compact set
such that
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(1.3) M— {(z, f{z))\ ze D} is polynomially convex, and

(1.4) E = {ζe D: df/dz(ζ) — 0} has Lebesgue measure zero in C,

then [z,f] = C(D).

Wermer proved this result for the case of a disk D = {z: \z\ ^ p}.
Its extension to an arbitrary compact set calls for almost no modifica-
tion of his proof. Or one can obtain it as a special case of Theorem
4.1 of [5].

A first order example verifying Theorem 1.2 is furnished by
f(z) — z, and a second order one by f(z) = z2 + z\ In fact, the con-
ditions (1.3) and (1.4) are met by any function / which satisfies the
hypotheses of Theorem 1.1. For the rank condition means that the
Jacobian \df/dz\2 — \ df/dz \2 vanishes in a neighborhood U of 0. Thus
the set E coincides in U with the set where both df/dz and df/dz
vanish, and all of these points are critical points for Re/ . Since Q
has no zero eigenvalues, R e / has a nondegenerate and hence isolated
[9, Cor. 2.3] critical point at 0. Therefore for sufficiently small U,
Ef] U — {0}. According to Theorem 1.1, there is a compact neighbor-
hood D of 0, D c U, satisfying (1.3). This proves the following.

THEOREM 1.3. // / is a smooth function of the form (1.1) with
Q hyperbolic and rank / ^ 1 near 0, then there is a compact neighbor-
hood D of zero such that [z, f] — C(D).

Of course, the same conclusion must still obtain when D is replaced
by any compact subset. Results of this type were given by Mergelyan.

THEOREM 1.4. (Mergelyan [8, Th. 1.5, p. 27]) If D is a compact
disk and f:D—>R is a continuous real valued function such that for
each βeR the level set Lβ = {zeD:f(z) = β} has no interior and C
— Lβ is connected, then [z, f] = C(D).

Again, f(z) = z2 + z2 is an example. Moreover, if the function of
Theorem 1.3 is real valued, one sees easily (c. f. § 2) that it satisfies
Mergelyan's hypotheses on a sufficiently small disk D. Thus for
real-valued functions Theorems 1.3 and 1.1 are simple corollaries of
Theorem 1.4. However, the usual techniques of proof for Theorem 1.4
depend heavily on the fact that / takes only real values. They do
not seem applicable to a complex valued function. The methods
developed here do not use Theorem 1.4 or its proof at all, although
they do make use of similar features of the level sets of the function
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/ of Theorems 1.3 and 1.1. In addition, since / is complex valued, it
turns out that certain connectivity properties of its image in C must
also be accounted for.

These topological properties are investigated in § 2. The proof of
Theorem 1.1 is contained in § 3, and the results for the elliptic case
given in § 4. In § 5 are collected some simple examples and a few
remarks on the scope of the methods used here.

2* Topological Preliminaries to Theorem 1*1* This section
treats some topological properties of the image and certain "level"
sets of a function (1.1) in which Q is hyperbolic and rank / ^ l o n a
neighborhood U of 0. For certain compact sets Da U, it is desired
to identify the bounded components V of C — f(D) and the inverse
images f~~ι{V) of their closures.

Since Re/ has a nondegenerate critical point at 0, there exist
[9, Lemma 2.2] smooth coordinates (f, η) for a neighborhood of 0 in
which Re/ = f2 - η\ so that

(2.i) / = ί2 - v2 + o(e + v2),

where the higher order term is purely imaginary. Since the results
desired in this section are local and purely topological, it may be
assumed that (2.1) holds throughout U, and that U={(ζ, η): ξ2 + η2<a}
for some a > 0.

It will be shown that on U — {0}, Im/ is locally a smooth
function of Re/. This local information is then pieced together to
get a description of f(U) as the union of the graphs of two smooth
real valued functions of a real variable, and to obtain information
about the level sets of / in U.

Now the function ξ2 — rf is the first coordinate of the map
(ξ2 — y2, 2ξy) (R2 notation for (ξ + iη)2) whose restriction φ to the set
Uι = {(£, rj): ξ2 + rf < a and ξ > — η) is a diffeomorphism of U1 with
{(u, v): u2 + v2 < a2 and either u Φ 0 or v > 0} = U[, the disk of radius
a and center 0 in the (u, v) plane with the negative v — axis removed.

This map transports / to / o φ~\ where

(2.2) / o φ-\u, v) = u + if'(u, v) .

