SEMI-ORTHOGONALITY IN RICKART RINGS

LOUIS HERMAN

This note initiates a study of the semi-orthogonality relation on the lattice of principal left ideals generated by idempotents of a Rickart ring. It will be seen that two left ideals in a von Neumann algebra are semi-orthogonal if and only if their unique generating projections are non-asymptotic. Connections between semi-orthogonality, dual modularity, von Neumann regularity, and algebraic equivalence will be established; those Rickart rings with a superabundance of semi-orthogonal left ideals will be characterized.

A regular ring is a ring A with identity in which each element $a \in A$ is regular in the sense that aba = a for some element $b \in A$. A Rickart ring is a ring A with identity in which the left (and right) annihilator of each element is a principal left (right) ideal generated by an idempotent. Regular rings and Baer rings, as defined by Kaplansky [4], are special cases of Rickart rings: in particular, then, a von Neumann algebra is a Rickart ring. Rickart rings are called Baer rings in [2]. Throughout this note, A will denote a Rickart ring. L(M) and R(M) will denote respectively the left and right annihilators of a subset M of A. The letters e, f, g, h and k will denote idempotents and the letters E, F, G, H and K will denote the left ideals they generate.

Ordered by set inclusion, the set L(A) of principal left ideals generated by idempotents forms a lattice. If E and F form a modular pair in L(A), we shall write (E, F)M; if E and F form a dual modular pair in L(A), we shall write $(E, F)M^*$. Following S. Maeda [6], we shall say that two left ideals E and F in L(A) are semi-orthogonal, $E \sharp F$, if they are generated by orthogonal idempotents. Maeda shows that the semi-orthogonality relation \sharp on L(A) has these properties: (1) If $E \sharp E$, then E = (0); (2) If $E \sharp F$, then $F \sharp E$; (3) If $E_1 \leq E$ and $E \sharp F$, then $E_1 \sharp F$; (4) If $E \sharp F$ and $E \vee F \sharp G$, then $E \sharp F \vee G$; (5) If $E \leq F$, then there is a left ideal G in L(A) such that $E \vee G = F$ and $E \sharp G$.

The results herein form a portion of the author's dissertation, submitted to the Graduate School of the University of Massachusetts and directed by Professor D. J. Foulis.

2. Semi-orthogonal left ideals. In this section, we give geometric meaning to Maeda's canonical semi-orthogonality relation in L(A).

THEOREM 1. Let E = Ae and F = Af. Then the following conditions are equivalent:

- (1) E # F.
- (2) $E \cap F = (0)$ and e(1 f) is regular in A.
- (3) $E \oplus F = E \vee F \text{ in } L(A)$.

Proof. The proofs of (1) implies (2) and of (3) implies (1) are routine. To see that (2) implies (3), we suppose that e(1-f)xe(1-f)=e(1-f) for some $x \in A$. Put g=(1-f)xe(1-f). Then fg=0=gf and eg=e(1-f)xe(1-f)=e(1-f)=e-ef. Then $g^2=(1-f)xe(1-f)g=(1-f)xeg=(1-f)xe(1-f)=g$ and $(f+g)^2=f+fg+gf+g=f+g$.

We claim that $E \oplus F = A(f+g)$. But $f = (f+g) - g(f+g) \in A(f+g)$ and $e = ef + eg = e(f+g) \in A(f+g)$. Thus $E \oplus F \leq A(f+g)$. Conversely, $f+g=f+(1-f)xe(1-f)=(1-f)xe+(1-xe+fxe)f \in E \oplus F$. Hence $E \oplus F = A(f+g) \in L(A)$.

We can find perspicacious geometric and topological interpretations for each of these equivalent conditions in the ring of bounded operators on a Hilbert space or, more generally, in any von Neumann algebra. In such a ring, any left annihilator is a principal left ideal generated by a unique projection (= self-adjoint idempotent). Let e and f denote the unique generating projections of E and F respectively: we shall identify these projections with their ranges.

