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COHOMOLOGY OF GROUP GERMS
AND LIE ALGEBRAS

S. SWIERCZKOWSKI

Let π be a continuous representation of a Lie group G in
a finite dimensional real vector space V. Denote by HQ(G,V)
the cohomology with empty supports in the sense of Sze-tsen
Hu. If L is the Lie algebra of G, π induces an L-module
structure on V and there is the associated cohomology H(L,V)
of Chevalley-Eilenberg. Our main result is the construction
of an isomorphism HΠ(G, V) ^ H(L, V).

This is preceded by a closer analysis of HU{G, V). It is clear
from the definition that to know HΏ{G, V), it suffices to know
an arbitrary neighbourhood of 1 in G and its action on V. The
totality of neighbourhoods of 1 in 6? may be regarded as an object
of a more fine nature than a local group; we call it a group germ.
More precisely, a group germ is defined as a group object in the
category Γ of topological germs [18]. The Eilenberg-MacLane defini-
tion [3] of the cohomology of an abstract group is carried over from
the category of sets to Γ (i.e., from groups to group germs). Thus
for any group germs g, α, where a is abelian, and any ^-action on a,
we have cohomology groups H(g, a). It turns out that HΏ(G, V) ~
H(g, a) for a suitable choice of g and α, in all dimensions > 1. To
cope with dim 0 and 1 it seems convenient to introduce the concept
of an action of a group germ g on an abelian topological group A
and associate with this a cohomology H(g, A). This is only a slight
modification of the previous H(g, α), so that both cohomologies coin-
cide in dimensions >1 and Hι{g, A) is a quotient of H^g, α), if a is
suitably related to A. (H°(g, A) is the subgroup of ^-stable elements
of A and H°(g, a) is always trivial). One now has HΠ(G, V) ~ H(g, V)
in all dimensions, for a group germ g corresponding to G.

We are grateful to W.T. van Est for his comments on an earlier
version of this paper which have resulted in many improvements.

1* Group germs* Let T be the category of pointed topological
spaces. For A, Be T write A ^ B if and only if there is a C G T
which is an open subspace of both A and B. Denote by [A] the equiv-
alence class of A. For morphisms /: A—>B,ff: A'—>B' in T write
/ ~ f if and only \ί A = A',B ~ B' and there is a C e T which is an
open subspace of both A and A' such that /1 C == f'\ C. Denote the
equivalence class of /: A -> B by [/]: [A] —• [B\. There is now precisely
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one category Γ whose objects are the equivalence classes [A], the
morphisms are the equivalence classes [/]: [A] —• [B], and such that
i π [ 4 ] , /H-> [/] is a functor T —* Γ. Γ will be called the category of
topological germs. (For a similar definition see [18]).

LEMMA. The functor T-+Γ preserves zero objects and finite
products.

We omit the straightforward verification. As a conclusion, all
finite products exist in Γ. Let S be a zero object in T, i.e., a one-
point set, and denote the zero object [S] in Γ by e. Any morphism
in Γ which factorizes through e will be denoted by 0.

DEFINITION. A group object in Γ will be called a group germ.
The category of group germs will be denoted by GrΓ.

We recall the definitions. A group object in Γ is an object ge Γ
together with morphisms μ: g x g-^g, v: g —> g such that μ(μ x 1) =
μ(l x μ) (i.e., associativity), v2 = id and

o\

\ 1 / \
9 , 9

(TΓ; are the product projections; all diagrams drawn are assumed to
commute). A morphism g —» gf in GrΓ is a φ\ g —•#' in Γ such that
μ'(φ x φ) = φμ and Vfφ = £>2Λ

Let /ί be the category of local topological groups. Following
([8], p. 393) we mean by a local topological group an abstract local
group in the sense of Malcev [15] together with a topology on the
set Q of its elements such that the map {x,y)\-+ xy~ι is continuous
on the domain of its definition and that domain is open in Q x Q.
A morphism Q —> Qf in A is an /: Q —> Qf in T such that f(x)f(y) is
defined whenever xy is defined, and if defined, f(x)f(y) = f{xy)

Define a functor U: Λ—> GrΓ as follows. Given Qe A, let i(x) = or1

and φ{x,y) = x̂ /, the domain of <p being an open subspace D of Q x Q,
so that [Z>] = [Q] x [Q] (cf. Lemma). Let UQ be the topological germ
[Q] together with the morphisms v = [j]: [Q] —* [Q], μ = [<p]: [Q] x
[Q] — [Q] in Γ. Then £7Q e GrΓ. For a morphism f in Λ put £7/ - [/].

