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COHOMOLOGY GROUPS ASSOCIATED
WITH THE dd-OPERATOR

BOHUMIL CENKL AND GIULIANO SORANI

Let M be a complex analytic manifold of complex di-
mension m. The manifold M, considered open, is a submani-
fold of a jnanifold M' of the same dimension, and its
boundary dM is a smooth C3-manifold. Let Ap'q be the sheaf of
germs of complex-valued (p, </)-forms, p and q are integers,
p ^ 0, q ^ 0. The exterior differential of an element ueAp q

can be written in a unique way as a sum du = du + du. There
is a real operator

dcu = V^ (du — du)

and the real second order operator

ddc = ϊV^Λ. 3d

defined on Ap-q. Let Ap

R>q = {a = at + a2 G Ap q φ A9 p | α2 = aγ)

be the sheaf of real (p, g)-forms. Then we get two short
exact sequences of sheaves

^i dd d
0 > &P?** > APΛ > Ap+1'q+ι > Ap+2>q+ί 0 A p + 1 9 + 2

0 > ̂ f ' 9 • > Ap

R'q > A p

R

+ ί > q + ί > A p

R

+ 2 ' q + ί 0 A R

+ 1 > q + 2

where έ^c

p>q and ^f'9 are defined by these sequences. The
purpose of this paper is to discuss the cohomology of these
two sequences.

The importance of the cohomology of the first sequence,

Π 2) ΛP,q _ K e r d o n Γ(M, A*«)
{l'Δ) R ddΓ(M, A*-"-*) '

lies in its application to the study of strongly g-pseudoconvex mani-
folds—A. Andreotti, F. Norguet, B. Bigolin and others. The coho-
mology of the second sequence,

(Λ o\ AP,q _ Ker d on Γ(M, AP

R")
( O ) Λ R

contains (for p = q) the refined Chern classes of complex analytic

vector bundles over M. In both cases the first cohomology group

H^M, •) plays the important role, therefore we restrict ourselves to

this case.

As for the cohomology of the first sequence (1.1), B. Bigolin

studied recently the relation of A%'q with the so called Aeppli coho-
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mology

( 1 4 ) γp,q = Ker 33 on Γ(M, A™)
dΓ(M, A*~uq) + dΓ(M, A™-1)

and with if*(ikf, C) under certain assumptions on the manifold M
(Stein, Λ -pseudoconvex, compact Kahler) using methods of sheaf
theory. The main results of this paper are proved by direct Hubert
space methods. The cohomology of both sequences (1.1) are studied
simultaneously. The statements concerning the first sequence (1.1)
can be considered as another proof of some results obtained by
Bigolin. It is shown that the cohomology of M with coefficients in
the sheaf ^tq and also in ^itq is, under certain conditions on the
boundary of M open, finite dimensional and isomorphic to the har-
monic spaces constructed from Spencer's resolutions of the corresponding
sheaves. Using the terminology of [9] we can say that the Neumann
problem is solvable for the operators 39 and ddc, under certain pseudo-
convexity conditions on the boundary of M (Theorem 3.1).

The technique is based on the methods developed by Hormander
as an extension of those introduced into the subject by Kohn, Morrey,
and Ash. The relatively new part in this direction here is the
application of Hormander's technique to the Spencer resolution of the
sheaves ^/'q and &g*q.

B. Mac Kichan told us recently that he can prove, using the
δ-estimate [8], that the Neumann problem is solvable for the operator
33 on complex-valued functions under certain boundary conditions on
the open manifold M.

2. Before we start proving the main results concerning the
open and compact manifolds, let us start some elementary properties
of the sheaves &£* and &itq defined as the kernels of the operators
33 and ddc respectively—see (1.1)—and summarize the known results
connected with our considerations.

PROPOSITION 2.1. The sheaf ^C

P>Q is the sheaf of germs of differ-
ential (p, 0)-forms ω = X+μy where X is a local holomorphic (p, 0)-form
and μ is a d-closed (0, p)-form.

Proof. An element ω e ^c

p>° if and only if ddω = ddω = 0. From
the exactness of de Rham's complex, we conclude that there exists
λ G Ap>° such that dX = dω. But dω e Ap+i>° therefore 3λ = dω and
3λ = 0. Denote ω — X = μ. Then d(ω - X) = dμ = 0, therefore dμ =
0 and ω = X + μ as stated above.