If $e \wedge f = 0$, e and f are said to be asymptotic if $\sup |\langle \alpha, \beta \rangle| = 1$, where $||\alpha|| = 1 = ||\beta||$, $\alpha \in e$, $\beta \in f$; otherwise e and f are said to be non-asymptotic. It is known [5, p. 166 and pp. 172-174] that these conditions are equivalent: (1) e and f form a non-asymptotic pair; (2) The projection map of the subspace $e \oplus f$ onto e is continuous; (3) The vector sum of e and f is a closed subspace; (4) $(e, f)M^*$ in the projection lattice of the ring of all bounded operators on the underlying Hilbert space. The relation of semi-orthogonality to non-asymptoticity is provocative; for, by modifying results of Jacob Feldman [1, pp. 12-14], it is easy to verify that $E \not\equiv F$ if and only if e and f form a non-asymptotic pair.

Our next result, though appearing an immediate consequence of Theorem 1 (2), seems to require a measure of prestidigitatorial skill with idempotents.

COROLLARY 1. ef is regular if and only if (1 - f)(1 - e) is regular.

Proof. We prefer to demonstrate the obviously equivalent statement: If e(1-f) is regular, then so is f(1-e). To this end, choose

an idempotent h with $Ah = Ae \cap Af$. Put $e_1 = e + h - eh$ and $f_1 = f + h - fh$. Then e_1 and f_1 are idempotent generators for Ae and Af respectively and $h = he_1 = e_1h = hf_1 = f_1h$. By direct computation, we have $e_1(1-f_1) = e(1-f)(1-h)$ and $f_1(1-e_1) = f(1-e)(1-h)$. Since e(1-f) is regular, e(1-f)xe(1-f) = e(1-f) for some $x \in A$. Then, an easy computation shows $e_1(1-f_1)[(1-f)x]e_1(1-f) = e_1(1-f_1)$; thus $e_1(1-f_1)$ is regular.

Put $e_0=e_1(1-h)$ and $f_0=f_1(1-h)$. Then $e_0(1-f_0)=e_1(1-f_1)$ is regular. Moreover, if $z\in Ae_0\cap Af_0\leq Ae_1\cap Af_1=Ah$, then z=zh $(ze_0)h=ze_1(1-h)h=0$; so $Ae_0\cap Af_0=(0)$. Then by Theorem 1 (2), we have $Ae_0 \# Af_0$.

Consequently, $f(1-e)(1-h) = f_1(1-e_1) = f_0(1-e_0)$ is regular. Then f(1-e)(1-h)yf(1-e)(1-h) = f(1-e)(1-h) for some element $y \in A$. But this means that f(1-e)(1-h)yf(1-e) - f(1-e) = f(1-e)(1-h)yf(1-e)h - f(1-e)h is an element of $A(1-e) \cap Ah = A(1-e) \cap Ae \cap Af = (0)$. Thus f(1-e)[(1-h)y]f(1-e) = f(1-e)(1-h)yf(1-e) = f(1-e), showing that f(1-e) is regular in A.

COROLLARY 2. If E # F, then (E, F)M and $(E, F)M^*$ in L(A).

Proof. A proof that E and F form a modular pair is given by Maeda [6, Lm. 1]. Now suppose that $Ae \sharp Af$ with $Af \leq Ag \leq Ae \bigoplus Af$. Then g = xe + yf for some elements x and y in A. Then $xe = g - yf \in Ae \cap Ag$ and we have $g = xe + yf \in (Ae \cap Ag) \bigoplus Af$. Thus $Ag \leq (Ae \cap Ag) \bigoplus Af$. Since the opposite inclusion is evident, $Ag = (Ae \cap Ag) \bigoplus Af$. Hence $(Ae, Af)M^*$.

3. Equivalence of left ideals. Two left ideals E and F in L(A) are semi-orthogonally perspective via $G, G: E \sim F$, if $E \oplus G = E \vee F = G \oplus F$ with $E \sharp G$ and $G \sharp F$. The importance of this relation is exemplified in the following result:

THEOREM 1. If $G: E \sim F$, then the mapping $E_0 \to \mathcal{P}(E_0) = (E_0 \oplus G) \cap F$ is a lattice isomorphism of the principal lattice ideal generated by E in L(A) onto the principal lattice ideal generated by F in L(A). Under this mapping, moreover, semi-orthogonal left ideals contained in E correspond with semi-orthogonal left ideals contained in F.

Proof. The proof is entirely lattice theoretic. Define a mapping ψ by $F_0 \to (G \oplus F_0) \cap E$ for each $F_0 \leq F$; clearly both φ and ψ are isotone maps. By Corollary 2.2, we have $(F,G)M^*$ and (G,E)M. With these modularity relations, it is easy to compute $(\psi \circ \varphi)(E_0) = E_0$ for all $E_0 \leq E$. Similarly $(\varphi \circ \varphi)(F_0) = F_0$ for all $F_0 \leq F$. Thus φ is a lattice isomorphism with ψ its inverse mapping.

