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RESTRICTION OF THE PRINCIPAL SERIES
OF SL (Λ, C) TO

SOME REDUCTIVE SUBGROUPS

NGUYEN-HUU-ANH

Let n = ni + + nr, where r ^ 2 and the nίs are
positive integers. Then every element of G = SL (n, C) can
be written as a block matrix (g%j)i^it jgr, where each block
Qij is a %i X nj matrix. Let GΛl,...,»r denote the subgroup
of all diagonal block matrices, i.e., ga is the 0-matrix for
i Φ j . Let T% be any element of the non-degenerate
principal series of G. The main purpose of this paper is to
decompose the restriction of Tx to GΛl,...,«r into irreducible
representations.

As we shall see by an induction argument, it is sufficient to
consider the restriction of T% to Gn-1Λ. Now by the Frobenius
reciprocity theorem this restriction problem is equivalent to the de-
composition of the induced representations to G of some irreducible
representations of Gn-U1. Note that

Gv. l f lcG 0 = {{gi3)^u^neG\gin = 0, 1 ̂  i £ n- 1} ,

and hence those induced representations may be obtained by inducing
some representations W of GQ. The W's are in turn equivalent to
the restrictions of the elements of the non-degenerate principal series
to Go. Therefore they are all irreducible according to Gelfand and
Naimark [3], and in fact are divided into n distinct classes of ir-
reducible representations of Go [4]. The problem is now completed by
applying again the Frobenius reciprocity theorem. It turns out that
this restriction problem is equivalent to the problem of decomposing
the tensor product of an element of the nondegenerate and an element
of the degenerate principal series of G. In fact Theorem 4.2 gives
the decompositions of such tensor products in terms of the non-
degenerate principal series only. The results contained in this paper
were parts of the author's thesis at the University of California, Los
Angeles. The author would like to express his gratitude to Profes-
sor Donald G. Babbitt for guiding the preparation of the thesis. The
author would also like to thank the referee for many helpful sug-
gestions.

1* Some results on induced representations and the Frobenius
reciprocity theorem. In this section we shall recall some results on
induced representations due to Mackey ([5], [6]) and then prove some
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corollaries of the Frobenius reciprocity theorem ([6]) which are useful
for later application.

Every locally compact group considered will be separable and
every representation is understood to be unitary.

Let us recall quickly the definition of induced representations.1

Let H be a closed subgroup of G. Let L be a representation of H
in the Hubert space φ(L). Let μ be any quasi invariant measure in
the homogeneous space SPΐ = H\G of right H cosets. By definition
of quasi in variance, the right translate of μ by an element y of G is
equivalent to μ. Let λ( , y) be the corresponding Radon-Nikodym
derivative. Consider the space μίρL of all functions / from G to Q(L)
such that

(a) (f(x), vf is a Borel function of x for all veJQ(L).
(b) f(ξx) = Lξ{f{x)) for all ξ e H and xeG.
(c) By (b) (f(x), f{x))2 is in fact a function on 9K. We assume

\ (f(χ)> f{x))dμ(x) < oo where x is the right coset containing x. If
functions equal almost everywhere are identified then μ§L becomes a
Hubert space. For each yeG, let Ty map fe μ$L into g where g(x) =
\(x, y)ίl2f(xy) Then it can be proved that T is a representation of
G which is determined within unitary equivalence by the measure
class of μ. This representation is called the representation of G in-
duced from L and is denoted by indH1GL or GU

L or simply UL if
there is no ambiguity.

On the other hand let V be any representation of G. then the
restriction of V to the subgroup H is denoted by V\H or simply
VH.

The following theorems were proved by Mackey.

THEOREM 1.1. (Theorem 4.1 of [5]). Let HaK be closed sub-
groups of G. Let L be a representation of H and let M— vcAHXKL.
Then indHTGL and ind x ί GM are equivalent representations.

THEOREM 1.2 (Theorem 5.2 of [5]). Let L and M be representa-
tions of the closed subgroups H^ and H2 of the groups Gt and G2

respectively. Then the outer Kronecker product ind7/lTί?1 L x ind^2ίί?2 M
is equivalent to ind#lX#2ίGiX(?2 (L x M) where L x M is the outer
Kronecker product of L and ΐf.

Let JHi and H2 be closed subgroups of G. We shall say that Hi
and H2 are discretely related if there exists a subset of G whose
complement has Haar measure zero and which is itself the union of

1 See, e.g. §2 of [5].
2 ( , ) denotes the inner product in § (L).
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countably many JHi: H2 double cosets.

THEOREM 1.3 (Theorem 7.1 of [5]). Let Ή^ and H2 be two dis-
cretely related closed subgroups of G. Let L be a representation of
H^ For each xeG consider the subgroup H2 Π {x^H^x) of H2 and let

XV denote the representation of H2 induced by the representation
Ύ]γ-*Lxηx-ι of this subgroup* Then XV is determined within unitary
equivalence by the double coset Hx x H2 — D(x) and we may write

ΏV — XV where D = D(x). Finally inάHlU}L restricted to H2 is the
direct sum of the DV over those double cosets D which are not of
measure zero.