REMARK. If we denote by Ωp the sheaf of germs of holomorphic
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p-forms and by 3ίfp the sheaf of 3-closed (p, 0)-forms we see immedi-
ately that there is an exact sequence of sheaves

(2.1) 0 > Sp > Ωp 0 Sίfp >^?'° > 0 ,

where Sp is the sheaf of d-closed (p, 0)-forms, and the corresponding
exact sequence for cohomologies

H\M, Ωp) 0 H'(M, 3ΐfp) > Hι{M, P$'°) > Hi+1(M, Sp)

Hί+1(M, Ωp) © Hί+1(M,

PROPOSITION 2.2. The sheaf ^^ = &R is the sheaf of germs of
real parts of holomorphίc functions on M.

Proof. Let u e AR'\ ddcu = 0 . Then ddu = ddu = 0 and u=f+g,
where 3/ = dg = 0. The function h = f — g is real as u is a real
function. Furthermore dh~O and dh ~ dh = 0, therefore h = constant
and u is the real part of the homolorphic function 2/ — h.

If β is the projection of a homolorphic function on its real part,
we get immediately the exact sequence

(2.2) 0 > R -?U <? -£-> ̂ > Λ > 0 ,

where έ? — Ω°. The map a gives to any α e R a constant function
0 + iα. We claim that this sequence splits, because there is a sheaf
homomorphism b: ̂ R -+ & which to each function u e ^ R associates
a holomorphic function u + iv where u = v at a given point of Λf.
We then have:

PROPOSITION 2.3. ΓΛβ sequence (2.2) is eα αcί α^d splits.

PROPOSITION 2.4. Le£ Ap>9 6β the sheaf of C°° complex-valued
(V> Q)"forms and Ap

R'q = {ΰ)e Ap q 0 A9>ί>] co = a + α, α: e Ap'q}, then the
sequences (1.1) are exact sequences of sheaves.

Proof. We prove only the exactness of the second sequence
(1.1) at Ap

R

+ί q+1 because the proof of the first sequence is analogous.
Let u 6 Ap

R

+1'9+\ du = 0. Then there exists ω e Ap

R'q+ί 0 Ap

R

+1 q such that

ω = a + ά + β + βJ ae Ap q+1, β e Ap

R

+1 q, dω = u. Because dω e AB

+1 q+1

we conclude that da = da = dβ = 3 β = 0 as these terms belong to Aq+2>p,
Ap'*+\ Ap+2'q, Ap'q+2 respectively. From da = 0 follows that there exists
a e Ap>q such that da — a and from dβ — 0 we get the existence of
b e Ap'q, db = β. Then (a-a) e Ap'q 0 Aq p and (b-b)e_Ap q 0 Aq p and
dd(a -a+b-b) = da + da + dβ + dβ. Put w = -lβV~^Λ(a -ά-b - b).
Then we see that w = we Ap

R

yq and ddcw = 2]/ — lddw — dd(a—a + b — b) =
do) — u.
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From the work of Aeppli and Bigolin we have the following
information about the cohomology of M with values in the sheaves
&*cp'q, ^ l q and the cohomology Vtq (1.4).

PROPOSITION 2.5. Let M be a Stein manifold, then we have the
following isomorphisms:

γp.< ^ HP+Q+1(M, C) , j), q ^ 0

AlΛ ^ Hι{M, ^y-1-*-1) ^ Hp+q(M, C), p, β ^ 0

, C) , r ^ l , p + g + 2 ^ m = dim c ikf .

PROPOSITION 2.6. 1/ M is strongly k-pseudoconvex, then

dimc Hr(M, ^c

pq) < + oo , r^l, p, q^k, p + q + 2^m = άimc M ,

d i m c F c

p ff < + cxo , P,q^k ,

d im c /ίg g < + oo , p,q ^ k .

PROPOSITION 2.7. Ow α compact manifold M

dim c ylgg < + oo , p , gr ^ 1 ,

d im c i ϊ r ( M , ^ / O < + co, r^l,p + q + 2^m = d im c Λf ,

dim c Vtq < + ^ , p + g ^ 1 .

If Λf is a compact Kahler manifold then

3* Let M be an open manifold, MaM', a submanifold of M'
such that the boundary dM is smooth (C3). Let m = dimc M = d i m c M '
as before.