Now suppose $E_1, E_2 \leq E$ with $E_1 \sharp E_2$. Since $E \sharp G$, $E_1 \oplus E_2 \sharp G$ also. Then $E_1 \oplus G \sharp E_2$ and we may compute $\varphi(E_1) \oplus G = [(E_1 \oplus G) \cap F] \oplus G = (E_1 \oplus G) \cap (F \oplus G) = (E_1 \oplus G) \cap (E \oplus G) = E_1 \oplus G \sharp E_2$, since $(F, G)M^*$. Thus $\varphi(E_1) \sharp E_2 \oplus G$, so that $\varphi(E_1) \sharp \varphi(E_2)$. Conversely, if $F_1, F_2 \leq F$ with $F_1 \sharp F_2$, a similar argument shows $\psi(F_1) \sharp \psi(F_2)$.

LEMMA 1. [7, Th. 2]. Let eA = aA and Af = Aa. Then there exists a unique element $a^+ \in A$ such that

- (1) $aa^+ = e$.
- (2) $fa^+ = a^+$.

Moreover,

- (3) $a^+a = f$.
- (4) $Ae = Aa^{+}$.
- (5) $fA = a^{+}A$.
- (6) $a = aa^{+}a$.
- (7) $a^+ = a^+ a a^+$.

Two idempotents e and f are algebraically equivalent via a and $b(a, b; e \sim f)$ if $e = ab, f = ba, a \in eAf$ and $b \in fAe$. This is easily seen to be an equivalence relation. The idempotents e and f are algebraically equivalent if and only if Ae and Af are isomorphic A-modules; moreover, in that case, the mapping $x \to bxa$ is a ring isomorphism of eAe onto fAf [4, pp. 21-23].

Notice that by Lemma 1, if eA = aA and Af = Aa, then e and f are algebraically equivalent via a, a^+ . This observation enables us to relate algebraic equivalence in A to semi-orthogonal perspectivity in L(A).

THEOREM 2. If $Ae \sim Af$, then $e \sim f$.

Proof. Suppose $Ag: Ae \sim Af$. Put a = e(1-g) and b = f(1-g); then a and b are regular by Theorem 2.1 (2). An easy computation shows eA = RL(e) = RL(e(1-g)) = RL(a) = aA and similarly fA = bA. Moreover, $Ae \oplus Ag = Ag \oplus Af$ implies R(a) = R(b); thus Aa = LR(a) = LR(b) = Ab. Choose an idempotent h with Ah = Aa = Ab. Then by our observation above, $e \sim h$ and $h \sim f$. Hence $e \sim f$.

For semi-orthogonal left ideals, the converse of Theorem 2 is also valid. We prove this as a first consequence of Lemma 2. With Ae # Af, this fundamental lemma establishes a bijection of eAf onto, what might be termed, the set of relative semi-orthocomplements of Af in $Ae \bigoplus Af$.

LEMMA 2. Let E = Ae and F = Af with E # F.

(1) If $G \oplus F = E \oplus F$ with $G \in L(A)$, then G = A(e - a) for some

unique $a \in eAf$.

- (2) If $a \in eAf$, then there exists a left ideal $G \in L(A)$ such that
 - (i) G = A(e a).
 - (ii) $G \oplus F = E \oplus F$.
 - (iii) $E \vee G = E \oplus LR(a)$.
 - (iv) $E \cap G = E \cap L(a)$.

Proof. To prove (1), let g be an idempotent generator for G. Choose w and x in A such that e = wg + xf. Then e = ewg + exf. Put a = exf. Then $e - a = ewg \in G$; so $A(e - a) \leq G$. Conversely, g = ye + zf = y(e - a) + ya + zf = yewg + ya + zf for some $y, z \in A$. But $g - yewg = ya + zf \in G \cap F = (0)$, so that g = yewg = y(e - a). Hence $G = Ag \leq A(e - a)$.

If also $b \in F = Af$ with $e - b \in G$, then $a - b = (e - b) - (e - a) \in G \cap F = (0)$; so a = b. This establishes the uniqueness of a.

