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SEMI-ORTHOGONALITY IN RICKART RINGS

Louis HERMAN

This note initiates a study of the semi-orthogonality rela-
tion on the lattice of principal left ideals generated by idem-
potents of a Rickart ring. It will be seen that two left ideals
in a von Neumann algebra are semi-orthogonal if and only
if their unique generating projections are non-asymptotic.
Connections between semi-orthogonality, dual modularity, von
Neumann regularity, and algebraic equivalence will be es-
tablished; those Rickart rings with a superabundance of semi-
orthogonal left ideals will be characterized.

A regular ring is a ring A with identity in which each element
aG A is regular in the sense that aba — a for some element be A. A
Rickart ring is a ring A with identity in which the left (and right)
annihilator of each element is a principal left (right) ideal generated
by an idempotent. Regular rings and Baer rings, as defined by
Kaplansky [4], are special cases of Rickart rings: in particular, then,
a von Neumann algebra is a Rickart ring. Rickart rings are called
Baer rings in [2]. Throughout this note, A will denote a Rickart ring,
L(M) and R{M) will denote respectively the left and right annihilators
of a subset M of A. The letters e,f, g, h and k will denote idempotents
and the letters E, F, G, H and K will denote the left ideals they gen-
erate.

Ordered by set inclusion, the set L(A) of principal left ideals gen-
erated by idempotents forms a lattice. If E and F form a modular
pair in L(A), we shall write {E, F)M; if E and F form a dual modular
pair in L(A), we shall write (E, F)M*. Following S. Maeda [6], we
shall say that two left ideals E and F in L(A) are semi-orthogonal,
E# F, if they are generated by orthogonal idempotents. Maeda shows
that the semi-orthogonality relation # on L(A) has these properties:
(1) If E# E, then E = (0); (2) It E#F, then F% E; (3) lίE^E and
E% F, then E, # F; (4) If E% F and E V F% G, then E#FVG; (5) If
E ^ F, then there is a left ideal G in L(A) such that E V G = F and

The results herein form a portion of the author's dissertation,
submitted to the Graduate School of the University of Massachusetts
and directed by Professor D. J. Foulis.

2* Semi-orthogonal left ideals* In this section, we give geo-
metric meaning to Maeda's canonical semi-orthogonality relation in
L(A).
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THEOREM 1. Let E = Ae and F = Af. Then the following con-
ditions are equivalent:

(1) E%F.
(2) Ef]F = (0) and e(l - f) is regular in A.
(3) E®F = EVFin L(A).

Proof. The proofs of (1) implies (2) and of (3) implies (1) are
routine. To see that (2) implies (3), we suppose that e(l — f)xe(l —
/) = e(l - f) for some x e A. Put g = (1 - f)xe(l - / ) . Then fg =
0 = 0/ and eg = e(l - f)xe(l - /) = e(l - f) = e - ef. Then g2 =
(1 - f)xe(l - /)ur = (1 - f)xeg = (1 - / ) ^ ( 1 - /) = g and (/ + </)2 =

We claim that Eζ&F= A(f + g). But f = (f + g) - g(f + g) e
A(f + flr) and β = ef + e^ = e(/ + g) e A(f + g). Thus E@F^ A(f +
g). Conversely, f + g = f + (l- f)χe(l - f) = (1 - /)α?e + (1 - xe +
/a?e)/ 6 £ 0 F . Hence B φ F = 4 ( / + (/)G L(A).

We can find perspicacious geometric and topological interpretations
for each of these equivalent conditions in the ring of bounded opera-
tors on a Hubert space or, more generally, in any von Neumann alge-
bra. In such a ring, any left annihilator is a principal left ideal
generated by a unique projection (= self-ad joint idempotent). Let e
and / denote the unique generating projections of E and F respec-
tively: we shall identify these projections with their ranges.

If e A f = 0, e and / are said to be asymptotic if sup|<α:, /3)>| =
1, where \\a\\ = 1 = \\β\\,aee, βef; otherwise e and / are said to be
non-asymptotic. It is known [5, p. 166 and pp. 172-174] that these
conditions are equivalent: (1) e and / form a non-asymptotic pair; (2)
The projection map of the subspace e 0 / onto e is continuous; (3)
The vector sum of e and / is a closed subspace; (4) (e, f)M* in the
projection lattice of the ring of all bounded operators on the underlying
Hubert space. The relation of semi-orthogonality to non-asymptoticity
is provocative; for, by modifying results of Jacob Feldman [1, pp. 12-
14], it is easy to verify that E% F if and only if e and / form a non-
asymptotic pair.

Our next result, though appearing an immediate consequence of
Theorem 1 (2), seems to require a measure of prestidigitatorial skill
with idempotents.