THEOREM 1.4 (Theorem 7.2 of [5]). Let Hλ and H2 be as in
Theorem 1.3 and let L and M be representations of Ή.γ and H2 re-
spectively. For each (x, y) e G x G consider the representations

s i > Lxsx-i and s i > Mysy-i

of the subgroup {x^H^x) Π {y~~lH2y). Let us denote their tensor product
(or Kronecker product in the terminology of [5]) by N*tV. Then the in-
duced representation of Nx'y to G is determined within unitary equiv-
alence by the double coset H&y^Hi and the direct sum of these in-
duced representations over those double cosets which are not of
measure zero is equivalent to the tensor product i n d # l t ( ? L ® m

THEOREM 1.5 (Theorem 10.1 of [5]). Let H be a closed subgroup

of G and let M be a representation of H which is a direct integral

over a Borel measure space (Y, μ) of representations yL; M — \vLdμ{y).

Then \ inάH]G

yLdμ(y) is equivalent to mάHU}M.

Let SOϊ be a separable locally compact space and let μ be a finite
measure on 9ft. Let r be an equivalence relation on Sft. Let r also
denote the natural mapping of 3ft onto the quotient space Y. Assume
r regular in the sense of §11 of [5]. Then μ induces a natural
measure ~μ on Y.

LEMMA 1.6 (Lemma 11.1 of [5]). Let μ, μ be as above. Then for
each yeY there exists a finite Borel measure μy in 9ft such that

μy{m-r-ι{y}) - 0 and J/(y)\jg(x)dμy(x)dμ(y) = ^f(r(x))g(x)dμ(x) when-

ever fe^KY, μ) and g is bounded and measurable on 9ft. μy is cal-

led the quotient measure obtained from μ by way of the equivalence

relation r.
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LEMMA. 1.7 (Lemma 11.4 of [5]). Let μ, r, Y, SK be as above
and let k be a nonnegative function on Tt which is μ-summable. Let
υ be the measure whose Radon-Nikodym derivative with respect to μ
is k. Then ΰ is absolutely continuous with respect to μ, the Radon-
Nikodym derivative being X say. Moreover in the decomposition of
u, Όy may be taken to be that measure absolutely continuous with
respect to μy, whose Radon-Nikodym derivativative is zero or x\-+k(x)/X(y)
depending upon whether or not X(y) is zero.

THEOREM 1.8 (Theorem 5.1 of [6]). Let H be a closed subgroup
of G. Let the regular representations of H and G be of type I and
let their canonical decomposition into factor representations be

l Fxdζ(x) and \ Nydη{y) respectively where Fx (resp. Ny) is a multiple

of the irreducible representation Lz (res. My) of H (resp. G) and ζ and
η are finite measures such that ζ(X) = τ)(Y). Then there exists a
Borel measure a on X x Y and an a-measurable function from X x Y
to the countable cardinals, (x, y) v-*n(x, y), such that for all Borel
subsets E and Έτ of X and Y respectively we have

a(E x Y) = ζ(E) a(X x E1) = rj{E')

and such that for ζ almost all x in X

( i ) indHΊGL
x = \ n(x, y)My dβx{y) and for ΎJ almost all y in Y

JY

(ii) My\H~\ n(x, y)Lxdjy(x) where the βx(resip.yy) are the

quotient measures obtained from a by way of the equivalence relation
r(x, y) = x (resp. r(x, y) = y).

The Theorem 1.8 is often called the Frobenius reciprocity theorem.
Let us derive some corollaries of Theorem 1.8 which are easier for
application in some special cases. In fact it is hard to compute a in
general. However what we expect is the following: suppose by some
other way we know that one of the statements ( i ) or (ii) is valid,
then what can be said about the other?

The answer of this question is contained in the following corol-
laries.

COROLLARY 1.9. Let G and H be as in Theorem 1.8. Assume
also that they are of type I. Then the following are equivalent.

( i ) for ζ almost all x, mdIΠGL
x is quasi-equivalent to a sub-

representation of the regular representation of G.
(ii) for 7] almost all y, My \ H is quasi-equivalent to a subrepre-

sentation of the regular representation of H.
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Proof. By ( i ) of Theorem 1.8 and the uniqueness of direct
integral decompositions into irreducible reperesentations for type I
groups (see e.g., [2]), ( i ) is equivalent to:

(iii) for ζ almost all x9 βx is absolutely continuous with respect
to η.

Suppose (iii) is true. Then the Fubini's theorem and Lemma 1.6
show that:

(iii)' a is absolutely continuous with respect to ζ x rj. Conver-
sely suppose a is absolutely continuous with respect to ζ x r). Let
us apply Lemma 1.7 for the equivalence relation r(x, y) = x, μ —
ζ x Ύ], υ = a. Since it is clear that μ = η{Y)ζ and μx = Ύ]{Y)~ιη for
every xe X, (iii) follows immediately. The equivalence between (ii)
and (iii)' is proved in a similar manner.

To have a more precise statement we must include the multipli-
city function.