PROPOSITION. For each ge GrΓ there exists a Qe A such that

Proof. Suppose g — [A], Ae T and denote the base point of A
by 1. The definition of a group object in Γ implies the existence of
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open neighbourhoods P, V, W of 1 in A such that PaVaW and
( i ) there exists <p: W x T7—> A such that μ = [φ],
(ii) there exists j : V'—• W such that v = [j],

(iii) φ(j(x), x) = φ(x,j(x)) = 1, ^ ( ^ 1) = 9>(1, α) = sc and both
9>(α;, φ(y, z)), φ(φ(x, y), z) are defined and equal for all x,y,ze V,

(iv) j(P) c V and ^ - r ^ * F — > P is the identity on P.

Put Q = Pf) Γ\P). Then i(Q) c Q and i 2 = identity on Q. Define
or1 = j(x). For any x,yeQ say that #?/ is defined if and only if
<p(x, y) e Q, and if this is so, put xy = φ(x, y). Then QeΛ and g = UQ.

2* Cohomology of group germs* Let τ: g x g —> g x # be the

transposition morphism of the product. Call g e GrΓ abelian if g x

9 -? 9 x 9-^9 equals μ. Note that for such g and any b e Γ, homΓ(δ, #)

has a structure of an abelian group (obtained by applying the functor

homΓ(6, —): Γ1—• Sets to the diagrams defining g).
Given α, ge GrΓ, where a is abelian, call a:g x a—+a a g-actίon

on a if

g x a x a > g x g x a x a > g x a x g x a
(1, D x l X l lXrXl

lXμ \aXa

g x a > a < a x a ,
a μ

g x g x a > g x a a

' μxl i ι\
l xα \a ! \l

1 (0,1) \
g x a > a , I \

a g x a > a .
a

Given such gr-action, put Φn — YιomΓ(gn, a), where gn = g x x g
(n^l times). Define £<: Φn -> Φn+1; i = 0, , n + 1, by putting for
each φ e Φn,

δoφ: g x gn -—> g x a > a ,

δ ^ : g*-1 x g2 x gn~l — -> gn > α; i = 1, , n ,
l x ^ x l e

^n+i^.' 9n x 9 > 9n > <̂  » (τΓi = first projection).

Then each δ̂  is a morphism of abelian groups. (This is easily shown
for i > 0; for i = 0 one needs the first diagram in the definition of a
g- action). Now let δφ = Σ o ^ i ^ + i ( - l ) ^ By direct verification (or
by the proof of the Theorem in § 4) one sees that δ2 = 0.
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D E F I N I T I O N , For any ^-action on a, H(g9 a) will denote t h e coho-
mology of 0 > Φ1 • Φ2 >

δ δ

REMARK. It is not hard to see that for any ^-action on a one
can find Q,AeΛ, A abelian, and a Q-action on A in the sense of
([12], p. 40) such that g=UQ,a=UA and α: = [m], where m(x,p) = xp
whenever the latter is defined for x e Q, P e A. Moreover H{g, a) C=L
HL(Q, A) = the local cohomology defined in ([12], p. 42).

3* Cohomology with coefficients in a group* Suppose that
there are given QeΛ, an abelian topological group A and a morphism
m: Q x A—> A in T. Then m will be called a Q-action on A if,
denoting mix, p) by xp,

( i ) x(pί + p2) — xpx + xp2 for all xeQ; plf p2 e A,
(ii) xjjcφ) — (XiX2)P whenever xγx2 is defined in Q,
(iii) Ip = p for all pe A.
Call such Q-action m on A equivalent to a Q'-action mr on A if

and only if there is an SeΛ such that S is an open local subgroup
of both Q and Q' and m\SxA = m'\SxA. An equivalence class
of Q-actions will be called a ^-action, where g is the common value
of UQ for all Q-actions in that class. Any Q-action in the class will
be called a representative of the gr-action.