COROLLARY 1. ef is regular if and only if (1 — /)(1 — e) is regu-
lar.

Proof. We prefer to demonstrate the obviously equivalent state-
ment: If e(l — /) is regular, then so is / ( I — e). To this end, choose
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an idempotent h with Ah = Ae Π A/. Put e1 = e + h — eh and / t =
f + h — fh. Then ^ and / x are idempotent generators for Ae and
Af respectively and h ^= he1 = eji = /&/,. = /Ίfc. By direct computa-
tion, we have β l(l - Λ) = e(l - /)(1 - Λ) and Λ(l - e2) - /(I - e)(l - λ).
Since e(l - /) is regular, e(l - f)xe(l - f) = e(l - /) for some x e A.
Then, an easy computation shows ex{l — /^[(l — / ) φ i ( l — f) = e^l — / x ) ;
thus ex(l — /O is regular.

P u t e0 = e,(l - h) and f0 = / x ( l - Λ). Then eo(l - f0) = e^l - f,)

is regular. Moreover, if z e Ae0 Π Af0 ^ Ae1 Π A/i = Ah, then z = zh
(zeo)h = ze.il-h)h = 0; so Aβ0 Π A/o = (0). Then by Theorem 1 (2), we
have Aeo$Afo*

Consequently, /(I - e)(l - h) = fx{l - e,) = /0(l - e0) is regular.
Then /(I - e)(l - Λ)y/(1 - e)(l - Λ) = /(I - e)(l - λ) for some ele-
ment ye A. But this means that /(I — e)(l — h)yf(l — e) — /(I — e) —
/(I _ e)(l - h)yf(l - e)Λ - /(I - e)λ is an element of A(l - e) f) Ah =
A(l -e)ΠAeΠAf= (0). Thus /(I - e)[(l - h)y]f(l - e) = /(I - e)(l -
h)yf(l — e) — /(I — e), showing that /(I — e) is regular in A.

COROLLARY 2. If E$F, then {E, F)M and (E, F)M* in L(A).

Proof. A proof that E and F form a modular pair is given by
Maeda [6, Lm. 1]. Now suppose that Ae%Af with Af ^ Ag ^ A e φ
A/. Then g = xe + yf for some elements x and ?/ in A. Then xe =
# — 2// G Ae Π Aflr and we have g = xe + yf e (Ae Π Ag) 0 A/. Thus
Ag ^ (Ae Π Ag) 0 Af. Since the opposite inclusion is evident, Ag =
(Ae n Ag) 0 A/. Hence (Ae, Af)M*r*

3* Equivalence of left ideals* Two left ideals E and F in L(A)
are semi-orthogonally perspective via G, G: E ~ F, iί E(£)G = E V F =
G 0 F with S # G and G # F. The importance of this relation is ex-
emplified in the following result:

THEOREM 1. If G: E ~ F, then the mapping Eo —> φ(E0) = (Eo 0
G) f] F is a lattice isomorphism of the principal lattice ideal generated
by E in L(A) onto the principal lattice ideal generated by F in L(A).
Under this mapping, moreover, semi-orthogonal left ideals contained
in E correspond with semi-orthogonal left ideals contained in F.

Proof. The proof is entirely lattice theoretic. Define a mapping
ψ by Fo —> (G 0 Fo) n E for each FQ ̂  F; clearly both φ and ψ are
isotone maps. By Corollary 2.2, we have (F, G)ikf* and (G, E)M.
With these modularity relations, it is easy to compute (ψ o φ)(E0) —
Eo for all EQ ̂  E. Similarly (φ o φ) (Fo) = Fo for all Fo ̂  F. Thus φ
is a lattice isomorphism with ψ its inverse mapping.
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Now suppose E1,E2^E with Eι#E2. Since
also Then E1®G$E2 and we may compute <p(Ej) φ G = [(2^ φ G) Π
f ] 0 e = (JS?iφ(?) n ( F φ G ) - ( ^ φ G ) n (#©G) = ^ e ^ t ^ since
(F, G)M*. Thus ?>(JBi) # £72 0 G, so that (̂JSΊ) # ?>(#,). Conversely, if
FlfF2^F with i^ # F2, a similar argument shows

LEMMA 1. [7, Th. 2]. Let eA = a A and Af = Aa. Then there
exists a unique element a+ e A such that

(1) aa+ = e.
(2) / α + - a+.

Moreover,
(3) α+α = / .
(4) Ae - ^ α + .
(5) /A = α+A.
(6) a = αα+α.
(7) α+ = α+αα+.