COROLLARY 1.10. Let G and H be as in Corollary 1.9. Let
co (x, y) and n'(x, y) be ζ x rj-measurable functions where n'(x, y) is a
countable cardinal for every x, y. Then the following are equivalent.

( i ) for ζ almost all x, ind^tG Lx = \ n'(x, y)Mydβx(y),
JY

where dβ'x(y) = ω(x, y)dη{y).

( i i ) for V almost all y, My 1 ^ = 1 n'{x, y)Lxdy'v(x),

where djy(x) = ω(x, y)dζ(x).

Proof. Let α, βx, Ύy be as in Theorem 1.8. As in the proof of
Corollary 1.9, ( i ) or (ii) imply that a is absolutely continuous with
respect to ζ x η. Let f(x, y) be the corresponding Radon-Nikodym
derivative. Apply again Lemma 1.7 for the relation r(x, y) = x, μ =
ζ x 77, υ — a. As noted in the proof of Corollary 1.9 μ = η(Y)ζ, and
μx — η{X)~ιη for every x in X. On the other hand it is also obvious
that ΰ = ζ (see e.g., the connection between a and ζ in Theorem 1.8).
Therefore the function λ in Lemma 1.7 satisfies \(x) = dϋ/dμ(x) =
η{Y)~\ and the Radon-Nikodym derivative of the corresponding
quotient measures is given by dβx/dμx(y) = f(x, y)/τ](Y)~1. Therefore

(1) dβx(y) =f(x,y)dη(y) .

Using again the uniqueness of direct-integral decomposition into ir-
reducible representations for type I groups and taking (1) into account
we see that ( i ) is equivalent to

(iii) \ω^X' y^d^d7}^ a ( = -f
\n'(x, y) = n(x, y), ζ x η - a.e.
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Similarly (ii) is equivalent to (iii).

2* Description o£ some representations of Gni, , Λ r . Although
the representations of GΛl, , nr can be described by using the
known results on reductive Lie groups, we prefer to use another
method which is interesting in its own right and is used to simplify
our computations later on.

Let H and K be two subgroups of a group G. Then G is said to be
t h e "generalized direct product9' o f H a n d Kit: ( i ) HK = G; ( i i ) hk =

kh for heH and keK. In the case Hf)K= {idG}. G is simply the
direct product of H and K.

Let G1 and G2 be two groups. Let Zt (resp. i?2) be a subgroup of
the center of Gx (resp. G2). Suppose that there exists an isomorphism
t from Zλ onto Z2. It is clear that Z = {(2, ί(z)) \zeZj} is a normal
subgroup of G,. x G2. Let L> be the canonical homomorphism of Gx x G2

onto G = Gi x G2/Z. Put i ^ = y(G4) (i = 1, 2). Then it is easy to see
that G is the generalized direct product of H1 and H2. Moreover Hx

and iϊ 2 are isomorphic to G1 and G2 respectively. Under these iso-
morphisms, t becomes the automorphism h \-+ hr1 of Hx Π Hz. Suppose
now GL and G2 are topological groups, Z± and Z2 are closed subgroups
of Gi and G2 respectively, and t is also a homeomorphism. Then G,
equipped with the quotient topology, is a topological group containing
f?Ί and iί 2 as closed subgroups. If this is the case we say that G is
the topological generalized direct product of G1 and G2 via t. Assume
that G is a separable locally comact group. If G is the (algebraic)
generalized direct product of two closed subgroups H and K, then
it can be shown that G is (topologically and algebraically equivalent
to) the topological generalized direct product of H and K via the
automorphism z \~* z~ι of H Π K.3

We turn now to the representation theory of generalized direct
products. Note that while this notion is a generalization of that of
direct products, it is also contained, in part, in the theory of group
extensions.

PROPOSITION 2.1. Let G be the generalized direct product of two
closed subgroups H and K. Let Hr be closed subgroup of H containing
H Π K. Then G' = Hf K is a closed subgroup of G. Let V be a re-
presentation of Gf in the Hilbert space ξ>. Put Wι = ΊΏAH^H {V\H)

Then indG,is V is equivalent to the representation of G defined by

(2) g = hk\ > W1(h)W2(k) (heH, keK) ,

where W2 is a repesentation of K equivalent to some multiple of V

3 See, e.g., [1], Chapter 7, §2, no. 9.
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Proof. We first remark that the map H'h i-> G'h{h e H) is a home-
omorphism of H\H onto G\G which intertwines the actions of H by-
right translations. Moreover it transforms a quasi invariant measure
μ of H'\H into a quasi invariant measure μ of G\G.4 For every
function / from G into ^, put f = f \H. Then /t—»/ is an isometry
of the Hubert spaces μξ>v and ^^VH' in § 1. In fact it sets up an
equivalence between mάG^G V and the representation (2). The fact
that W2 is equivalent to a multiple of V \ κ can be checked directly
or by using Theorem 12.1 of [5].

The following corollary is useful for later application

COROLLARY 2.2. Let G, H, K, H', Gf be as in Proposition 2.1.
Let V be a one-dimensional representation of Gf. Then indG, T(? V is
equivalent to the representation defined by

(3) g = hk\ >V(k)W(h), heH, keK,

where W = mάH^H{V\H).