The function / ' is real and due to the rank condition df'/dv — 0 on
U\. An elementary argument will show that / ' is a smooth function
gι of u alone on U\, and gx is defined on (—a, a). Thus Im/ =
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on Ux. In the same way, there exists another
smooth function g2 on (—α, α) such that I m / — g 2 o R e / on U2 —
{(ξ, rj): ζ2 + rf < a and f < —/?}. Of course, it can be shown just as
easily that I m / is a smooth function of R e / in some neighborhood
of each point of U — {0}.

Since R e / is zero along the curves Zγ = {(£, £): 0 < 2f2 < α} and
2̂ = {(£, — f): 0 < 2f2 < α}, it follows that / is locally constant on these

sets, hence constant on each component of Zλ U Z2. But 0 is an ac-
cumulation point of each component, and /(0) = 0. Therefore f(ξ, ξ) —
f(ζ, -ξ) = 0 if 2ξ2 < a. This shows that ^(0) = g2(Q) = 0 and that
f(U) = graph gι U graph g2. The following result is proved.

LEMMA 2.1. // U, Uly and U2 are defined as above, then

(2.3) f(ξ, rj) = 0 if and only if Re/(f, rj) = 0, and

(2.4) There exist smooth functions g19 g2: ( —α, a)—>R such thatlmf=

on UjΊ and hence f(U) — graphgt U graphg2.

Thus as a point crosses from Uι to U2 the image point moves
along graph gx through 0 into graph g2. An example which illustrates
this behavior is found in [3, Case 2] and explained in detail.

Now for any positive number r < α and for D = {(£, η): ξ2 + rf ^ r},
it is intuitively clear that the bounded complementary components of
f(D) are just the sets bounded by the graphs of gλ and g2 between two
consecutive zeros of gι — g2 in [ — r, r]. This is verified in the following
Lemma. It is clear from Lemma 2.1 that f(D) is the union of those
parts of the graphs of gι and g2 which lie over [ —r, r].

LEMMA 2.2. If V is a bounded component of C — f(D) then there
exist numbers bλ1 b2 in [ — r, r] with bι < b2 and such that

(2.5) g^) — gzφί) — 0 = gt(b2) ~ g2φ2) but gt — g2 has no zeros in (6H 62), and

(2.6) V = {(u, v): bt < u < b2 and v is between g^u) and g2(u)}.

Proof. If &i < b2 are consecutive zeros of gL — g2 in [ — r, r] the
set (2.6) is a component of C — f(D). For it is easy to verify that
it is both open and closed in C — f(D), and connected-

To complete the proof, it is remarked that each point (u, v) of
a nonempty bounded component V of C — f(D) must be such that
— r g u ^ r and v is between g^u) and #2(^). For if a point does
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not satisfy these conditions, it can clearly be connected by a vertical
line in C — f{D) to the unbounded component. Let b[ = inf {Re w:we V}
and b2 = sup {Re w:we V}. Then there are no zeros of gι — g2 between
b[ and b'2. For the existence of a point b with b[ < b < b2 and g^b) =
<72(ί>) — 0 would show, by the remark above, that Va {w: Re w < 6} u
{w: Re w > 6}. But V meets both of these sets by definition of b[ and b2,
and this would contradict its connectivity. Now let δx be the greatest
zero of gt — g2 occurring at or before b[, and b2 be the least one which is
greater than or equal to b2. Then there are no zeros between bt and
b2 so the set (2.6) defined by b± and b2 is a component of C — f(D).
Since it contains V, this set and V must coincide, which proves the
lemma.

3* Proof of Theorem 1Λ. With the coordinates (ξ, η) and the
neighborhood U of 0 chosen in § 2, it will suffice to show that the
graph (1.2) determined by D = {(£, rj)\ ξ2 + rf <ς r} is polynomially
convex for some r with a > r > 0. For as the argument following
Theorem 1.2 shows, that result is then applicable to D and hence
[z, f] = C(D). It follows that every compact subset of (1.2) is poly-
nomially convex.

It must be shown how to choose D so that if (α, β) is a point
in C2 such that

(3.1) \p(a, β)\
M

for every polynomial p in two variables, then (a, β) e M.