Given any ^-action on A, put a — UA and let a: g x a —• a be
equal to [m]: [Q] x [A] —»[A] where m: Q x A—> A is any of its re-
presentatives. Then a is a ^-action on α. Define <5°: A —> Φ1, where
Φ1 = homΓ(g, a), as follows. For m : Q x A — > A as above, consider
the map A —• homΓ(Q? A) assigning to pe A the map ζ> —> A given by
# H^ m(x, p) — p, for all x e Q. The image of Q ι-> A under the functor
T-+Γ is in Φ1; denote it by δ°p. Then §° is a morhism of abelian
groups depending only on the ^-action on A. Moreover one verifies
easily that δδ° = 0, where δ: Φ1-+φ2 was defined in §2.

DEFINITION. For any ^-action on A, H(g, A) will denote the
cohomology of Φ: 0 > A • Φ1 > Φ2 > .

δ° δ δ

There is a description of JΏΓ(cjr, A) using the local group cohomology
of W. T. van Est. For QeΛ, an abelian topological group A and a
Q-action m on A, let H(Q, A) be the cohomology defined as in [8] (or,
in terms of cotriads, in [19]), but based on continuous cochains. Any
Q'-action mr on A such that Q' cQ and m | Q' x A — mr will be called
contained in m. If this is so, the restriction of cochains yields a
map H(Q,A)-+H(Q,A).

PROPOSITION. For any g-action on A, H(g, A) = lim__> H(Q, A),
£&e dίrecί limit being taken over the partially ordered by inclusion
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(and directed) set of all Q-actίons on A representing the g-actίon.

4* Cohomology of enlargeable group germs* A group germ
g will be called enlargeable if and only if there exists a group G e A
such that g — UG. Such G will be called an enlargement of g.

LEMMA. Suppose g is an enlargeable group germ and there is
given a g-action on an abelian topological group A. Then there exists
an enlargement G of g and a G-action on A which represents the
g-action.

Proof. Suppose m: Q x A—> A, where QeΛ, represents the fr-
action. Replacing Q by a sufficiently small neighbourhood of 1, if
needed, we may assume that Q is enlargeable (i.e., Q is a local
subgroup of a group; [8], p. 393). Let G be the abstract group with
the following presentation by generators and relations: Q is the set
of generators and for xlf * ,xneQ, xLx2' xn = 1 is a defining relation
if and only if this equality holds in the local group Q, after a suitable
placement of brackets. The enlargeability of Q implies that the
obvious map Q —* G is injective; we use it to identify Q with a subset
of G. The topology on Q defines now a fundamental system of neigh-
bourhoods in G ([2], Chapter 2, §11) making G into a topological
group with the open subset Q. For each x e Q, define πm(x): A —• A by
πm(x)p = m(x, p), for all pe A. Then πm\ Q —* Aut (A) is a morphism of
the abstract local group Q into the automorphism group of A. The con-
struction of G implies that there is a group morphism π: G —• Aut (A)
such that π \ Q = πm. If x e G, then x = x ^ a?Λ: â , , xk e Q, whence
π(x) = ττm(x1) , 7Γm(ίBΛ): A —> A is continuous. The continuity of m is
now easily seen to imply that the action mo:G x A-+ A given by
mo(x, p) = τr(ί£)p is continuous. It evidently represents the ̂ -action.

Given topological groups G, A, where A is abelian, and a G-action
on A, let ί/"G(G, A) denote the corresponding cohomology with empty
supports ([12], p. 42 and below).

THEOREM. Suppose g is an enlargeable group germ and there is
given a g-action on a finite dimentional real vector space V. Then
for any enlargement G of g and any G-action on V representing the
g-action, H(g, V) ~ HΠ(G, V).

Proof. Recall first HΠ(G, V). Suppose m: G x F-> V is the in-
action. Define π:G—>GL(V) by π(x)p = m(x, p). Denote by Cthe com-
plex of F-valued, continuous, inhomogenous cochains on G. That is,
C = φ ^ 0 C

n, where C° = V and Cn is the set of continuous maps
from G x x G (n times) to V, made into an abelian group by
the addition in V. δ: C° —> C1 is defined by (δp)(xι) = π(x^)p — p for
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all p e C°, and δ: Cn -> Cn+1, (n^l), by

Z J ( 1)1/W>

for all feCn. Call / e C π locally trivial if there is a neighbourhood
Q of 1 in G such that f(xί9 , xn) = 0 whenever all a?lf •••,»» are in
Q. The locally trivial cochains form a subcomplex Cz of C. Let C be
the quotient complex C\CX. Its cohomology is by definition HΠ(G, V).