Let us consider the important particular case in which H is
abelian.

LEMMA 2.3. Let G be the generalized direct product of a closed
subgroup K and an abelian closed subgroup H. Let U be any ir-
reducible representation of (?. Then U \H is a multiple of some
character χ of H and V = U \κ is an irreducible representation of
K such that

(4) 7 | no* = mult of

Conversely let χ be any character of H and V be any irreducible
representation of K satisfying (4). Then g = hhh~>χ(h)V(k) is a
well-defined irreducible representation of G.

Proof. Let U be an irreducible representation of G in the Hubert
space φ. Since H is abelian it is contained in the center of G.
Therefore by Schur's Lemma U(h) — %(h)I where χ(h) is a complex
number and I is the unit operator of φ. It is clear that χ is a
character of H. Let φ' be a nonzero closed subspace of $ which is
invariant under U(k), keK. Let W be the component of K on φ'
then W(k) = χ(k)Γ, keHf]K where Γ is the unit operator of φ\
Hence g — hk\-^χ(h) W(k) is a well-defined subrepresentation of U. Thus
φ' = φ. This shows that U \κ is irreducible. The converse is clear.

4 This can be seen by a direct computation. See however [5] for the cor-
respondence between quasi-invariant measures and ^-functions.
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COROLLARY 2.4. G is of type I if and only if K is.

We shall apply these results to the subgroup Gnv...,nr. First
we shall recall some facts on the representation theory of SL(n, C).
Let ϋΓ%(resp. Dn) be the subgroup of SL(n, C) consisting of all upper-
triangular (resp. diagonal) matrices. Let χ be a character of Dn9

then χ extends uniquely to a one-dimensional representation of Kn

which induces to an irreducible representation of SL(n, C) (see [3] and
[4]). This representation is called the element of the nondegenerate
principal series of SL(n, C) corresponding to χ and denoted by T*.
Since the dual Dn of Dn is parametrized by Z w - 1 x R*1"1 ([3], see also
[4] for another parametrization of Dn) we also use the notation
rp{m2,.'',r*n'.p2*—,pn) for the element of the nondegenerate principal series
corresponding to (m2, , mn; p2, , pn) e Z71""1 x Rw - 1. A fundamental
domain of Dn is a maximal subset D°n of Dn with respect to the fol-
lowing property: let χlf χ2 be two different elements of D°ny then the
corresponding elements ΓX l and ΓX2 of the nondegenerate principal series
are not equivalent.

Let D°n be any fundamental domain of Dn. Then the regular

representation of SL(n, C) can be decomposed into I oo Tχdχ, where

dχ is the restriction of the Haar measure of Dn to D°n.
δ

We now return to the group Gni,..,»r. Let K%v...,Λr (resp. Dnv...,n)
be the subgroup of GΛl,...,Λfi consisting of all diagonal block matrices
{gi3) such that each block gu is an upper triangular (resp. scalar)
matrix. It is clear that H = SL(nu C) x x SL(nr, C) can be
embedded in Gni,...,nr and GWl,M.,»r becomes the generalized direct
product of H and Dnv...!%r. Moreover H Π D»lt...,»r = Cx x ••• x C r ,
where C< is the center of SL{n^ C). Thus by Lemma 2.3 every
irreducible representation of GΛl,...,Wr is of the form

U(g) - a(d)T1(gr) x ••• x T r ( ^ r ) ,

for

g = dg,--. gr,de Dnv...,nr , ^ 6 >SL(%, C) (1 ̂  i ^ r) .

Recall that a is a character of Dnv...,nr and each Γ̂  is an irredu-
cible representation of SL(nif C) whose restriction to d is a multiple
of a I Ci. In the case Tι is the element T%ί of the nondegenerate
principal series of SL(ni9 C), £7 may be obtained by inducing a one-
dimensional representation p of ίΓni,...>nr according to Corollary 2.2
and Theorem 1.2; p is uniquely determined by the conditions

5 See [3] and [7] for a description of D°n and the decomposition of the regular re-
presentation.
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where Dn. is the diagonal subgroup of SL{Πi, C).

DEFINITION 2.5. The irreducible representation of GΛl,...iΛr defined
as above is called the element of the principal series of GWl,....Wr corre-
sponding to p and is denoted by Up.

REMARK. Again the one-dimensional representations of Knv...,%r

are determined uniquely by their restrictions to Dn. Therefore the
elements of the principal series of GΛl,...,Wr are parametrized by
Zn~ι x JB*"1. For each i, 1 <J i ^ r, choose a fundamental domain
JD^. of Dn.. Let .Dί be the subset of D% consisting of those characters
whose restrictions to Dn. belong to Dn.. Then it is easy to verify
that Dn is a fundamental domain of Dn corresponding to the group
GΛl,...,Λr in the sense that it is a maximal subset of Dn with respect
to the property: let ply p2 be two different elements of Di, then the
corresponding elements UpL and UPz of the principal series of GΛl,...lWf.
are not equivalent. Suppose such a set is chosen, we have.