We shall construct first of all the Spencer resolution of the
sheaves ^c

p>g and &g-q. But, because the resolution of the "real"
sheaf 3^ί'q can be obtained from the "complex" one by adding certain
algebraic conditions on the spaces in question, we shall consider the
resolution of &>£tq and point out simultaneously which conditions have
to be dropped in order to get the resolution of ^ c

p > 9 .
The second order operator ddc together with its prolongations

can be factored through the sheaf of germs of the jet bundle Jι(Ap^q),
I ^ 2, and thus we can define the vector bundle Rp'q —> M' by the
commutative diagram
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' J-%Ί ' e/πΛ]{ / ' JΓ\.R I N ίΛ R

/ddc

for I ^ 2. Let us denote by d the formal differential ([9]) and define
the vector bundles gf& —*M' andP'v,q—>M', O^i^2m, by the sequences

(3.2), 0 > gf& > Rf& — R*>< > 0 ,

where π is the ordinary jet projection. Now let

(3.3) P;,q = (Λ T* <g> Ri'q)/δ(A T* Θ gξ'q),

T* _ τ*(M') being the cotangent bundle of ikf\ It can be shown
([3]) that having chosen a splitting λ of (3.2)x we have an isomorphism

(3.4) P*,q ~ (A T* (X) βf 0 0 δ(A T* (8) ^?'g), 0 ^ i ^ 2m .

Furthermore there is a uniquely defined 1st order differential operator
D such that for any vector bundle E —> ΛP and for the corresponding
jet bundles

(3.5) D: Jt(E) > T* (x) J , ^ ^ ) .

This operator is universal for all linear differential operators on Et

in the sense that for any subbundle Rt of Jt{E) given by an operator
in the same way as Rf q in (3.1)ι was defined, D maps Rt into
T* (x) i?z_L. Therefore

(3.6), D: Rlq > T* (x) J2fi? , 3>, ff ̂  0 .

The restriction of £> to the kernel gf£ of the jet projection π, (3.2)z,
is actually (— δ).

The operator D, (3.6)2 and a splitting λ of (3.6)x define the 1st
order differential operator Do = i) λ,

(3.7) i?0: J?f q > T* (x) R{'q .

Now we are in the position to state

LEMMA 3.1. Let 3^Rq —*Mf be the sheaf defined by the operator
ddc (1.1). Then the sequence



356 BOHUMIL CENKL AND GIULIANO SORANI

(3.8) o > &l* > P°p,q -?-> Plq — !L P% > 0 ,

where, using the isomorphism (3.4),

Du = D(σ, ζ) = (Doσ - ζ, Do(Doσ - ζ)),ue P;,q, 0 £ i ^ 2m,

is cm eίcαcί resolution of 3P£*q by fine sheaves.

Proof. It follows from the general theory—see [8].

COROLLARY.

q) K e r D o n
(3.9) H\Mr,

Ul \1VL ,

In order to study this group we need an explicit description of the
sheaf Pι

Vtq.

Let U be a coordinate neighborhood in Mf with complex an-
alytic coordinates (z\ , zm) related to the real coordinates (a?1, , x2m)
by the usual relations zj = x2j~ι + V^Λx2\ 1 ^j ^ m. In order to
get an expression more suitable for calculation let us introduce at
this point a hermitian product (,y on the tangent bundle T=T(M').
This product is locally given by a hermitian matrix h — {hi]), (djdz%
d/dzjy = hij,(d/dz\ d/dzjy = O, and the matrix ιh~ι = (hji) gives an inner
product on the cotangent bundle T* by the formulas ζdz\ dzjy = hjί,
<dz\ dzjy = 0.

As the differentiation of the hermitian product involves differ-
entials of the matrix h it turns out to be useful to intorduce a more
suitable frame. Let

(3.10) (ω\ •• ,ω w )

be C°° (1, 0)-forms on U such that

ωj - Σ a{dzk, dzj = Σ Hωk

fc=l fc=l

and <ω% α>5> = δίj, 1 ^ i, j ^ m. We denote by (d/dω1, , 3ωw) the
frame dual to (ft)1, •••, ωm).