Consider now, for each n^l, the map Cn —• Φn (see Definition, § 3)
given by /ι-> [/]. Let C° —> Φ° be the identity. All these maps are
morphisms of abelian groups and they define a cochain map of C into
Φ. Since G x x G is completely regular at 1 ([16], p. 29), each
Cn —• Φw is an epimorphism. Clearly its kernel is Cf. Therefore the
cochain map C—>Φ induces an isomorphism C—> Φ.

REMARK. The cohomology of C has been discussed in [4]-[7],
[9], [11], [12] and [17].

5* Cohomology of Lie group germs* A local topological group
Q will be called a local Lie group if the space Q admits an analytic
manifold structure such that the map (x, y) \—> xy~ι is analytic on the
open submanifold of Q x Q on which it is defined. Any such mani-
fold structure on Q is unique ([10], p. 107).

Let g e GrΓ. We shall call g a Lie group germ if g = UQ for
some local Lie group Q. The Lie algebra of any such Q will be
called the Lie algebra of g; it is easy to see that the latter is well
defined.

Given a Lie algebra L and an L-module V which is a finite
dimensional real vector space, let H(L, V) denote the Chevalley-
Eilenberg cohomology [1].

THEOREM 1. If g is a Lie group germ with Lie algebra L, then
for every g-action on a finite dimensional vector space V, H(g, V) —
H(L, V).

Here the L-module structure of V is defined by the (/-action as
follows. Let m: Q x V —> V, where Q is a local Lie group, be a
representative of the ^-action. Define πm: Q~^GL(V) by πm(x)p =
m(x, p). Then πm is a morphism of local Lie groups, thus it is
differentiable ([10], p 107). Its differential at 1 e Q defines a morphism
of their Lie algebras π™: L—>gl{V), ([10], p. 102) which does not
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depend on the choice of Q. Thus V becomes an L-module.
Since a Lie group germ is known to be enlargeable, it follows

from the considerations in § 4 that, under the assumptions of Theorem
1, there is a Lie group G with a continuous representation π:G—*
GL(V) such that H(g, V) ~HΠ(G, V). Thus Theorem 1 will follow
if we show.

THEOREM 2. Given a Lie group G and π: G —> GL(V) a continuous
representation in a finite dimentional real vector space V, let ττ0: L —>
g(V) be the corresponding morphism of Lie algebras, making V into
an L-module. Then HΏ(G, V) ~ H(L, V).

6* Smooth, cohomology with empty supports* For the proof
of Theorem 2 we shall need to know that the definition of HΠ{G, V),
as given in §4, yields the same cohomology if smooth (i.e., indefinitely
difϊerentiable) cochains are used instead of continuous ones. Thus let

dC aC be the subcomplex of smooth cochains and put dCt — dC Π Cu

dC — dC/dCι.

PROPOSITION. H(dC) ~ H(C) .

Proof. We shall modify a construction due to G. D. Mostow ([17],
p. 33) so that it becomes applicable modulo the locally trivial cochains.

Let K be the complex of F-valued, continuous, homogeneous
cochains on G with homogeneous coboundary (Kn = Fn(G, V) in the
notation of [17]). Let Kx be the subcomplex of locally trivial cochains
and put K — K\KX. Denote by dKczK the subcomplex of smooth
cochains and put dKι = dK Π Kt. Then dKa K induces a cochain map
7 of dK = dK/dKι into K. The standard isomorphism K ~ C ([3], p. 54)
obviously carries Kx and dK into Ct and dC respectively. Hence it will
suffice to prove that H(y): H(dK) —> H(K) is an isomorphism.

Let <%£ denote the family of neighbourhoods of 1 in G, and
choose a sequence φ0, <p19 φ2, of real valued smooth functions on G
with compact supports and Haar integral 1 such that for every Qe^S
there is a ψι whose support is contained in Q. For every i, define
a cochain mapα^: K—>dK by

= \ ( /(ίθ, * * ,
JG JG

for fe Kn; n ^ 0. Also define maps ut: K—> K of degree —1 by
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= Σ (-
i
i = i

for / e iΓ*; n ^ 1, and by uj = 0 for fe K°.
It is easy to see that if feKt, then there is an i such that α^/

and Uif are in ULZ. One verifies the identities

(*) / - (Xif = δuJ + uβf; i = 0,1,2, . . .