PROPOSITION 2.6. The regular representation of GΛl,...,Λf. ccm be

decomposed as follows: \ °o Up dp, where dp is the restriction of the

Hoar measure of Dn.

Proof. Using the decomposition of the regular representation of
SL(Ui, C) recalled earlier and Theorem 1.2, we see that the regular
representation of H = SL(nLJ C) x x SL(nr, C) can be decomposed

S r
. . . I oo Γ ^ x ••• x T%rdχγ dχr. Therefore the

regular representation of G%v...,n. is equivalent to

ί x Γ * ) ^ . . . dχ r .

Note that we have used the Theorems 1.1 and 1.5. Now by Theorems
1.1 and 1.2 we have

ind (Tχi x x Tχr) ^ ind (χ, x x χr) .
H 1G K K T G

Put H' = Knιx x Knr. Then it is clear that Knv...,nr is the general-
ized direct porduct of H' and Dnv...,nr such that

Dnv...,nr ΠHf = C 1 x ••• x C r .

Put χ = χx x x χ r. Then we have by Theorem 1.1
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ind χ ~ ind (ind χ) .

By Corollary 2.2

indχ ~ Z l ^ ind χ C l χ . χ c r -

Since CΊ x x Cr is a compact (in fact finite) subgroup of the abelian
f' f'

group Dn.,...n, we can write6 indχ = y | f f , I λdλ, where 1
is taken over the set of all character λ of Dni,...,nr whose restriction
to d x x Cr is χ I Cl x... x ^ Thus

ind χ ^\χ\H, XdX

where 1 is taken over the set of all one-dimensional representations

of JBΓΛl,...,nr extending χ.

3* Restriction of the nondegenerate principal series to GΛl,...,%r-
Before treating the general case, we consider a special case which is
itself the main step for solving the general porblem, namely the
restriction of the nondegenerate principal series to Gn-lf i

THEOREM 3.1. Let τlm*t'm''m»;p*' "'p*) be any element of the non-
degenerate principal series of SL(n, C). Then its restriction to Gn^ίt λ

is equivalent to Σ*2'—'*» \ ' " \ U{k2''"'kn; σ2> ><v dσ2 dσn, where

Ij(k2,~-,kn;σ2,...,σn) fe a% eιemen£ of f^fe principal series of Gn-ux and

\ is the summation-integral over the set of all

{K ••-,&•; σ2, . . . ^ J e Z - 1 xR^" 1

such that (k2, , kn^; σ2, , σ n - 1) e D°n^ and Σ ? *< Ξ Σ ? mi (m°d ̂ )

Proo/. Let Go = {(gij)i^i,j£n\9in = 0, 1 ^ i ^ % - 1}.

By Theorem 3 of [4], Tim2t'"iP») \Go is equivalent to some fixed
representation Wi of Go if Σ ? ^ Ξ i (mod n). In fact, TΓ0, •••, Wn^
are all irreducible as indicated in [3]. Recall that τ{1Λzr"tPn) is ob-
tained by inducing the one-dimensional representation (m2, , pn) of
Kn. Since the complement of GQKn in G has Haar measure zero ([3];

6 This can be one by using the Fourier analysis on abelian groups or by Corollary
1.10.
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[4]) and G0Γ\Kn — Kn_ulJ we have by applying Theorems 1.3 and 1.1:

y ^ - v i GQ s ind (m, . ., pn) I Kn^ t
κ n - l , l T G0

( 5 )
= ind [/(m2' ''V .

Gn—1 ^G0

Therefore,

( 6) ind U{m^-'p^ ~ Tfi iff Σ ?% Ξ i (mod w) .

Note that a direct integral whose components are all equivalent
to the same fixed representation is in fact equivalent to a multiple
of that representation. Hence (6), Theorem 1.1 and Proposition 2.6
imply that the regular representation of GQ is decomposed as
°°TFo© •• Θ ooWn-i Therefore we can apply Corollary 1.10 and
get:

W< I On_u x s Σ ί ( Wk»-k*' 'i"""** dσ2.-. dσn

where Σ 1 I in the summation integral over the set of all

(k21 , σn) such that

(k2, , &„_! σ2, , σn^) e D°n^ and Σ fy = i = Σ ^
2 2

COROLLARY 3.2.

( 7) ind U1"*"''"** ~ Σ ( t T^'- '^ dp2 - - - dpn

• \ is ίfee summation integral over the set of all

(m2, , ρn)eDl such that Σ ? m* = Σ12 h (mod n).

Proof. Corollary 1.10 also gives the decomposition of indGoTG Wt

(the notation as in Theorem 3.1). This together with (5) give the
desired decomposition.

REMARK 1. Since Gu n~t and Gn-lt 1 are conjugate in G we also
get the decomposition of indGl n_^G U{k2f'"'°n). It turns out to be the
same as that of i n d ^ ^ lT<7 U

{k2>'"r<7n\ hence the two representations
are equivalent.