Identifying Pl

Pyq with the direct sum in the isomorphism (3.4) we
get from straightforward local considerations

PROPOSITION 3.1. Each element u e Pp,q, u = (p, η) can be written
locally in terms of the frame (3.10) in the form
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p = Σ pι<oι + Σ Piΰ1,
1=1 1 = 1

V = Σ tyί ω1 Λ ω' + Σ tyj^' Λ ώ H Σ VΦι A a)*
(3-11) ι>j=1 ι>t=1 ι>i=ι

+ Σ VΦι A ωj ,
z,i=i

Vl3 + >?ii = 0, 7fa + 7]Tι = 0 ,

where

jj^ω1 A ωJ + Σ ^ . j ώ 1 Λ ω J

Σ Puxk,ι^h (x) ω z Λ ω J + i; Σ pΐJiktlω
k (g) ώ1 A ωJ

and
^̂  = exactly the same expression as for ^ if ^ is replaced by p.

1 A

Σ
k=ί

Vu-

Vπ =

stands for |

^ =

*%"

I\ = 2

(O*1 A

hj;ij,<δk (g

^j,ι,rjώ
k (g

• Λ <wy«

) ω ' Λ ( ( ) '

', ii < i < < %, Λ < j2 < < Jg .

All these components satisfy the conditions

(3.12) PΪ = PΊJ Vϊl = V^J » %; = ^

REMARK. The Spencer resolution of the sheaf ^c

p>q is an exact
sequence

0 > ̂ '« > PίP,q ~^> PhP,q ~^-> ^ PS.q > 0

where the vector bundles PίP>q are defined in an obvious way by an
expression similar to (3.3). Each element uePcP,q, u — (p, yj) has the
local form given by the previous Proposition 3.1, but the conditions
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"for reality" (3.12) are not satisfied.
The complex tangent bundle T — V @V splits into holomorphie

and antiholomorphic parts. Let F* and F* be their duals.

PROPOSITION 3.2.

PJfff = (V* <g> Aψ) 0 f ® (7* (x) AV)

0 Γ Λ F*(g)(F*(g)Ar) •

Proof. It is easily seen directly or from previous Proposition 3.1.

Before we proceed any further with the general situation
(Pt Q S 0) let us make an observation about 0>R = ̂ Λ°'°. From the
general theory it follows that for any fcth order, involutive, linear
differential operator £?, with constant coefficients, from a vector
bundle Έ-+M into a vector bundle F—>M there is in a certain
sense a unique exact Spencer resolution &k of the sheaf S? of germs
of solutions to the homogeneous system !3ίs — 0. The resolution
^ f c + ί of the sheaf Sf corresponding to the ϊth prolongation i ' £^ of
the operator & is also exact and has the same cohomology as &k

for any I ̂  0. Let us look in particular at the resolution of the
sheaf of germs of holomorphie functions έ? corrresponding to the
first order operator 3:

(3.14) 0 > & > Of i Ci - ^ ^ Cΐ > 0, n = 2m .

This resolution is defined in a way analogous to (3.8) and C[ is the
vector bundle such that ueCf is a pair u— (σ,ξ), where σ is a
complex-valued ΐ-form and ζ is a complex-valued (i + l)-form which
belongs to the ideal generated by the dz's (in the coordinates in
UaM'). Du = D(σ, ξ) = (dσ - ξ, -dξ).

To the first prolongation j ι d of 3 corresponds an exact resolution

(3.15) 0 > <? > Q -^-> Q -^-> ^-> Ci > 0

where the Cfs and D are defined using the general principle [8]'
Let us call (3.15) a prolongation of the Dolbeault resolution of £?.
It is not difficult to prove

PROPOSITION 3.3. The resolution (3.8) of &*£ ° = &R is the quo-
tient of de Rham's resolution for R and the prolongation (3.15) of
DolbeauWs resolution for &. In other words the following diagram
is exact and commutative (writing Pί = Pj>0):
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0 0 0 0
1 i. - i * - ί n

rv ¥ ^ A 0 v Λ 1 v A „ v /Λ

I i D ϊ D D I

0 ^ ,po^pi_^ £_»p. ,0

1 1 1 ϊ
o o o o .

It turns out that the resolution of &R can be somewhat simpli-
fied. Let us define the following vector bundles over M'; for i odd:

Vp<q is the bundle of complex-valued (p, #)~forms p > q,
Ui+ι is the bundle of complex-valued (ί + l)-forms which belong

to the ideal generated by the dz's;
for i even:

Vp 9 is the bundle of complex-valued (p, g)-forms p > q,
ψH2,n2 j g ̂ e })Un(jie of (̂ /2, i/2)-forms of type a + a,
Ui+1 is the bundle of complex-valued (ί + 1) — forms which belong

to the ideal generated by the dz's.
Now let us define

w° = w° ° φ uι

W1 = F1 '0 0 C/2

W* = F 2 ° 0 TΓ1-1 0 U3

W" = 0 (F'''5) 0 WiΛ 0 ί72i+1 , p + q = 2i,0^i^m,

W2i~ι = 0 ( F p ?) 0 U2i , p + q = 2i-l,l£ί£m.

