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COMMUTATIVE ASSOCIATIVE RINGS
AND ANTI-FLEXIBLE RINGS

H. A. CELIK

Let R be a simple anti-flexible ring of characteristic
distinct from 2 and 3. Anderson and Outcalt have proved
that R+ is a commutative associative ring. The same authors
have also shown that a commutative associative ring P of
characteristic not 2 gives rise to a simple anti-flexible ring
provided P has a suitably defined symmetric belinear form
on it. The purpose of this paper is to give an explicit con-
struction of such a symmetric bilinear form and determine
the suitable commutative associative rings.

It is proved that for any commutative associative ring R, which
is either free of zero divisors or a zero ring, there is a class of
simple anti-flexible rings associated with R. It is also shown that
a subclass of commutative associative rings may be used to obtain
a more general class of anti-flexible rings, namely prime ones, which
are not necessarily simple even if they have both of the chain con-
ditions. Finally two important examples on certain prime anti-
flexible rings are given.

The results mentioned above of Anderson and Outcalt appear in
[1]. In [3], Slater has shown that in semi-prime alternative rings
the Nucleus and the center of an ideal of R are contained in the
Nucleus the center of R respectively, which turns out to be very
valuable in the structure theory of such rings. One of the examples
shows that such results do not hold in anti-flexible rings. The
other example will be of use in a later paper [2].

All algebraic structures will be of characteristic not 2. Unless
mentioned otherwise the term "ring" means an anti-flexible ring
which is defined by the identity

(x, yy z) = (z, y, x)

where (x, y, z) = {xy)z — x(yz) is the associator. R+ is the ring obtained
from additive group of R together with the multiplication " "
defined by χ y = \ (xy + yx) for all x, ye R, where xy, yx are multi-
plications of x and y in R.

N(R) = {n e R: (n, x, y) — 0 = (x, n, y) for all x, y e R}

Z(R) = {ze N(R): [z, x] = 0 for all xeR}

are defined to be the Nucleus and the center of R respectively,
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where [z, x] — zx — xz is the commutator.

2* Simple rings*

DEFINITION 2.1. Let R be a commutative associative ring, and
let Ω be nonempty set such that Ω Π R = 0 - Define the free ί2-ex-
tension of i? to be the commutative associative ring R* generated
by R U Ω with the multiplication pqr st for the finitely many
elements p, q, r, •••, s, teR\J Ω, such that the restriction of this
multiplication to R is the multiplication of R and the identity of
R, if it has any, is the identity of R*. We say that R* is of D-index
n if

dxd2 dn = 0

for all di e D, i — i, , n, where D is a subset of Ω and n is a
positive integer.

We should mention here that the existence of such extension of
R is guaranteed by the rings of polynomials over R and their
quotient rings for suitable ideals.

THEOREM 2.2. ( i ) Let R be a commutative associative ring
without zero divisors, or let R be a zero ring. Then there exists a
commutative associative ring 12* containing R and a bilinear mapping
(,y of R* x jβ* into jβ* such that the ring & — (R*, (g)) is a
simple anti-flexible ring, where for x, ye i2*, x Cξ) y is defined as
xy + ζx, yy, xy being the multiplication in R*.

(ii) Let R be a simple anti-flexible ring of characteristic not 3.
Then for any commutative multiplication "o" defined on the set R
such that x02 — x2 for all ke R, the ring (R, 6) is commutative and
associative and there is a bilinear form on (R, o) which defines R.

Proof. ( i ) (a) Assume that R has no zero divisors. Suppose
that Ω is a set containing a totally ordered subset Ω1 of at least
two distinct elements. Let i2* be the free -Q-extension of R of
β^index 2. Without loss of generality, assume that R has an
identity element e, therefore i?* has an identity element e. In i?*,
defined a bilinear form <, )> as follows:

(a:) <V, s> = 0 if either r or s belongs to the set

Sf = R U P U RP

where,

P = the set Ω\Ω,
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and the set of all finite products of elements of Ω\Ωt.
(a2) <V#, syy = e — —ζsy, rxy if x1yeΩ1 such that x < y and

(a3) <Vx, sxy = 0 for all r, seS^ and all xeΩ^ In 12* define a
new multiplication " 0 " by

r ® ί - rί + <r, ί> ,

and let ^ = (12*, ®) be the ring obtained by the additive group of
12* together with the multiplication "(g)". In order to prove that
& is a simple anti-flexible ring, by Theorem 3.11 of [1] it suffices
to show that the bilinear form <( , )> satifies the following conditions:

(1) <&,s> = 0,
(2) <V, x> = 0, for all α? e 12*,
(3) «Λ*,S*>, 12*> - 0,
(4) <12M2*>^(0),
( 5) <1, 12*> g 1 for any proper ideal 1 of 12*.