2. A fundamental domain as defined earlier is also a fundamental
domain of Dn with respect to the action of the permutation group
(the Weyl group) on Dn. Since every permutation preserves Σ ? &*
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(mod n), dropping the restriction to the fundamental domain in the
right hand side of (7) amounts to repeat every representation occur-
ring there nl times. Therefore the left-hand side of (7) must be
replaced by nl times of itself. This technique will be used often and
we shall not mention it explicitly again.

LEMMA 3.3. Let n = nt + n2, nx > 1. Let χ = (m2, , mn

P21 *' ,Pn) be any one-dimensional representation of Ku...,1)%2. Then

( 8 ) i n d χ = Σ ( ( °° T**"''0** dσ dσ
Klt — Λn2ΪG J J

where the summation extends over the set of all (k2, , kn) such that

Sketch of the Proof. KU...ΛΛ2 = Dι....,u%ti.ιKUUί(K1,%ίc:SL(n% + 1, C)
are embedded in <•?! t.β 2 + ι as usual) and KlM2 3 A . ,i,«2+i Π SL(nt+l, C),
hence Corollary 2.2 shows that

(9) ind χ = χ|z>i,...,i,^+ι ind χ \K1,nz.

Theorem 1.1 shows t h a t the left hand side of ( 9 ) is equivalent to

ind U% ,

where U% is the element of the principal series of Glt...>Un2 determined
by χ. On the other hand Corollary 3.2 (and its remark) and Theorem
1.1 give the decomposition of the right hand side of (9) into a
direct integral of some elements of the principal series of Glt...Λ,n2+ι.
Therefore the Lemma can be done by using an induction on nλ. The
detailed computation based on some change of variables similar to
that in Theorem 3.5 and will be omitted here.

Let us consider another special case where r = 2, i.e., n = nt + n2.
Since G»llΛ2 and G%2 Wl are conjugate in G ([3]), we can assume nx ̂  n2.
The case n2 = 1 is contained in Theorem 3.1, hence we can suppose
n2 ^ 2. Put

- ί
\8i 1 _

where I n i, In2 are unit matrices and

Sί = (so 0) } n2 ,
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1° Λ\
βb= l ,

\ ± 1 0/
the + or — sign is chosen so that s0eSL(n2, C).

LEMMA 3.4. The complement of the double coset KnsGni,n2 in G has
Haar measure zero.

Proof. It is known (see [3] and [4]) that every element of G
except those in a finite number of manifolds of lower dimension can
be written as kz, where k e Knj ze Zn (the unipotent lower triangular
matrices). Put

z, 0

where ZieZn. (i = 1, 2). Consider

Π p~nιh s

\J C ιϋ2t

where &; e Kn. and c is a nonzero complex number. Then

s-iλς 1 0 \ / z, 0

0 c%1k

For fixed z19 z2, we want to find kly k2 such t h a t

-'fcΓ1 0 \ I z, 0

0 c%ι

• \s0j L> ΓV2 O^ΓL/^/ί/^ <V y ί.\j.

(10) c' i+-=
Let us write

/ TJ I.'

where A[ and k" are upper triangular of orders n2 and (%, — nj re-
spectively. (10) is equivalent to

(11) c' i+ ί̂Aς-^ofc; A ς - 1 ^ = z V 1 .

It is easy to see that complement of

-igo&[ kςιsjc') I ce C* &[, k2eKnΐ, k' is a %2x {%,_—»2)-matrix}
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in the set of all n2 x nx matrices has Haar measure zero,7 In other
words, for fixed zv and for almost all 2', the equation (11) and hence
(10) has a solution. Thus for almost all z, there exists geGnv%2 and
k e Knι,n2 c Kn such that ksg — z.

We can now apply Theorem 1,3 and get T%\Gnvn^~ indH,tGni,%2 χ.
It is easy to see that H' = Gnv%2 Π s"1 Kns is the subgroup of all
matrices of the from

/ 0

k

0
where ^ e C * , and k is an upper triangular matrix of order nx — n2

such that δl δ% det k = 1. Since shs"1 = λ for every h e H', χ is
simply the restriction of χ to H'. Put

and let L' be the subgroup of all matrices of the form

i 1 \

0
where δiβC*. Then If' is the generalized direct product of Hr and
U such that £Γ Π L' is the finite subgroup of U consisting of all
matrices of the above form with ^ = + 1 or ~ 1 . By Corollary 2.2
we have

i n d X\H,nL,
HOL' ΐL'

ind χ s χ U,
H' IK'

= X\H'

where I is taken over the set of all xeL' such that x\H^Lr — χ\ Hni,,

Therefore

7 This can be seen by using a similar result for SL (n, C) proved in [3].
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ind χ s Γ χ \H, - x dx
H'\Kf J

— 1 X dx ,

where A- is the set of all one-dimensional representations of Kf which

extends χ and dx is the transform of the Haar measure of AlR, (viewed

as a locally compact abelian group) by the translation

X I • XQX, X G AlH,, XO

is a fixed element of A-. In summary, we have by Theorems 1.1 and
1.5

Γ * | σ s ind ( ind χ)

~ \ ind λ dλ .