PROPOSITION 3.4. The following diagram is exact and commutative

0 —

0 —

0 —

0
1

-» i? —

1
-> ^ —

1
-> ^ Λ —

1
0

0
I

—> A i —

1
—> CΊ° —

1 j

1
0

0
I

—> AR~

n i

Γ)/ ^ i

1
0

0
I

1
— > . . . — > p ^

1
0

The operator 'D is defined by D.

Now let us turn our attention to the open submanifold M of



360 BOHUMIL CENKL AND GIULIANO SORANI

M'. Let the boundary dM be a smooth (C3) submanifold of codi-
mension 1 in M'. A function r on Mf is said to define the boundary
of M if r < 0 on M, r > 0 on M' — M, and r = 0 on dM, with grad
r ^ O o n dM. Let UczM' be a coordinate neighborhood, t/T) dM Φ
0 , with the coordinates (a?1, •••, a?Λ), w = 2m. Having chosen the
hermitian metric on Mf it can be shown (see for example C. B.
Morrey, Jr. "Multiple Integrals in the Calculus of Variations/') that
the coordinate system can be chosen in such a way that on dM

(3 1 8 ) (w &)">•*<*•

and xn •= T = 0 defines dM. This done, assume that

(3.19) ω « = 1 Σ - f r ^ , in U
I dr I /-i dzι

and

(3.20) (~^-, A \ = 0 , j < m, on 3M.
\ oα); dr I

Notice that ζωm, ωmy = 1 and (ω1, « ωm) is an orthonormal frame
(which can be obtained by the Grame-Schmidt orthogonalization
process).

Because d/dωj = Σ? = 1 6J3/9«*, we get from (3.18), (3.20) that

b™ = 0, l ^ i < m .

Therefore on 9M Π C/" we have dbj/dxi = 0, i < m, 1 ^ j < m. Finally,
on diίfn ί7, we have the identities

(3.21) J*j = 0 , ^ J fc = 0 , i , k < m .
dω3 dω3dωk

Let * denote the usual star operator, *: Ap q —> Am'~q'm~'v. This
operator can be defined by the formula

<j>, Ψ> Ί = Φ Λ * t » ^ | e Ap '9

where 7 = *(1) is the volume element on Mr. The volume element
has the local form *(1) = det (h) {V^Λ)mdzι A Λ dzm A dzι Λ dzm,
or, in our special frame,

(3.22) *(1) = {V~-i)'mωι Λ Λ ω w Λ ω1 A Λ ω m

For any C2-function φ on M let L2{Pl

p,q, φ) be the space of all
smooth sections u of P*tQ such tha t
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| ^ | 2 e ~ ^ ( l ) < co ,

I u |2 = (u, u>. The global product will be denoted by (, )φ —
\ <, >e~**( —1). The operator D:P;,q->P;%1 defines a closed densely
defined operator L2(P;,g, ^)->L2(Pj+\ φ), which we denote by D. Let
us denote by />* its adjoint; and by Pp>q the space of those sections
of P*,g over M which can be smoothly extended across the boundary
dM into Mr. Because the space iί^* — Pi>q Π 3?D* {2&D* stands for the
domain of Z)*) is dense in £2fD Π S&D* with respect to the graph norm
u—> \\u\\φ + \\D*u\\φ + \\Du\\φ, let us look at i^j* more closely. It
can be shown in the same way as in [6] that ueP^q belongs to
i^ij* if and only if

(3.23) (Dv, n)φ = (v, D*u)φ for all v e P;~ι .