(see [5], §4).
For feK, l e t / be its image in K, and if / is a cocycle, let

{/} G #(#) be its class.
To prove that H(y) is epimorphic, suppose that there is given a

cocycle fe K. Then δfe Ku whence for a suitable i.f—aJ—δUif e Kx.
Therefore {/} = {aj}. But aJedK.

To show that H(y) is monomorphic, suppose that / e dK is such
that {/} = 0. Then there are heK,ge Kt such that f - δh = g.
Hence (*) implies

/ = ctidh + aa + δuj + Ufa = d(a,h + uj) + {a, + u£)g. Thus,
for suitable i,f — 5(a<fe + uj) e Ku and since a{h + ^ / 6 dΐΓ, it follows
that the cohomology class of / in H(dK) is zero.

7* A spectral sequence* Suppose G, TΓ, F and L satisfy the
assumptions of Theorem 2. By the result of §6, Theorem 2 will
follow if we show that H(dC) ^ H(L9 V). We shall consider a bicom-
plex F, similar to the one defined in [4], §10, and we shall show
that the quotient complex F obtained by factoring out the locally
trivial cochains is such that

( i ) the initial term of the first spectral sequence is

°E! - Hs(dC) and rEt

3 = 0 for all r > 0 ,

(ii) the initial term of the second spectral sequence is

rE\ = Hr(L, V) and rE? = 0 for all s > 0 .

As well known, this implies H(dC) a H(L, V).

We begin by defining F — φ ^ ^ o ' ί 1 8 . Let Lίy - - , Lr be r copies
of L and Giy ••-,<?*, s copies of G. Then, for r, s ;> 1, r F s is the
vector space of all smooth maps

Lί x . . . xLr x Gt x . . . x Gs —> F

which are r-linear and alternating in the first r variables. For every
s ^ 1, °FS is the subspace of dC

s composed of those cochains / which
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satisfy the following local normalization condition: for each fe°Fs,
there is a Q e ̂  such that f(x19 , xs) = 0 whenever χlf , xs e Q
and at least one a?* equals 1. rF° is, for each r ^ 1, the space of
V-valued r-linear alternating functions on L, and °F° — F.

For each xeG, let |ev. G —* G be the right translation i/ *-• 3/ί»
Denote by pi the induced map on the tangent bundle. We shall
identify L with the tangent space to G at 1. For each XeL,X
will denote the right invariant vector field (i.e., satisfying pξX = X
for all x) taking at 1 the value X.

Occasionally an ferFs will be interpreted as a differential form
on G, depending on the parameter (x2, , xs) e G x x G which,
for fixed value of the parameter, takes at X^* 9Xr and xteG the
value f(X19 , Xr, x19 •••,$,). The morphisms

d,: rFs — r+1Fa, d2:
 rFs -> rFs+1

are now defined as follows.
If fenF°, let dj be given by the formula

Σ ( l )n + 1

+ - 4 - τ Σ (-i)<+'/(μr,, -Σy], -Xi - , xn+1)
n + 1

for every JS ,̂ , Xn + 1 e L.
Let / e r j P s ; s ^ 1. For any fixed x2, •• ,ίc,eG consider the diff-

erential form ωf for which identically

^/(X, , Xr; xx) = π{xτι)f(Xl9 , Xr, α;:, , «β) .

Let di/ be the (r + l)-form whose value at xγ is π{x^)dωf9 d being the
exterior derivative ([10], p. 21). One sees easily that dj€r+ιFs.

Let d2: °F'->°F8+1 be the coboundary 3 of § 4. Finally, let d2:
 rFs~*

rjps+i. r ^ i ? b e given by

(d2f)(Xl1 . . . , JC^a?!, •• , x s + 1 )

* , -Λr> ί̂ i> * * , X{Xi+i9 , 3/β+i)

This completes the definition of F.
One has d,d2 = d2dλ and d\ = dl = 0 ([4], §10). Moreover the

complex

rFι

dz

has for r ^ 1 a contracting homotopy u: rFs+1 —> rFs given by
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(uf)(Xlf , Xr, x i y •••,«,) = -f(X19 ••, Xr, 1, x19 , a?β)

( [ 4 ] , § 9 ) .
C a l l a b i c o c h a i n / e rFs l o c a l l y t r i v i a l if t h e r e e x i s t s a Q e ^ s u c h

t h a t f(Xt, , Xr, x19 , xs) = 0 for a l l X19 , Xr e L , x 1 9 — ,xseQ.
Let F be the quotient of F by the sub-bicomplex of locally trivial
cochains. Then F is a bicomplex with operators dly d2 induced by
d19 d2. We shall show that it has the properties (i), (ii) stated at the
beginning of this section.