For a given D, it follows from (3.1) that the map p —> p(af β) ex-
tends to an algebra homomorphism λ of P(M) onto C, where P(M) is the
uniform closure on M of all polynomials. There is a probability measure
μ on M [6, pp. 31-2] which represents λ in the sense that

MO) =

for each # in P(M). Now if [z,/] = C(D), it is well known [6] that
(a, β) e M and further that μ is a unit point mass at (α, /3). In a rough
sense, the proof below shows that the converse is true for the func-
tions considered here. It is reasoned that (a, β)e M by locating the
support of μ in a sufficiently small and well behaved set. The
argument makes use of the fact that the action of λ depends only on
the behavior of functions on support μ.

The support of μ will be located through its relations (3.2) and



THE POLYNOMIAL HULL OF A THIN TWO-MANIFOLD 383

(3.3) with the supports of the measures μι and μ2 induced from μ on
the z- and ^-planes respectively by the coordinate projections
τrL: (z, w) —> z and π2: (z, w) —• w. For all Borel sets E, μό{E) =
μ{πfι(E))> j — 1, 2. It is straightforward to verify that

(3.2) support μaπf1 (support μ3) ,

and

(3.3) πy(support μ)zDsupport μά .

Another well-known property is that

(3.4)

for all measurable functions g.
Now from (3.3) support μ2af(D). Also, for any polynomial p2 in

w, it follows from (3.4) that

(3.5) p2(β) = (p2 o π2)(a, β) = X(p2 o π2) =

These two facts imply that

(3.6) ! p2(β) I ̂  sup I p21 .
f{D)

It follows from (3.6) and Runge's theorem that β must belong to the
union E of f(D) and its bounded complementary components in the
w-plane.

Of course, it is desired to show that βef(D), but at this point
it may very well belong to some bounded component V of C — f(D).
In any case, β certainly belongs to V for some such V, since f(D)
has no interior (Lemma 2.1 or Sard's theorem).

So far it is shown that μ2 is a probability measure supported on
f(D) — 3E which according to (3.5) represents evaluation at β on
polynomials p2 in w.

But with an independent argument [2, p. 80] using elementary
functional analysis and the ordinary maximum principle, one can
find a probability measure σ supported on 3 7 which also represents
evaluation at β. This and (3.5) show that μ2 — σ is a measure sup-
ported on f(D) — dE which annihilates polynomials in w. Since μ2 — σ is
a real measure, it annihilates their real parts as well. Now it is well
known [2, Th. 3.4.14] that because C — E is connected, the space of
real parts of polynomials in w is uniformly dense in the space of
continuous real functions on dE. Therefore μ2 — σ = 0, proving that
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support μ2adV.

It follows from (3,2), (3.3), and Lemma 2.2 that support μ1cz
f-\BV) = {(ξ, η): b, £ ζ2 - rf ^ b2}. Now regard f~\dV) as Lx U LIf

where L1 = {(f, η) e f^dV): ξ ^ ->?} and La = {(£, 17) e f~\dV): ξ^ -η).
To complete the proof, it will be necessary to assure that for any V, Lλ

and L2 are disjoint. This will be the case when 0 g [b19 b2] for any two
consecutive zeros bι and 62, which amounts to requiring that neither
can ever be zero.

This is already true if 0 in the w-plane is an accumulation point
of the zeros of gγ — g2 both from the right and from the left. But
if, say, 0 is not an accumulation point of zeros from the right, then
D may be shrunk so that gγ — g2 has no zeros with positive real
part. For such D there is no b2 > 0, hence no δx = 0. A further
shrinkage of D will take care of the case where 0 is not an accumu-
lation point from the left. Thus it can always be achieved that
L1 Π L2 = φ for any bounded component V.

A calculation like (3.5) will show that

(3.7) px(a) =

for any polynomial p1 in z, so that

(3.8) I p^ά) I ̂  sup I p1 \ .

Since C — Lx (j L2 is connected, it follows that ae LX\J L2. Assume
aeL±. Then since L1f)L2 = φt the characteristic function χ of L1

relative to L1 (j L2 can be approximated uniformly on Lι U L2 by
polynomials in z (Runge's theorem again). Therefore by taking limits
in (3.7) one finds that

1 = χ(a) = ^ ^ χdμ1 = μ^L,) .