Using this relation let us describe the space 2$i>* explicitely. As we
are mainly interested in i^}* let us take an element ue P^qy u = (ρ, rj),
and vePp>q, v = (σ, y) (see Lemma 3.1). Then

ζDv, u) = <(DQσ - 7, py + ζDlσ - DOΎ,

where

- 7, py = dσ Λ *p - (δXσ + T) Λ

<Aτ, >7> - dy A *V - δλ7 Λ *V »

and i?o/^ = /^o^7 for any function / because Ό\ is the curvature
form of the connection Do defined on the vector bundle Rf q —> M'.
Furthermore we get the formulas

dσ Λ *pe~φ = d(σ A *ρe~φ) - σ A d(*ρe-φ)

= d(σ A *ρerφ) - *[eφ*d*(ρe~φ)]e~φ

dy A *ηe-φ = d(y A *ηe~φ) + 7 Λ d(*ηe-φ)

A *rje-φ) - [eφ*d*(ηe-φ)]e-φ

therefore for any v with compact support in Z7, U Π 3M Φ 0 ,

- 7, |O> + <β\o - D07, ^)e^*(l)

= ί {d(ί7 Λ |θe~0 ~ d(7Λ *Ύ)e~φ)}*{l)
UΠM

+ ί {-(δλσ + 7) Λ *p - σ A [eφ*d*(ρe~φ)]
Uf]M

+ D\σ A *η + δXy A *V ~ Ύ A*[eφ*d*(r/e~φ)]e~φ*(l)

UΠM
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By Stoke's formula we get

(Dv, u)φ - (v, D*u)φ = J (σ A *p - 7 A *η)e-
φ*{dr) ,

UOdM

where

D * u = { - e φ * d * { ρ e ~ φ ) + •••, - e φ * d * ( φ - φ ) + •••) ,

and stands for the terms which do not involve differentiation of u
or φ. From the above remarks it follows that

ί (σ A *ρ - 7 Λ *η)e~φ*(dr) = 0
UDdM

for any v e P° g with compact support in U if and only if u e £&D*.

Because σ and 7 can vanish independently we get instead

I σ A *perφ = 0 , I 7 Λ *ye~φ = 0
Uf)dM U(JdM

If we use the usual notation for the decomposition of forms into the
tangent and normal parts Φ = tΦ + nΦ on dM, we conclude from
above that σ A *p = n(σ A *p), 7 Λ *V = n(y A *ρ) because

S r
σ A *pe~φ = \ t(σ A *p)e~φ = 0

and analogously for the second integral. But, if for any form Φ,
we have Φ — nΦ on dM, then dr A φ = 0. Therefore

(3.24) dr A σ A *p = 0 , dr Λ 7 Λ *^ = 0 .

From the first identity we can conclude that dr A *p = 0, because
σ is a 0-form with values in Rf>q. Therefore tp — 0 and from the
formulas

*n = £*, *ί = ^*

we conclude that t*p = *nρ — *nρ = 0, so that np = 0. Recall that
7 is a (Γ* ® AΓ)-valued 1-form (as δ(T* (x) ̂ f ff) c T* (x) T(x) Ag'?).
Such a form 7 splits into (1, 0) and (0, l)-parts, 7 = 7X + 72. The
secon condition (3.24) should hold for any 7 with compact support
in U. Therefore

(3.25) dr A 7X Λ *?? = 0 , dr Λ 72 Λ *^ - 0

should hold for any η1 and ηz. From Proposition 3.1 follows that we
can write
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V = Σ Σ Vij;u«»k Θ o)1 A ώ J + Σ Σ 5?w;iWfc ® ω r Λ ω J

+ ^ Σ /̂jίfcfi>fc (x) ώ z Λ ω J + ^ Σ ^ ϊώ* (g) ώ 7 Λ ωJ ,

where r]ij-ky etc are 2-forms (3.11). We shall use the obvious

notation

? = Σ Σ Vuv,wo)w (x) of A cov

\U\=p w=l
W\=q

where U, V and w stand for barred as well as for unbarred indices.
Then we can write, instead of (3.25), for any (1, 0)-form φ and any
(0, l)-form ψ

dr A Φ A *Vuvι« = 0 > dr A ψ A *Vuv,w = 0 .

And these identities have to be satisfied for all components of η.

PROPOSITION 3.5. An element uePp,q,u= {ρ,rj), belongs to &»*
if and only if for any φ e A1'0, ψ e A0Λ with compact support in
U, UΠdM^ 0 ,

(3.26) n p = ° '
dr A Φ A *Vuv,w = 0 , dr Air A *Vuv,w = 0 ,

holds (on Uf)dM).
Using the explicit coordinate description (3.11) of an element

uePp,q, we get, by direct computation,

COROLLARY. An element u e Pp'q belongs to £&D* if and only if
for its components (via (3.11)) the following identities hold:

npjj = 0 , nprj Λ = 0 , np^a = 0

(3.27) f̂  3r _ _ Q Λ 3r _ Q

A J ~Z—j7/ij\k,ϊj — υ 9 2J T—-Ί'JΊj\k,Ίj — V j

together with their complex conjugates.