For each r let rF be the complex 0 -> rF° -> rF1 -> with
coboundary d2, and let for each s, F s be defined similarly.

To obtain (i), one shows first that the inclusion 0FadC induces
an isomorphism H(°F) —* H(dC). This is a consequence of the two
facts

(a) if fedC and δf is locally trivial, then / is cohomologous in

dC to some he°F,
(b) if fe°F and / — δg is locally trivial for some gedC, then

there exists an h e °F such that f — δh is locally trivial.
The proof of (a) and (b) is easily obtained from that of Lemmas

6.1 and 6.2 in [3], p. 62. One concludes that °E*L = Hs(dC), for the
first spectral sequence. Since each rF, r ^ 1, has a contracting
homotopy ΰ induced by u, rE* ==0 for r ^ 1.

To prove (ii) observe first that F° - F° and H(F°) = H{L, V), by
definition. Hence rE\ = Hr(L, V) for the second spectral sequence.

It remains to show that for each s ^ 1, Fs is an acyclic complex.
Let fe rFs be such that dj is locally trivial. Thus there is a Q e %S
such that for each x2, , xs e Q the (r + l)-form dωf vanishes identi-
cally on Q. We may assume that Q is diffeomorphic to a Euclidean
ball.

For r = 0, the condition dcof = 0 on Q implies that π{x^ι)f(xι1 , xs)
does not depend on xx when xl9 , xs e Q. Consequently, by the local
normalization condition, / is locally trivial. Hence dx\ °F

S —»1FS is a
monomorphism.

For r ^ 1, and any x2, , xs e G, the restriction α)/ | Q is a closed
r-form on Q. Hence the Poincare lemma ([13], p. 87) implies the
existence of an (r — l)-form μ on Q such that dμ = ωf. The proof
of Poincare lemma shows that μ depends smoothly on the parameter
(x2J " ', xs) e Q x - " x Q (where smoothness is understood in the sense
of [7], §1) Let φ be a smooth real-valued function on G, identically
equal to 1 in some neighbourhood of the identity and vanishing outside
some neighbourhood of the identity whose closure is contained in Q.
For each x2, , xs e G, let h be the (r — l)-form on G which at xλeG
takes the value φix^φixi) φ(xs)π(x1)μ when xlf , xs e Q and 0
otherwise.
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Recalling the interpretation of rFs as the space of r-forms depend-
ing on the parameter (x2, , xs) e G x x G, we see readily that
h e r~ιFs. Moreover the construction guarantees that / — dji is locally
trivial. Thus Fs is exact at rFs and the proof of Theorem 2 is
complete.

8* Explicit form of the isomorphism* We shall describe the
isomorphism H(dC) ~ H(L, V), i.e., H(°F) ~H(F°). Let Tot F be the
total complex of F ([14], p. 340). For fe°Fn,n^l,l^j^n and
XeL denote by dj(X)fe°Fn~1 the derivative in the direction X with
respect to the jth variable at x5 = 1. Define maps τn'r: °Fn —>rFn~r;
r = 0,1, , n by τn-° = identity, and for r ^ 1

= (Σ sgn (ilf , irWXi) dr(Xir)f)(xr^ ., xn) ,

where X, ranges over all permutations of (1, •••> r). It is shown in
[4], p. 500 that the maps τn = Σo^ S n r» ' r : °Fn -> (Tot F)n define a
cochain map r: °F —> Tot JP. Let τ : °F —> Tot F be induced by τ. Denote
by p l f p2 the projections Tot F - > F°, Tot F—> °F. These are evidently
cochain maps and from the behaviour (i), (ii) of the spectral sequences
it follows that Jϊ(Pi), H(p2) are isomorphisms. Now p2τ is the identity,
thus H(τ): H(°F)—+H(Tot F) is an isomorphism, whence the same is
true about Hfaτ): H(°F) -> H(F°). Clearly pγτ \ Ψn = τn'n.
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