Since μx is clearly a probability measure, it follows that support μx

By means of (3.2) and (3.4) this implies that support μ2

graph (gλ \ [blf b2]). Exploiting (3.5) again gives

I p2(β) I ^ s u p I p21

for all polynomials p2 in w. Since C — /(Lx) is connected, this shows
that βefiLi), Thus the unit point mass at β is another probability
measure on f(D) also representing evaluation at β, from which follows
as before that support μ2 = {/?}. Hence support μ1 c f^iβ). But f"ι(β)
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is polynomially convex in the z-plane. It follows from the same cal-
culation as (3.8) with the supremum extended only over f~ι{β), that
aef~\β). This proves Theorem 1.1.

4* The polynomial hull and approximation near a thin
elliptic point* The same technique can be used to determine the poly-
nomially convex hull of a small disk in a thin manifold near an elliptic
point. In this case the details are simpler.

It turns out that the image under / of a certain small coordinate
disk D is the graph of a single function, which graph can be regarded
as the domain of a parameter indexing a family of analytically imbedded
disks in C2 which exhaust the hull of the graph M of / over D. A
simple example of this occurs when the term o(\ z |2) in (1.1) is identi-
cally zero. Then f ~ Q and its graph over any closed disk D may
be visualized accurately in R3 (imbedded in C2 as the set {Im w = 0})
as a simple "cup shaped'7 quadric surface, whose polynomially convex
hull is obtained by filling the cup in JR3. For the cup is filled by the
analytic disks cut out by Q from planes parallel to the z-plane, and the
ordinary maximum principle applied to each polynomial p(z, w) as a
function of z for fixed w will show that each such disk is in the hull.
Since the set obtained by thus filling the cup is geometrically convex,
it is polynomially convex, and hence coincides with the hull of M.
The same results occur in general when the graph M is "bent out"
into C2 by the term o(\ z |2) (while retaining the rank condition).

Now Q has two eigenvalues of the same sign, and no generality
is lost by taking them both positive. The function Re/ again has a
nondegenerate critical point at 0, so it follows as in §2 that there
exist coordinates (ξ, η) in a neighborhood U of 0 such that

(4.i) / = e + v2 + o(e + v2)

where the higher order term is imaginary. It may again be assumed
that U= {(£, r/):ξ2 + rf < a} for some α > 0 and that (4.1) holds
throughout U.

It is possible to compute the hull of any compact subset of the
graph {(z, /(«)): z e U}. Any such set is clearly of the form Mκ =
{(z,f(z)): ze K) for some compact subset K of £7. For a given K and
βeC, let
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As the intersection of K with a closed level set of /, Lβ is clearly

compact. If it has a bounded complementary component V, and p is

a polynomial in two variables, then the maximum principle applied

to z—>'p(z,β) shows teat Vx{β}aMκ, the polynomially convex hull

of Mκ. Thus if Lβ denotes the union of Lβ and its bounded comple-
mentary components, it is clear that

MκZ)\j(Lβ x
βC

Moreover, if A^ = {fe C(Mκ):f \ Lβ x {/S} is holomorphic in 2? on interior

Lβ}, then p(Mκ) c Ax by elementary considerations.

(4.2)

THEOREM 4Λ. With the definitions above,

(4.3) P{MK) = Aκ.

Of course, (4.3) gives a description of P(MK) as well, since it is

always [6, p. 67] naturally isomorphic to P(MK). It is easy to see
that (4.3) is true in the example above with o(\ z |2) = 0 if K is a
closed disk concentric with the origin.

Proof. At each point z of U — {0}, % = Re/ is the first coor-
dinate of a diffeomorphism ^ = (u, v) of some open neighborhood Uz

of 2 onto an open set U'Λ in R2. As before, this map transports /
to/o^" 1 described by (2.2) on TJ[ and the rank condition applies again to
/ ' , showing that near z, Im/is a smooth function of Re/. In particular,
I m / is locally constant on each level set

(4.4) {ze U:f(z) - β}.

Since each such set is (either empty or) a circle in the (ξ, rj) coordi-
nates, it is connected. Thus I m / is constant on each set (4.4),
which shows that there exists a smooth function g: (0, a) —+ R such
that I m / = goRef on U - {0}. Since /(0) = 0 it follows from con-
tinuity of / that g(u) —> 0 as u —> 0. Letting #(0) — 0, 0 is smooth on
[0, a) and /(C7) is the graph of g on [0, a).