Two idempotents e and / are algebraically equivalent via α and
6(α, b:e~f) if e = ab,f= ba, a e eA/ and 6 e /Ae. This is easily seen to
be an equivalence relation. The idempotents e and / are algebraically
equivalent if and only if Ae and Af are isomorphic A-modules; more-
over, in that case, the mapping x —• bxa is a ring isomorphism of eAe
onto fAf [4, pp. 21-23].

Notice that by Lemma 1, if eA = αA and A/ = Aα, then e and
/ are algebraically equivalent via α, a+. This observation enables us
to relate algebraic equivalence in A to semi-orthogonal perspectivity
in L(A).

THEOREM 2. If Ae ~ Af, then e ~ f.

Proof. Suppose Ag: Ae — Af. Put a = e(l — #) and 6 = / ( I — g);
then α and 6 are regular by Theorem 2.1 (2). An easy computation
shows eA = RL{e) = i2L(e(l — g)) = EL(a) = αA and similarly /A =
bA. Moreover, Ae φ A</ = Ag φ A/ implies R(a) = R(b); thus Aα =
LR(a) = LR(b) = A6. Choose an idempotent A with Ah — Aa = Ab»
Then by our observation above, e — h and h ~ / . Hence e ~ f.

For semi-orthogonal left ideals, the converse of Theorem 2 is also
valid. We prove this as a first consequence of Lemma 2. With
Ae # A/, this fundamental lemma establishes a bisection of eA/ onto,
what might be termed, the set of relative semi-orthocomplements of
Af in Ae 0 Af.

LEMMA 2. Let E = Ae αm£ F = Af with E%F.
(1) IfG®F=E@F with G e £(A), ^ew G = A(e - a) for some
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unique aeeAf.
(2) If ae eAf, then there exists a left ideal G e L(A) such that

( i) G = A(e - a).
(ii) G®F= E®F.
(iii) EVG=E® LR(a).
(iv) EΓi G = Ef]L(a).

Proof. To prove (1), let g be an idempotent generator for G.
Choose w and x in A such that e = wg + xf. Then e = ewg + e#/
Put a = exf. Then e — a = ew# e G; so A(e — α) ^ G. Conversely,

g = y e + zf = y(e — a) + ya + zf = yewg Λ ya Λ- zf for some y,2 e A.
But # — yewg = ya + zfe GnF — (0), so that g = yewg = j/(e — α).
Hence G = Ag <Ξ A(e — α).

If also beF = Af with β — δe G, then α — 6 = (e — b) — (e — a) e
G Π F = (0); so α = δ. This establishes the uniqueness of α.

To prove (2), let e0 and/ 0 denote orthogonal idempotent generators
for E and F respectively. Put g = e0 — eQa and G = Ag. Since aeQ =
afe0 = α//oeo = 0, we find that g = #2. Thus GeZ/(A). Now # =
βo(e — a) and e — α = e(e0 — eoά) = e# implies G -= Ag — A(e — a), proving
( i ) . The remaining parts of (2) are straightforward computations.

THEOREM 2. Let Ae # Af. Then Ae ~ Af if and only if e — f.

Proof. Suppose a,b:e~ f. Put G = A(e — a) and H = A(f — b).
Then by Lemma 2 (2), G 0 Af = Ae © Af = Ae 0 H. But e - a =
αδ — α = a(b — f) — — a(f — δ) and / — δ = δα — δ = δ(α — e) = — b(e —
α), showing that G = A(e - a) = A(f - b) = H. Thus Ae(&G =
Ae@Af =

4. Regularity* In this section, we characterize those Rickart
rings A in which E Π F = (0) implies E% F for all £7 and F in Z,(A).
It will be convenient in the two lemmas and in Theorem 1 to adopt
some notation. Let a and δ denote regular elements with Ae = Aa
and fA = bA. Choose a+ and δ+ by Lemma 3.1 so that a+a — e and
δδ+ = / ; choose idempotent generators g and h of LR(ab) and RL(ab)
respectively. In the context of Rickart *-semigroups, Theorem 1 is
due to D. J. Foulis [2].

LEMMA 1. If eb or af is regular, then so is αδ.

Proof. Suppose eb is regular. Choose an idempotent generator k
for Aeb and choose (eδ)+ so that (eb)+eb = k. Put x = (eb)+a+h. Then
xαδ = (eb)+a+hab = (eb)+a+ab = (eb)+eb = fc. Then αδa αδ = αδfc = (αe)δfe =
α(eδ)& = α(eδ) = (αe)δ — αδ, showing that αδ is regular. The argument
for af is similar.
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LEMMA 2. / / ab is regular, so are eb and af.