REMARK. If we write down only formally the conjugate equations
to (3.27), than using the remark following Proposition 3.1 we get the
boundary conditions for an element u in complex situation.
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For an element u e 2?D* write Du = An + and D*u — Bu + ,
where stands for those terms where u and φ do not get differ-
entiated. Then for such an u — (p, η) we have

(3.28) An = A(p, η) = (dp, drj) .

Let us introduce symbols

dφw = eφd(we~φ)

and

dφ = Σ ωι A di + Σ & Λ rfi.
1=1 i = l

The differentiating part of the adjoint Z>* gives then

Bu -

(3.29) ΣdfyuQ)1 - Σdφ

τηrjώ
j - Σdfη^ω1

It is an easy computation to show that for any u e 2$D* there is an
inequality

i II t tHi + \\Bu\\\ - \\Du\\\ - \\D*u\\

where C is a constant independent of % and φ.

We have chosen the local coframe (α>\ « ,α)m), where ωί is
(1, 0)-form. Therefore there are smooth (C°°) functions c)k, and αj fc

such that

dωι = Σ c i ^ ' Λ <*Λ 3d}* = Σ c)kω> Λ ώ* ,
i,fc=i ό,k=ι

dω{ = Σ ajjk^5" Λ ωfc, 30)* = Σ ^Uώj Λ ^ f c .
j ,k = l jyk — l

If w is any function, then

33^ — —ddw = — Σ Wk]ώj Λ &>fc ,
fc,J=l

(3.31) w U f 3 ^ ± ^
3k dώ'dωk (=i )kdω* ' dωkdώ> ί=ί

And we introduce other symbols, namely
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_ d2w π ni dw ,„_ _ d2w A Hi dw
(3.32) d(θ3dcok *=i do)1 do)3dcok *=i 3coι

^ J I ~ ^Tc'ji Wjk = tϋjfcj

Because *(dr)/|dr| is the volume element on dM we have
dr A *dr = | dr |2*(1), where *(1) = {V — l)mωι A * Λ ωm A ώ1 A ωm

is the volume element on M'. Let /, g be any two functions with
support in a coordinate neighborhood UaM'. Then

(v/"^I)mα)1 Λ Λ ω*-1 Λ ωk+ι Λ Λ ωm Λ ω1 Λ Λ ωm)

where σk is defined by this relation. By Stoke's fromula we get

PROPOSITION 3.5. Let f, g be complex-valued functions (C°°) with
supports in U, then we have the formula

?-dtge-**(l) - \ fge~φσk*(l)

ij

There is an analogous formula for 1 df/dωkge~φ*(l) which is
JUΌM

obvious.
One more technical device is needed for obtaining the basic

estimate—the commutation relations. Using the definition of df and
replacing w in (3.31) by φ we get

dA - ^-.dtw = w.φkl + ± eUdίw - Σ 4 ~ ,
( 3 3 4 ) Λ Λ - Λ

DEFINITION 3.1. Let 77 be a tangent vector at dM. The quad-
ratic form

(3.35) <βdr, η AV>

is called the Levi form.
If we use the orthonormal coframe (ω\ , ωm) then the Levi form

can be written in the form
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Now, let us compute explicitely | | 4 M | | J + ||2ta||J for ue£2& and
use the estimate (3.30) to make the results of [4] immediately appli-
cable. The computation is rather long and routine. Using (3.28)
and (3.29) together with (3.33) and (3.34) we get, for u e <&£. with
support in U, the terms involving p only:

(3.36)

+

and the terms involving rj only:

(|| Au\\l + \\BU\\\)

(3.37)

Let us put for the moment:
kx = the boundary integral in (3.36),
k2 — the integral following kL in (3.36),
k3 = the terms involving the dφp'&,
kι — the remaining terms.

