HOMOTOPY GROUPS OF PL-EMBEDDING SPACES, II

L. S. HUSCH

THEOREM. For $i \leq m-2$ and $n \leq m-3$, $\pi_i PL(S^n, S^m)$ is isomorphic to $\pi_i V_{m,n}^{PL}$, the homotopy groups of the *PL*-Stiefel manifold of *n*-planes in Euclidean *m*-space.

E. C. Zeeman [10] conjectured that the homotopy groups, $\pi_i PL(S^n, S^m)$, $m \ge n + i + 3$, of the space of *PL*-embeddings of the *n*-sphere into the *m*-sphere were trivial. As indicated in [4], results of M. C. Irwin [5] and C. Morlet [7] can be used to verify this conjecture. In the theorem above, we generalize this result.

In particular, we have the following [2].

COROLLARY. $\pi_i PL(S^n, S^m) = 0$ for i < m - n.

The author expresses his gratitude to N. Max for correcting errors in an earlier version of this note.

We shall assume familiarity with the Δ -set theory of C. P. Rourke and B. J. Sanderson [9] (or equivalently, the quasisimplicial theory of C. Morlet [8]). Let Δ^i be the standard *i*-simplex and let $\partial_k: \Delta^i \to \Delta^{i-1}$ be the *k*th face map. We shall consider the following Δ -sets which are easily seen to be Kan Δ -sets. We indicate an *i*-simplex from each. All maps commute with the projection along the second factor and $\partial_k f$ is defined to be the restriction to the product of the appropriate set and $\partial_k \Delta^i$.

R .	
$PL(S^n, S^m)$	$f \colon S^n imes \varDelta^i o S^m imes \varDelta^i$ is a <i>PL</i> -embedding.
$PL(S^n, S^m \mod X)$	$f: S^n \times \varDelta^i \longrightarrow S^m \times \varDelta^i$ is a <i>PL</i> -embedding such
	that $f X imes \varDelta^i$ is the identity, $X\subseteq S^n$.
$\operatorname{Aut}(S^m)$	$f\colon S^m imes \varDelta^i o S^m imes \varDelta^i$ is a PL automorphism.
$\operatorname{Aut}(S^m \mod X)$	$f\colon S^m imes \varDelta^i o S^m imes \varDelta^i$ is a <i>PL</i> -automorphism such
	that $f X imes \varDelta^i$ is the identity, $X \subseteq S^m$.
PL_m	Germ of a <i>PL</i> -automorphism $f: \mathbb{R}^m \times \mathbb{A}^i \longrightarrow \mathbb{R}^m \times \mathbb{A}^i$
	such that $f 0 \times \varDelta^i$ is the identity; R^m is Eu-
	clidean m -space and 0 is the origin.
$PL_{m n}$	Germ of a <i>PL</i> -automorphism $f: \mathbb{R}^m \times \Delta^i \longrightarrow \mathbb{R}^m \times \Delta^i$
	such that $f R^n \times \varDelta^i$ is the identity; $R^n = R^n \times 0 \subseteq$
	$R^n imes R^{m-n}=R^m.$
The quotient complex $PL_{i}/PL_{i} - V^{PL}$ is the PL_{i} Stiefel manifold	

The quotient complex $PL_m/PL_{m,n} = V_{m,n}^{PL}$ is the *PL*-Stiefel manifold introduced by A. Heafliger and V. Poenaru [1].

PROPOSITION 1. $PL_{m,n} \subseteq PL_m \xrightarrow{p} V_{m,n}^{PL}$ is a Kan fibration where p_{j} is the natural projection.

Let $S^n \subseteq S^m$ be the standard inclusion and define $r: \operatorname{Aut}(S^m) \to PL(S^n, S^m)$ by $r(f) = f | S^n \times \mathcal{A}^i$ where f is an *i*-simplex of $\operatorname{Aut}(S^m)$. The following was proved by C. Morlet [8].

PROPOSITION 2. Aut $(S^m \mod S^n) \subseteq \operatorname{Aut}(S^m) \xrightarrow{r} PL(S^n, S^m)$ is a Kan fibration.

Let x and y be distinct points of S^n and define similar to r the map $r': \operatorname{Aut}(S^m \mod x, y) \longrightarrow PL(S^n, S^m \mod x, y)$. One can similarly prove the following.

PROPOSITION 3. Aut $(S^m \mod S^n) \subseteq \operatorname{Aut}(S^m \mod x, y) \xrightarrow{r'} PL(S^n, S^m \mod x, y)$ is a Kan fibration.