With this description of f(U) it is possible to verify (4.2) just as

in Theorem 1.1. Let (α, β) e Mκ, so that
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I p(af β) I ^ sup {| p(z9 w) | : (z, w) e Mκ)

for every polynomial p. There is a probability measure μ on Mκ

representing (a, β) as before, so that

p
f(K)

whenever p2 is a polynomial in w. Now as a compact subset of the
graph of g, f(K) is polynomially convex in the w-plane, so βef(K).
Therefore support μ2 = {β}, so support μczLβ x {β} and support
μγCLLβ. This shows that

\p1{a)\ ^ sup

for all polynomials pγ in z. Therefore aeLβ, or («,/5)e^x{β},
proving (4.2).

The proof of (4.3) will use the general Stone-Weierstrass Theorem
of Bishop [2, Th. 2.7.5] or [6, p. 60], for which must be located the

maximal sets of antisymmetry of P(MK). Note that Rewe P(f(K))
by Lavrentiev's theorem [6, p. 48], since f{K) is polynomially convex

and without interior. Tnus *ReweP(Mκ), which shows that any
maximal set of antisymmetry of this algebra is contained in some

Lβx{β}. It remains to show that for each /3, a given function h in

Aκ agrees on Lβx{β} with some function in P(MK). But Mergelyan's
theorem [6. p. 48] shows that h may be approximated uniformly on

Lβx{β} by polynomials in z. Since P{MK) restricted to any maximal
set of antisymmetry is closed [2], [6], this completes the proof.

If K= {(£, η): ξ2 + rf ^ r}, then for each β e graph g, Lβ = {(ξ, η):ξ2 +

Ϋ = Re β], so ί^β = {(f, y): ί2 + ^ ^ Re /5}.

COROLLARY. Lβί 0 ^ r < α α ĉί Z" = {(£, ί?): f2 + ^2 ^ r}. Then

Mκ - U {(£, ^): f2 + ?̂2 ̂ «}x{ί + w(t)}

= U {(f.̂ . f + ^ ^ R e ^ x ^ }
βef(K)

- {(α, /3): α e K, βef(K), and Re/(α) ^ Re/3},

and P(MK) — {he C(MK): for each βef(K), z—>h(z,β) is holomorphic
where f2 + )f < Re £}.

The first and second expressions for Mκ exhibit a foliation of it
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by analytic disks parallel to the z-plane. In this special case the
conjectures of Bishop [1. p. 12] about the hull near an elliptic point
are verified.

It should be remarked that for such K, the rational hull [6, p. 69]

of Mκ is the same as Mκ (and no smaller). In fact the spectrum of

the inductive limit algebra H(MK) [7] is still Mκ. These facts follow
from a straightforward argument based on the Kontinuitatsatz applied
at 0.

5* Remarks* The "Parabolic" case where Q has one or more
zero eigenvalues is indeterminate by purely second order methods.
For example f^ξ, η) = ζ2 - rf and f2(ξ, rj) = £2 + rf have the same
second order properties, yet one sees by the methods used here that
over any compact disk D centered at 0 the graph of fx is polynomially
convex while that of f2 is not.

It is not difficult to formulate other conditions under which the
techniques used in Theorems 1.1 and 4.1 will yield similar results.
For instance, one could simply assume that / has all the topological
properties needed to make the proofs work. Thus one can posit the
conclusions of Lemmas 2.1 and 2.2, assume appropriate topological
features of the levels sets of/, and retain the conclusion of Theorem 1.1.

However, it is difficult to conceive of situations other than those
treated here in which these conditions occur together. Moreover,
they are obtained here with reasonable economy of hypotheses and in
a relatively natural manner.

Another reason the techniques here are not elaborated is that at
present it is felt that Theorem 1.1 and consequently Theorem 1.3 are
true without the rank condition. Since relaxing this condition will
generally entail the loss of the topological prerequisites to the present
proof (they are no longer satisfied by the examples below), some other
way will have to be found to prove these results without the rank
condition.

The following simple examples verify the conclusions of Theorems
1.1 and 1.3, but do not satisfy the rank condition:

(5.1) f(z) = z2 + z2 + z*

which the biholomorhic map (z, w) —>(z,w — 23) converts to one satis-
fying these theorems,
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(5.2) f(z) = z2 + z2 + zz

(the map (z, w) —> (z, w + z3) does the same thing), and

(5.3) f{z) = z2 + z2 + zz2

(here the map is (z, w) —> (z, w — zw + z*)). On the other hand, it is
unknown if these theorems are verified by such a simple case as

(5.4) f(z) = z2 + z2 + z2z

(for which it seems unlikely [4, Sec. 3] that there exists a non-con-
stant real-valued analytic function of z and / ) .
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