Since i£' is also the generalized direct product of D%v%2 and

Ku—Λfnir ni x ^%2 w e c a n w r ^ e by using Corollary 2.2 and Theorem 1.2 :

(13) ind λ s λ | D n i , n z ind λ U χ,, ind λ | , .
K'ΪGni,n2 Kl, , Un^n2 \SL{nvO *> *1*nl n2 * \SLίn2,Q) 2

I t remains to apply Lemma 3.3 or Corollary 3.2 and carry out the
computations. We have

THEOREM 3.5. Let n — nγ + n2, nγ, n2 ̂  2. Then the restriction
of the element T{m^">Pn) of the non-degenerate principal series of
SL (n, C) to Gnv%2 is equivalent to

'"'k^ ^-"^ dσ2 . dσn
mi (mod ») J J

where U{k2''"'On) is an element of the principal series of GWl,W2.

Proof. Using the explicit parametrization of the set A~ occurring
in (12) we see that the restriction of T^2'"'^^ to G%v%2 is equivalent
to

(14) Σ \ \ i n d (K σn) dσ2- dσ + 1 ,

where fcΛ2+2, •• , kn; σn2+2, •••, σn depend linearly on Λ2, ••-, k%2+l;
&2, •> ̂ 2 + i by some simple formula. P u t λ = (fc2, , kn; σ2, , σ Λ ) .
Then Lemma 3.3 (or Corollary 3.2) and (13) show t h a t :
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ind λ ~ Σr Σ"

(15)
x T{h*Ί+2y'"'τnydτ2 dτ'ni dτ'nι+2 dτ'n ,

where Σf extends over all (hi, , h'n) such that Σ ? 1 K Ξ Σ ? 1 &*
(modwj), and I 7 " over all (h!ni+2i •••, /C) such that Σ ^ + 2 ^ = Σ^+i&t
(mod^2). By Corollary 2.2 λ ^ ^ f H ' - ' ^ x Γ ^ + ^ - ' ^ is equivalent
to an element U{h2'"''Tn) of the principal series of G%l7l2 where
Ok, •••, τ"«) can be easily computed in terms of h< and < . Using this
parametrization, (15) becomes

(16) ind λ ^ I 7 \ cχ3 U{h^'"-^ dτ2 . dτ dτ +2 - - - dτn ,
τrrΛf J J

where I7 extends over all (h2, , hn) such that

(mod M,2)

(17)

and

Thus applying Theorem 1.5 to (14) and taking (16) into account we
get

Λ 2 ' ' A ; % + 1

'T-] dσ2--- dσ%2+1dτ2 . . . dτnχdτni+2 - - - dτn .

Fix Λ2, , ftΛ2+1, Λ2, , Λw, σ2, , σ%2. Then the mapping

is a measure preserving homeomorphism of R71 x onto itself. Since
each component in the above decomposition is independent of
#2, ' *,<7n2 and the multiplicity is already everywhere infinite, the
decomposition itself is equivalent to

Σ Σ \ . . . ( - U{h*> ~>^]dτ2.-.dτn.

Now it is easy to see (k2, , k%2+1J h2, , λw) H-> (Λ2, , hn) maps the
set of all (fc2, , A;Λ2+1, Λg, , ftn) satisfying (17) onto the set of all
Ok, , Aw)

 s ^ c h t h a t Σ Γ h = Σ Γ W< (mod n).
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We now come to the general case. Let ΰ ί be a fundamental
domain defined in § 2.

THEOREM 3.6 Let n — nγ + + nr, r ^ 2. In the case r — 2
we also assume n19 n2 ^ 2. Then the restriction of T{m2'"'"°n) to

Gnv...tnr is equivalent to Σ I .. I oo U{k2''"'°2) dσ2 - * - dσn where

jj(k2,--,σn) }yeιongS to tfa principal series of GΛl,...,«r and Σ 1 \ is

the summation integral over the set of all (&2, , σn) e Di such that
Σiΐ h = ΈΛI Mi (mod n).

Proof. We shall use an induction on r. Put m = nx + + nr^.
Then 6 n i , . . ! l l f c G M ) V Thanks to Theorem 3.5 it is sufficient to
decompose the restriction to Gnv....%r of any element Up of the prin-
cipal series of Gm,%r. On the other hand Corollary 2.2. gives

where Pi = p\κmi P2 = p\κn and TPl, TP2 are the corresponding
elements of the non-degenerate principal series of SL(m, C) and SL
(nr, C) respectively. Therefore

By induction hypothesis, TPl \Gn ...^ _ is decomposed in terms of the
principal series of Crni,...,Wr_lT hence we have decomposed Up | Gn t... n

in terms of representations of the form p\Dmn (Uσ x Tpή, where Uσ

is some element of the principal series of Gnv... Wr_1. In fact those
representations occurring in the decomposition are elements of the
principal series of Gnv...i%r as seen easily by Corollary 2.2.

Again the detailed computation is based on some change of vari-
ables similar to that in the proof of Theorem 3.5 and will not be
repeated here.

COROLLARY 3.7. The restriction of every element of the non-
degenerate principal series of SL(n, C) to SL(nly C) x x SL(nr, C)
is equivalent to the regular representation.