Let $h: S^m - x \to R^m$ be a *PL*-homeomorphism such that h is onto, $h(S^n - x) = R^n$ and h(y) = 0. Define $q: \operatorname{Aut}(S^m \mod x, y) \to PL_m$ by q(f) $= \operatorname{germ} \operatorname{of} (h \times id.)f(h \times id.)^{-1}$. Note that $q(\operatorname{Aut}(S^m \mod S^n)) \subseteq PL_{m.n}$. Let $q' = q |\operatorname{Aut}(S^m \mod S^n): \operatorname{Aut}(S^m \mod S^n) \to PL_{m.n}$.

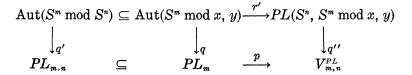
PROPOSITION 4. q and q' are homotopy equivalences.

The first part was proved by N. H. Kuiper and R. K. Lashof [6] and the second part can be proved similarly, also, from [6] we have the following.

PROPOSITION 5. The inclusion $\operatorname{Aut}(S^m \mod x, y) \subseteq \operatorname{Aut}(S^m)$ induces isomorphisms $\pi_i \operatorname{Aut}(S^m \mod x, y) \to \pi_i \operatorname{Aut}(S^m)$ for $i \leq m - 2$.

Let f be an *i*-simplex in $PL(S^n, S^m \mod x, y)$. By J. F. P. Hudson [3], there exists an *i*-simplex f' in $Aut(S^m \mod x, y)$ such that r'(f') = f. Define $q'': PL(S^n, S^m \mod x, y) \to V_{m,n}^{PL}$ by q''(f) = pq(f').

PROPOSITION 6. q'' is a well defined Δ -map such that the following diagram is commutative.



Proof. Suppose $F'' \in \operatorname{Aut}(S^m \mod x, y)$ such that r'(F'') = f. Hence there exists $g \in \operatorname{Aut}(S^m \mod S^n)$ such that F'' = gf'. Therefore, q(F'') = q(gf') = q(g)q(f') and pq(F'') = pq(f') since q(g) is in $PL_{m,n}$.

654

Proof of Theorem. It follows from the above propositions that q'' induces isomorphisms $\pi_i PL(S^n, S^m \mod x, y) \to \pi_i V_{m,n}^{PL}$ for all *i*. Note that the following diagram is commutative.

 $\begin{array}{ccc}\operatorname{Aut}(S^{m} \bmod S^{n}) \subseteq \operatorname{Aut}(S^{m} \bmod x, y) \xrightarrow{r'} PL(S^{n}, S^{m} \bmod x, y) \\ & & & & & & \\ & & & & & & \\ \operatorname{Aut}(S^{m} \bmod S^{n}) \subseteq & \operatorname{Aut}(S^{m}) & \xrightarrow{r} PL(S^{n}, S^{m}). \end{array}$

Hence, from the above propositions, the inclusion induces isomorphisms $\pi_i PL(S^n, S^m \mod x, y) \rightarrow \pi_i PL(S^n, S^m)$ for $i \leq m - 2$, from which the theorem follows.

References

1. A. Haefliger and V. Poenaru, *Le classification des immersions combinatoires*, Inst. Hautes Études Sci. Publ. Math. No. 23 (1964), 75-91.

2. A. Haefliger and C. T. C. Wall, *Piecewise linear bundles in the stable range*, Topology, 4 (1965), 209-214.

3. J. F. P. Hudson, *Extending piecewise linear isotopies*, Proc. London Math. Soc., (3) **16** (1966), 651–668.

4. L. S. Husch., Homotopy groups of PL-embedding spaces, Pacific J. Math., 33 (1970), 149-155.

5. M. C. Irwin, Embeddings of polyhedral mainfolds, Ann. of Math. (2) 82 (1965), 1-14.

6. N. H. Kuiper and R. K. Lashof, Microbundles and bundles. II. Semisimplicial theory, Invent. Math., 1 (1966), 243-259.

 C. Morlet, Isotopie et pseudo-isotopie, C. R. Acad. Sc. Paris, 266 (1968), A599-A560.
_____, Les méthodes de la topologie differéntielle dans l'étude des variétés semilinéaires, Ann. Scient. Ec. Norm. Sup., (4) 1 (1968), 313-394.

C. P. Rouke and B. J. Sanderson, On the homotopy theory of *A*-sets. (to appear).
E. C. Zeeman, Seminar on combinatorial topology, Inst. des Hautes Études Sci., Paris (1963).

Received November 6, 1969, Research supported in part by NSF Grant GP-15357.

VIRGINIA POLYTECHNIC INSTITUTE