Proof. Choose (ab)+ so that ab(ab)+ = h. Let k denote an idem-
potent generator of LR(ef) and put x = kb(ab)+. Then afx = afkb(ab)+ =
(ae)fkb(ab)+ = a(ef)kb(ab)+ = a(ef)b(ab)+ = (ae)fb(ab)+ = afb(ab)+ =
ab(ab)+ = Λ. Hence afxaf — ftα/ = fcαδδ+ = αδδ+ = α/, showing that
α/ is regular. Similarly eδ is regular.

THEOREM 1. αδ is regular if and only if ef is regular.

Proof. If αδ is regular, then so is eb by Lemma 2. Since eδ is
regular, so is ef by Lemma 2 again, applied with α = e.

Conversely, if ef is regular, then so is eb by Lemma 1, applied
with a — e. Then since eb is regular, so is ab by Lemma 1 again.

THEOREM 2. These conditions are equivalent:

(1) ef is regular for every idempotent e and f.
(2) / / a and b are regular, then so is ab.
(3) If EOF = (0), then E%F.

Moreover, if A is a matrix ring, we may add
(4) A is a regular ring.

Proof. The equivalence of (1) and (2) is a consequence of Theo-
rem 1. That (1) implies (3) is a consequence of Theorem 2.1 (2).
Using the notation of the proof of Corollary 2.1, we may show that
(3) implies (1); with E = Ae and F = Af, we have Ae0 Π Af0 = (0) as
before. Then by (3), Ae0 # Af0. Consequently, eL(l — f,) = eo(l — f0) is
regular by Theorem 2.1, and hence e(l — f) is regular. Thus (3)
implies e(l — f) is regular for every idempotent e and / , and this is
evidently equivalent to (1).

Let us now suppose that A is a Rickart matrix ring of order 2> 2.
If A is a regular ring, then E Π F = (0) implies E%F for all E and
F in L(A) by Theorem 2.1. Conversely, if this condition holds for all
E and F in L(A), we show that A is a regular ring. To this end,
let eij9 1 ^ i, j ^ n, be a family of matrix units for A. We shall show
that enAen and hence A, which is isomorphic to the n x n matrix ring
over enAen, is a regular ring.

Let enxen denote an arbitrary element in enAen; put a = enxe12 and
choose idempotent generators e and / for RL(a) and LR(a) respec-
tively. Since R{f) = R(a), aeu = 0 for i Φ 2 implies feu = 0 for i Φ 2;
since L(e) = L(a), e22a = 0 implies e22e = 0. Thus fe = f(Σeu)e =
(Σfea)e = (fe22)e = f(e22e) = 0, showing that Ae Π A/ = (0). Moreover
/ ( I _ e) = / is regular. Hence Ae # Af.
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Now let e0 and f0 denote orthogonal idempotents generating Ae and
Af respectively. Put g = e0 — eQa. Then, as in the proof of Lemma
3.2, a = e(l — g) and Ag = A(e — a). Thus Ae f] Ag = Ae Π L(a) =

Ae Π I/(e) = (0). Then by hypothesis, Ae$Ag. But this means that
a = e(l — 0) is regular in A. Choose an element b in A with aba = α.

Then

( i i w ) ( 1 1 1 2 ) = α = e u f l je 1 2

or equivalently

(enxe12)b(enxen) = ena?eu.

Thus

(enxen)(ei2ben)(enxen) = e u £ e n ,

showing that e^βn is a regular element of enAen.
Hence enAen is a regular ring.
Recall that two left ideals in a von Neumann algebra A are semi-

orthogonal if and only if their unique generating projections are non-
asymptotic. Therefore, a von Neumann matrix algebra with no asymp-
totic pairs of projections must be regular and hence finite dimensional
[8, pp. 85-87]. The definitive result in the general case is due to D. M.
Topping [9]. Topping shows that in a von Neumann algebra these
conditions are equivalent: (1) A has no asymptotic pairs of projections;
(2) A contains no infinite orthogonal sequence of non-abelian projections;
(3) A is the direct sum of an abelian subalgebra and a finite dimen-
sional subalgebra. As a consequence of this result, a type IIγ von
Neumann algebra may contain asymptotic pairs of projections, although
its projection lattice is necessarily modular. Thus semi-orthogonality
and dual modularity are in general distinct concepts. Using Foulis'
characterization of dual modularity in terms of range-closedness, this
same example shows that the product of two projections in a von
Neumann algebra may have a closed range without being ^-regular.

A simple proof, in the spirit of this paper, of (1) implies (2) in
Baer *-rings would be worthwhile; for this would show that a complete
^-regular ring can contain no infinite orthogonal sequence of non-abelian
projections and hence no infinite orthogonal sequence of equivalent pro-
jections. A complete *-regular ring must, therefore, be of finite type.
This is a difficult step in Irving Kaplansky's proof [3] that an ortho-
complemented complete modular lattice is a continuous geometry.
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