It follows from (ax) and (a3) that (1) holds. To see (2), consider an
arbitrary element w of 12*. Since 12 has an identity element, w has
the following form:

w = aoso + afifo + a2s2x2 + + ansnxn

where a{ are integers, S^G ̂ , a? iei21(i = l , 2, , w) and α?1<a?2< <xn.

Then,

w2 = alsl + 2 X aoCtiSQSiXi

So,

= 2a0Σ giS .
i=i

By (a3), grw are all zero and by (a2)

9u = - Λ ί for i ^ i .

Therefore

^ 2 , t(7> = 0 ,

(3) and (4) are immediate.
(5) follows from the following argument. For each proper ideal

1 of 12*, there exists at least one element asx in / such that a is
an integer, seS^ and x e Ωx. Since Ωx contains at least two distinct
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elements, the set <7, iϋ*> contains the identity element e, There-
fore </, Ry §g I. Thus, <% is a simple anti-flexible ring.

(b) Assume that R is a zero ring. By the Zermelόs well
ordering axiom, the generating set R1 of R can be imbedded in a
totally ordered set Ωγ. Then consider Ω to be a set containing i2L.
Thus, starting with the ring (0), we obtain iϋ* to which an identity
element e may be adjoined. To define the bilinear form <( , )> on i?*,
set the defining conditions as

(bd = « ) , (&2) - (α2), (63) - (as)

with,

S? = PU {0}, where P is as in (αθ .

Then an analogous proof to that of (a) shows that <% = (iί*, ®)
is a simple anti-flexible ring.

(ii) The proof of this part follows from the following argument:
Let R be a ring and suppose that there is defined a commutative

multiplication "0" on R such that x2 — x02 for all xeR. Then

OB, 0) = R+ .

For if, x, y e R, then

(a? + 2/)2 = (x + VT
x2 + xy + yx + y2 = x02 + 2xoy + ?/02

or

#02/ = %(xy + yx) .

Therefore (i2, 0) = R+ and is a commutative associative ring which
gives rise to R by the bilinear form ζx, y) = xy — xoy.

REMARKS. ( i ) The class of rings without zero divisors includes
fields, integral domains, polynomial rings over such rings, group
algebras of abelian groups, radical-quotient rings of commutative
associative rings in which x Φ y and xy is nilpotent imply either x is
nilpotent or y is nilpotent, etc.

(ii) In (a), if R contains a zero divisor, then the condition (2)
fails: suppose that q e R, such that qt = 0 for some te R. Then
consider

w = aq + βtxλ + Ύx2

with a, β, Ύ nonzero integers; x19 x2 e Ω1 with x, < x2. Then

w2 = a2q2
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and,

<w\ w} = ~2aβΎe Φ 0 .

The following corollary gives simple anti-flexible algebras of
arbitrary dimension.

COROLLARY 2.3. Let R = F be a field in Theorem (2.2) and
suppose that Ω = Ωγ is a totally ordered set. Then & is a simple
anti-flexible algebra over F, and dimension of & is \Ωι\. & is
associative if and only if \Ω1\ = 1.

3* Prime rings* The purpose of this section is to show that
there exist various types of prime anti-flexible rings which are not
simple. R is prime if for any two ideals A, B of R, AB=(0) implies
A = (0) or B = (0).

PROPOSITION 3.1. Let R be a commutative associative ring gener-
ated by a totally ordered set Rx which contains at least two distinct
elements. Suppose that xy = yx = 0 for all distinct x, y e Rx, and
x2 = 0 for all xeR19 except for a fixed ze Rly in which case the znfs
are all distinct for n7>l. Then, there exists a prime anti-flexible,
not simple ring & based on R.

Proof. Let Ω be a nonempty set such that Ω Π R = 0 . Let
i?* be the free /^-extension of R. Consider the set

and a fixed element a e Ω, where P is the set Ω and the set of finite
products of elements of Ω. Define a bilinear form in 12* by

(a) <r, s> = 0 if r or s e S?
(b) For any x, ye Rlf if x < y, then

= a

<2/, #> = <2/, gx> = <hy, xy = ζhy9 gxy = —a

for all g, he P.
(c) (gx, hxy = 0 = (x, xy — (jgx, xy = (x, hx} for all g, heP and

all x e i?ie

Then for r,seR*, define

It is not difficult to verify that the bilinear form has the properties
(l)-(4) mentioned in the proof of Theorem (2.2). Therefore & =
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(R*, (x)) is an anti-flexible ring. & is not simple because aeΩ
generates a proper ideal of &. To see this we observe that a Φ 0
and any x e Rι does not belong to this ideal. Similarly, each zn for
n ^ 2 generates a proper ideal of , ^ . In any case, each ideal con-
tains a finite sum of elements of the form a{PiZni for % :> 1, aζ are
integers and p{ e P. It is clear that the product of any two elements
in & of this type is not zero whenever both of them are not zero.
Thus & is a prime ring.