4* Application to the decomposition of some tensor products*
It is known that the character of D%v... nr is parametrized by
Zr~ι x Rr~1.8 Let χ = (k2, , σr) be such a character, then χ extends
in an obvious manner to a one-dimensional representation of the sub-

8 See [3] for an explicit description and the proof of the irreducibility of the de-
generate principal series.
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group Hnv...,%r consisting of all block matrices g — {gi3)ιsi.,3^r such that
gi3 = 0 for i > j . More explicitly

χ(g) = i i-

for g = (gu) e Hnv...,%r. This representation induces to an irreducible

representation of G8 belonging to the (nlf , nr)-degenerate principal

series of G and denoted by T%. Let T% be any element of the non-

degenerate principal series. The problem is to decompose T% ® T%

into irreducible repesentations of G. Since Hni,...inr z> Kn1 the com-

plement of the double coset Kns0Hnι,...,nr in G has Haar measure

zero.7 Recall that

/0 1 \

e SL(n, C) .
1

± 1 0 /

It is clear that Kn Π s0Hnv...,nrs^1 = ϋΓΛr,...fl. Put χ'(fc) -
, for keKnr>...yn. Theorems 1.4 and 1.1 give us

(18) T χ ® f * ~ ind // - ind Ur .

LEMMA 4.1. Let n = nx + + nr be as in Theorem 3.6. Then

(19) ind U{m2'-"'p^ ~ Σ f ί oo T[k^"'σ^dσ2 - * - dσn ,

• \ is ίfee summation-integral over the set of all

(k2, , σn) e DQ

n such that Y2 kt = Σ ^ m< (mod w).

Proof. Corollary 1.10 together with Theorem 3.6 prove t h a t (19)
is valid for every m2, •••, m% and for almost all p21 •••, ̂ . On the
other hand, let H'%ι...,nr = sQH%r>...>ni s^1 Z) Z w . Then the complement of
ίΓ%l,... Wr Kn in G has Haar measure zero. Thus by Theorems 1.3
and 1.1:

On the other hand

n

if and only if ]Γ^ m^ = Σ m ί (modti). This equivalence can be proved
2

by using a slight modification of the proof of Theorem 3 of [4]
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Therefore

ind W**''"'^ = ind U{m^"'p/^

if and only if Σ2 m>% = Σ2 wj (mod w).

THEOREM 4.2. TAe tensor product of an element τ{m»'"'p*) of the
non-degenerate and an element 2*<*2. »**•> of the (nly , nr)-degenerate

principal series of SL(n, C) is equivalent to Σ I ••• U J P ^ ' " 1 ^ dτ2

• dτn where Σ I \ is the summation-integral over the set of all

(As, , AΛ; r2, , τΛ) e jDi swcA ίAαί Σ ? A< Ξ= Σ ? ^H + ΊLl^ih (mod ^ ) .

The multiplicity ε — oo if (a) r > 2 or (b) r = 2 and ^ , ̂ 2 ̂  2.
Otherwise ε = 1.

Proof. It is enough to apply Lemma 4.1 in the first case (e=oo)
or Corollary 3.2 in the second case (ε = 1) to obtain the decomposition
of the induced representation occurring in the right hand side of (18).

In the special case r = n, T{h*'"'σ*) is another element of the non-
degenerate principal series and hence

COROLLARY 4.3. The tensor product T{m^"tP^ 0 r<*2» »«»> of two

elements of the nondegenerate principal series of SL(n, C) can be de-

composed as follows: Σ \ ••• \eT(h^'"'Tn) dτ2 ••• dτn, where Σ \ ••• I

is the summation-integral over the set of all (h2, , rn) e D°n such

that Σ ? A< Ξ Σz (w& + ft<) (mod ̂ ) , α^ώ ε = 1 i/ r = 2, ε = oo <£/
r > 2.

REFERENCES

1. N. Bourbaki, Elements de Mathematiques, Livre VI, Integration. Chapitre 7,
Mesure de Haar, Herman, Paris (1963).
2. J. Dixmier, Les C* algebres et leurs representations, Gauthier-Villars, Paris (1964).
3. I. M. Gelf and and M. A. Naimark, Unitdre Darstellungen der klassischen Gruppen
Akademie Verlag, Berlin (1957).
4. R. A. Kunze and E. M. Stein, Uniformly bounded representations II. Amer. J.
Math., 8 3 (1961), 723-786.
5. G. W. Mackey, Induced representations of locally compact groups L Annals of
Math., (2) 55 (1952), 101-139.
0. , Induced representations of locally compact groups II., Annals of Math.
(2) 58 (1953), pp. 193-221.
7. E. M. Stein, Analysis in matrix spaces and some new representations of SL(n,C),
Annals of Math., (2) 86 (1967), pp, 461-490.



314 NGUYEN-HUU-ANH

Received August 5, 1970. This work supported in part by National Science Foun-
dation Grant GP-7952X2.

UNIVERSITY OF CALIFORNIA, LOS ANGELES

AND

THE INSTITUTE FOR ADVANCED STUDY, PRINCETON