To prove (2), let e_0 and f_0 denote orthogonal idempotent generators for E and F respectively. Put $g=e_0-e_0a$ and G=Ag. Since $ae_0=afe_0=aff_0e_0=0$, we find that $g=g^2$. Thus $G\in L(A)$. Now $g=e_0(e-a)$ and $e-a=e(e_0-e_0a)=eg$ implies G=Ag=A(e-a), proving (i). The remaining parts of (2) are straightforward computations.

THEOREM 2. Let Ae # Af. Then $Ae \sim Af$ if and only if $e \sim f$.

Proof. Suppose $a, b: e \sim f$. Put G = A(e-a) and H = A(f-b). Then by Lemma 2 (2), $G \oplus Af = Ae \oplus Af = Ae \oplus H$. But e-a = ab-a = a(b-f) = -a(f-b) and f-b=ba-b=b(a-e) = -b(e-a), showing that G = A(e-a) = A(f-b) = H. Thus $Ae \oplus G = Ae \oplus Af = G \oplus Af$.

4. Regularity. In this section, we characterize those Rickart rings A in which $E \cap F = (0)$ implies $E \not\equiv F$ for all E and F in L(A). It will be convenient in the two lemmas and in Theorem 1 to adopt some notation. Let a and b denote regular elements with Ae = Aa and fA = bA. Choose a^+ and b^+ by Lemma 3.1 so that $a^+a = e$ and $bb^+ = f$; choose idempotent generators g and h of LR(ab) and RL(ab) respectively. In the context of Rickart *-semigroups, Theorem 1 is due to D. J. Foulis [2].

LEMMA 1. If eb or af is regular, then so is ab.

Proof. Suppose eb is regular. Choose an idempotent generator k for Aeb and choose $(eb)^+$ so that $(eb)^+eb=k$. Put $x=(eb)^+a^+h$. Then $xab=(eb)^+a^+hab=(eb)^+a^+ab=(eb)^+eb=k$. Then abxab=abk=(ae)bk=a(eb)k=a(eb)=(ae)b=ab, showing that ab is regular. The argument for af is similar.

LEMMA 2. If ab is regular, so are eb and af.

Proof. Choose $(ab)^+$ so that $ab(ab)^+ = h$. Let k denote an idempotent generator of LR(ef) and put $x = kb(ab)^+$. Then $afx = afkb(ab)^+ = (ae) fkb(ab)^+ = a(ef) kb(ab)^+ = a(ef) kb(ab)^+ = (ae) fb(ab)^+ = afb(ab)^+ = ab(ab)^+ = af$. Hence $afxaf = haf = habb^+ = abb^+ = af$, showing that af is regular. Similarly af is regular.

THEOREM 1. ab is regular if and only if ef is regular.

Proof. If ab is regular, then so is eb by Lemma 2. Since eb is regular, so is ef by Lemma 2 again, applied with a = e.

Conversely, if ef is regular, then so is eb by Lemma 1, applied with a = e. Then since eb is regular, so is ab by Lemma 1 again.

Theorem 2. These conditions are equivalent:

- (1) ef is regular for every idempotent e and f.
- (2) If a and b are regular, then so is ab.
- (3) If $E \cap F = (0)$, then E # F.

Moreover, if A is a matrix ring, we may add

(4) A is a regular ring.

Proof. The equivalence of (1) and (2) is a consequence of Theorem 1. That (1) implies (3) is a consequence of Theorem 2.1 (2). Using the notation of the proof of Corollary 2.1, we may show that (3) implies (1); with E = Ae and F = Af, we have $Ae_0 \cap Af_0 = (0)$ as before. Then by (3), $Ae_0 \sharp Af_0$. Consequently, $e_1(1-f_1) = e_0(1-f_0)$ is regular by Theorem 2.1, and hence e(1-f) is regular. Thus (3) implies e(1-f) is regular for every idempotent e and f, and this is evidently equivalent to (1).

Let us now suppose that A is a Rickart matrix ring of order ≥ 2 . If A is a regular ring, then $E \cap F = (0)$ implies $E \not\equiv F$ for all E and F in L(A) by Theorem 2.1. Conversely, if this condition holds for all E and F in L(A), we show that A is a regular ring. To this end, let e_{ij} , $1 \leq i, j \leq n$, be a family of matrix units for A. We shall show that $e_{i1}Ae_{i1}$ and hence A, which is isomorphic to the $n \times n$ matrix ring over $e_{i1}Ae_{i1}$, is a regular ring.