Therefore (3.36) can be written in the form

+ Σ J {φk](pk-~p} + PrPΐ) +
UΠM

τ +

dpi

dωk

II u1IΊ L

11 dωk 1
I

H H 2 + 6

C

07) fi

dωk

2
JL dηιό

dώk

3ω f c IJ

2

-d) +

2

. . .

dτ)jj

•

The integral k3 splits into kf

3 and A;"; k3 = k3 + k", where

K - ^ + 4^- +

Using the boundary conditions (3.27) all terms involving the dφp's
are zero, because np = 0 implies

^ ^ 3 r _ Λ ^ Λ 9 r Λ
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and simple substitution does it. As for the remaining part of kL we
get by integration by parts

Alto***"*
Uf]dM

Then

kλ + k'z = Σ I {rfiprpi + Tijpj-pϊ + rdi*PrPϊ

But the special choice of the local frame in U with the property
(3.21) shows that the last two terms are zero on dM so that

(3.38) kί +

Let us denote by

+ \\p\\\

Then it is easy to show that there are constants C2, C3, C4 such that

and

Similarly let us define t19 t2, ί3, ί4 in (3.37). And as we did for k3

we can also split tz into t[ + ίj', get an estimate for ί2, ί3", ί4 and
write the boundary integral

t, + ίί = 21 ( +
(3.39)

By direct computation we get

PROPOSITION 3.6. i^or cm element u e £&£* vanishing outside a
fixed compact subset of a coordinate neighborhood U in Mf and for
any φ e C2(M), dMe C3 the following estimate holds
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(3 40) ' I | Z > * " I J + l l D u l 1 1 ~ Qί(U' U) ~ Q2(U' U) " Qs(Ui U)

where

*<-•>-•*

dωk

dώk

Q2(u, u) = Σ

dpi
dωk

dωk

dωk

dpi

dώk

dpϊ

dωk dωk

dώk + dωk

ΦkiiprPk + Pi-Pτ) + Φk3 prPk + ΦτiPi-pk

iήVki vΓi + Vii'Vii + Vϊi'Wi + Vii'Vn + Vn'

u'Wi) + ΨuVh'VΪϊ + ΦrAVa vΓi + VrrVii

Q3(u, u) = Σ
UΓ\dM

cjiPi'Ji + PΊ'PΪ + Vu'Vu + Vύ'Va

Ti + Vϋ'Vfi + mι*riϊι)e~φ*(dr)

This proposition corresponds to Proposition 3.1.1 is [4]. Now applying
the technique of [4] to our situation we get

LEMMA 3.1. // the Levί from (3.35) has at least (n — 2) positive
eigenvalues or at least 3 negative eigenvalues at every point on dM
then there exists a constant C > 0 such that

(3.41) IDu\\ + IZ>*u\\ + Iu | 2 ^ C ί \u\2e~φ*(dr)

for u e <^D*.

We are now in the position that the Kohn-Nirenberg Theorem
can be applied (Theorem 5, §2 [7]). Let us denote by N1 the
subspace of Pι

Viq composed of all sections u e Pι

p>q satisfying the
boundary conditions (3.23) and

(3.42) (Dv, Du)φ - (u, D*Du)φ for all v e Pι

p>q .

Let Hι be the subspace of JV1 which is annihilated by the laplacian
/>/>* + />*A i.e., H1 = {ueNι\Du = D*u = 0}.

THEOREM 3.1. For an open manifold Me M', dMa C3, satisfying
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the assumptions of the previous Lemma 3.1, the Neumann problem
is solvable for the operator D: Pl,q—* Pι

φ,q (related to ddc by (1.1)) at
PptQ. This means that H1 is closed in L2(PPjq, φ), and that there exists
a bounded operator N: U{Pι

Pfq, φ) —• L2(PPfQ, φ) sueh that its range is
in N1, and

( i ) NH = HN, where H: L2(Pp,q1 φ) —> H1 is the orthogonal pro-
jection,

(ii) each element u e L2(Pp,q, φ) can be written in the form u =
DD*Nu + D*DNu + Hu, where the terms are mutually orthogonal,

(iii) DN = ND .

REMARKS. 1. If one drops the "side conditions" (3.12) and con-
siders the operator 93 instead of ddc then exactly the same conditions
on the Levi form are sufficient for the solvability of the Neumann
problem related to 99.

2. All the computations have been done at PPfQ only. It would
be only a technical problem to get an extension in that direction
and show that on strongly pseudoconvex manifolds the Neumann
problem is solvable (for dd and ddc).
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