COROLLARY 3.2. In Proposition (3.1), let R be a zero algebra
generated by a finite set Rx of at least two distinct elements, over a
field F. Suppose that Ω = {a}. Then & is a prime, anti-flexible,
not simple algebra over F. Moreover, & has both of the chain con-
ditions on ideals.

Proof. Suppose that RL = {xlt x2, , xn} with the natural order-
ing x1 < x2 < xn. If we define the bilinear form < , > as in the
Proposition (3.1), then, & = (R*, (x)) is an anti-flexible algebra based
on R. & is prime because any ideal of & contains the element a,
and a (x) a — a2 Φ 0. & is not simple since a generates a proper
ideal of ^ . & has both of the chain conditions on ideals, because
the only proper ideals of & are the ideals generated by the proper
subsets of

{xly x2, ' , xn', a,\ .

COROLLARY 3.3. There exist finite dimensional anti-flexible alge-
bras which are prime but not simple.

Proof. Suppose that R is as in Corollary (3.2), and Ω — {a =
wλ,w2, — ,wm}. It is possible to construct R* in such a way that
for each i = 1, •••, m, there exists a positive integer % ^ 2 such
that w^ = Wi Then, defining the bilinear form <, > as in Propo-
sition (3.1), & becomes a prime anti-flexible but not simple algebra
over F. The fact that & is finite dimensional is an easy conse-
quence of the conditions imposed on elements of fl and the finiteness
of both Rγ and Ω.

REMARK. The type of commutative associative rings which are
used in Proposition (3.1) can easily be found as follows:

Let Q be a zero ring generated by a totally ordered set Qx.
Consider Q[z], the ring of polynomials in z. Let Q[z]2 be the ring of
2 x 2 matrices on Q[z\. Set
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Let R be the subring of Q[z]2 generated by the set Rx. Then R has
the required properties.

4* Two examples*

PROPOSITION 4.1. There exists an anti-flexible ring R such that
both R and R+ are prime.

Proof. Let R be the free commutative associative ring generated
by a totally ordered set S of at least three elements. Let I be the
ideal of R generated by monomials of degree two or more in S. On
R define a bilinear form <, > as follows:

( a ) <r, s) = 0 if r or s belong to the set {α, /} where a is a
fixed element of S.

(b) ζx, y} = a = — <#, x> if a, # e S\{α} and a; < #•
( c ) <α, £> = 0 for all xeS.

Then the conditions (a) = (c) satisfy the properties (I) — (IV) of the
proof of Theorem (2.2), with i2* - R, and hence & = (R, (x)) with
r (x) s = rs + <V, s)> becomes an anti-flexible ring. It follows from
(a) — (c) that any ideal of έ% must contain elements of the form
a + p with pel. Since for prqel

(α + p) (x) (α + g) — α2 + aq + pα + pq Φ 0

^ is prime. To see that ^ + is also prime, we observe that ^ ? +

has no nonzero divisors of zero, because for any r, s e ^ i 5 ,

= rs = 0

if and only if one of r, s is 0.

4.2. Nucleus and the Center of Ideals.

Given R and a proper ideal A of iϋ, the following inclusions
are hoped to hold:

N(A) s

In semi-prime alternative rings these inclusions hold [3] and are
very useful in the related structure theory [4], [5]. It is unfortu-
nate that the same results do not hold for the class of anti-flexible
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rings.

EXAMPLE. Let & be the ring obtained by Proposition (3.1),
and let I be the ideal generated by zn, for some n ^ 2. I is a
proper ideal of ^?. Since zn e &*, zn (g) r=znr for every r e ^ . There-
fore / is a commutative associative ring and hence

N(I) = / and Z(I) = I.

On the other hand N(R) = (0) = Z(R). To see this consider any x,yeR,
with x <y and 6 G ^ By the construction of i?*, if slf s2eS^ then
s ^ is distinct from both st and s2. Following this argument and
calculating the associator (a?, T/, 6)0 we get

- α (g) (2/ <g) δ)

= < »̂ 2/> δ + <δ, y> a; - < xb, y)

— ah — a Φ 0 .

This implies that neither as, # of i?! nor 6 of £f can be in the nu-
cleus of ^ . Therefore,

N(R) = (0) .

Thus

and

REMARK. In this paper the term "simple" is relaxed up to the
ideals which are integer multiples of R.
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