Let $e_{11}xe_{11}$ denote an arbitrary element in $e_{11}Ae_{11}$; put $a=e_{11}xe_{12}$ and choose idempotent generators e and f for RL(a) and LR(a) respectively. Since R(f)=R(a), $ae_{ii}=0$ for $i\neq 2$ implies $fe_{ii}=0$ for $i\neq 2$; since L(e)=L(a), $e_{22}a=0$ implies $e_{22}e=0$. Thus $fe=f(\Sigma e_{ii})e=(\Sigma fe_{ii})e=(fe_{22})e=f(e_{22}e)=0$, showing that $Ae\cap Af=(0)$. Moreover f(1-e)=f is regular. Hence Ae # Af.

Now let e_0 and f_0 denote orthogonal idempotents generating Ae and Af respectively. Put $g=e_0-e_0a$. Then, as in the proof of Lemma 3.2, a=e(1-g) and Ag=A(e-a). Thus $Ae\cap Ag=Ae\cap L(a)=Ae\cap L(e)=(0)$. Then by hypothesis, Ae # Ag. But this means that a=e(1-g) is regular in A. Choose an element b in A with aba=a. Then

$$(e_{11}xe_{12})b(e_{11}xe_{12}) = aba = a = e_{11}xe_{12}$$

or equivalently

$$(e_{11}xe_{12})b(e_{11}xe_{11}) = e_{11}xe_{11}.$$

Thus

$$(e_{11}xe_{11})(e_{12}be_{11})(e_{11}xe_{11}) = e_{11}xe_{11},$$

showing that $e_{11}xe_{11}$ is a regular element of $e_{11}Ae_{11}$.

Hence $e_{11}Ae_{11}$ is a regular ring.

Recall that two left ideals in a von Neumann algebra A are semiorthogonal if and only if their unique generating projections are nonasymptotic. Therefore, a von Neumann matrix algebra with no asymptotic pairs of projections must be regular and hence finite dimensional [8, pp. 85-87]. The definitive result in the general case is due to D. M. Topping [9]. Topping shows that in a von Neumann algebra these conditions are equivalent: (1) A has no asymptotic pairs of projections; (2) A contains no infinite orthogonal sequence of non-abelian projections; (3) A is the direct sum of an abelian subalgebra and a finite dimensional subalgebra. As a consequence of this result, a type II_1 von Neumann algebra may contain asymptotic pairs of projections, although its projection lattice is necessarily modular. Thus semi-orthogonality and dual modularity are in general distinct concepts. Using Foulis' characterization of dual modularity in terms of range-closedness, this same example shows that the product of two projections in a von Neumann algebra may have a closed range without being *-regular.

A simple proof, in the spirit of this paper, of (1) implies (2) in Baer *-rings would be worthwhile; for this would show that a complete *-regular ring can contain no infinite orthogonal sequence of non-abelian projections and hence no infinite orthogonal sequence of equivalent projections. A complete *-regular ring must, therefore, be of finite type. This is a difficult step in Irving Kaplansky's proof [3] that an orthocomplemented complete modular lattice is a continuous geometry.

REFERENCES

1. J. Feldman, Isomorphisms of rings of operators, Thesis, University of Chicago, 1954.

- 2. D. J. Foulis, Relative inverses in Baer *-semigroups, Mich. Math. J., 10 (1963), 65-84.
- 3. I. Kaplansky, Any orthocomplemented complete modular lattice is a continuous geometry, Ann. of Math., 61 (1955), 524-541.
- 4. —, Rings of Operators, New York: W. A. Benjamin, Inc., 1968.
- 5. G. W. Mackey, On infinite dimensional linear spaces, Trans. Amer. Math. Soc., 57 (1945), 155-207.
- 6. S. Maeda, On relatively semi-orthocomplemented lattices, J. Sci. Hiroshima Univ., 24A (1960), 155-161.
- 7. D. D. Miller and A. H. Clifford, Regular D-classes in semigroups, Trans. Amer. Math. Soc.. 82 (1956), 270-280.
- 8. J. von Neumann, Continuous Geometry, Princeton: Princeton Univ. Press, 1960.
- 9. D. M. Topping, Asymptoticity and semimodularity in projection lattices, Pacific. J. Math., 20 (1967), 317-325.

Received October 23, 1970.

University of Massachusetts and Kansas State University