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MODULES OVER UNIVERSAL REGULAR RINGS

ROGER WIEGAND*

To each commutive ring R there is associated a certain
commutative regular ring R. The ring R is in fact an R-
algebra. It is shown that RR is never flat, unless R is itself
regular. The functor taking R to R preserves direct limits,
and, in certain cases, tensor products. It is shown that if
R is weakly noetherian then the global dimension of R is
less than or equal to the Erull dimension of R, Necessary
and sufficient conditions that R be a quotient ring of R
are determined.

In this paper we study a certain commutative (von Neumann)
regular ring R associated with each commutative ring R. There is
a natural homomorphism φ:R—>R, characterized by the following
universal property: every homomorphism from R into a regular ring
factors uniquely through φ. The ring R has been studied briefly in
[7] and [5]. In §1 we construct R and derive its basic properties,
including the universal property mentioned above. The construction
uses a little sheaf theory, although once a few lemmas have been
proved it will rarely be necessary to recall the sheaf-theoretic cons-
truction. In fact, in §5 we give a simple description of R that is
completely nontopological. In §2 we study relationships between an
22-module A and the ^-module A (g)RR, and in §3 we restrict our
attention to weakly noetherian rings, that is, rings with maximum
condition on radical ideals. It is shown that R is weakly noetherian
if and only if A (g)Λ R is Λ-projective for every finitely generated
AB. Homological considerations are taken up in §4, and it is shown
that if R is weakly noetherian then the global dimension of R is less
than or equal to the Krull dimension of R. In §6 we examine how
the functor taking R to R behaves with respect to tensor products
and direct limits. The last section is devoted to semiprime rings,
and we find necessary and sufficient conditions that R be a quotient
ring of R.

We make the standing assumption that all rings are commutative
with unit, and all ring homomorphisms and modules are unitary. We
now establish some notation to be preserved throughout the paper.
Recall that Spee(iϋ) is the set of prime ideals of R, with the Zariski
topology. If S is a subset of R, we let V(S) denote the (closed)
subset of Spec(J?) consisting of those prime ideal that contain S,- and
we let D(S) = Spec(j?) - V(S). If aeSpecCR) let kx denote the quo-
tient field of the domain R/x, and for each a e R let a(x) be the image
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of a under the natural map R —> kx. Finally, for each pair of elements
a,beR, let [α, 6] be the element of ΐ[{kx: %€X} whose αjthcoordinate
is a(x)\b(x) when xeD(b) and 0 otherwise.

1* Definition and basic properties of R* A topological space is
spectral if it is compact and To, if the compact open sets form an open
base and are closed under finite intersections, and if every closed irre-
ducible set is the closure of a point. Spec(iϋ) is always spectral, and
M. Hochster [5] has recently proved that every spectral space is homeo-
morphic to Spee(iu) for some ring R. The first step of his proof is to
retopologize the spectral space X by taking all compact open sets and
their complement as an open subbase. This stronger topology is called
the patch topology on X. The set X with the patch topology will be
denoted by X. It can be shown [5] that X is a Boolean space, that
is, compact, Hausdorff, and totally disconnected. In case X — Spec(lϋ),
one readily verifies that the sets D(a) Γ) Vφ,) Π ••• Π V(bn), a, heR,
are clopen in the patch topology and form an open base.

Now let R be any ring and let X = Spec(iϋ). Let & be the
disjoint union of the fields kx. Then we may regard the elements
[a, b] as maps from X to & and we give the set & the strongest
topology making all these maps continuous. With this topology, &
is easily seen to be a sheaf of fields over X, and we let R = Γ(X, &),
the ring of global sections of &. For each prime ideal P of R>
let P be the prime ideal of R consisting of those sections that
vanish at P. Let φ:R—>R be the map ai—> [a, 1]. The following
theorem is a direct consequence of the representation theory of regular
rings [8]:

THEOREM 1. R is a regular ring. The correspondence P—+P is
a homeomorphism from X onto Spec(R). The natural map φ: R—>R
induces an isomorphism from kx onto R/x for each xe X. If R is
regular then φ is an isomorphism.

We remark that R can be identified with the subring of ]J{kx:
xe X} consisting of those elements that are locally (in the patch
topology!) of the form [a, b]. (This is the definition of R given in [5].)

Regular rings are characterized by the property that the local
ring at each maximal ideal is the same as the corresponding residue
class field. This fact and the isomorphisms kx = R/x provide a con-
venient localization technique, which will be exploited throughout the
paper. The next result is a simple illustration of this technique.

COROLLARY. The natural map R ®R R —• R is an isomorphism.
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Proof. Localizing at each maximal ideal x of R, we have natural
isomorphisms R ®B R (g)Bkx = R ®B kx = R (g)B kx (g)B kx = kz ®B kx =
kx = R ®Rkx. The globalization theorem completes the proof.

We conclude this section with a proof of the universal property-
stated in [7].

COROLLARY, Every ring homomorphism from R into a commuta-
tive regular ring factors uniquely through the natural map φ: R—>R.

Proof. Let ψ: R —+ S be the homomorphism in question. There
can be at most one factorization, since, by the corollary above and
[9], Φ is an epimorphism in the category of (not necessarily commuta-
tive) rings. To prove that a factorization exists, we identify S with
S and we let Y= Ϋ = Spec(S). The map Spec(α/r): Y->X defines a
continuous map ψ: Ϋ-+X. For each yeY, ψ induces a field homo-
morphism ψy: kf(y) —>S/y. If p e R, we define σ e S by σ(y) = ψy(p(t(y))),
and Θ: p —> σ is the desired factorization.

2* Tensoring with R. In this section we study the relationship
between an jR-module A and the .R-module A(x)BR. The latter
module has a very convenient local description. For example, if xe
Spec(Λ), then

(1) A (x)B R/x = A®Rkx = (A/xA) ®Blx kx.

As an application, suppose R is a principal ideal domain. Then
A (g)B R = 0 if and only if A is a divisible torsion module.

Another local description is obtained by identifying kx with the
residue class field of the local ring Rx. Then, changing notation, we
have

(2) A ®R RIP - AP/PAP .

From (2) and Nakayama's lemma, we obtain the following useful
observation:

PROPOSITION 1. Let AR be finitely generated and let P be a
prime ideal of R. Then A (x)R R/P = 0 if and only if AP — 0. In
particular, if A (x)R R = 0 then A — 0.

COROLLARY. If R is flat as an R-module then R = R.

Proof. We need only verify that R is regular. Let / be a
finitely generated ideal of R. We show / is a direct summand of R.
Let J be the annihilator of /. It will suffice to show that I + J =
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R, for then / Π J = IJ = 0. If / + J Φ R, let P be a prime ideal
containg I + J. Then I(g)RR ^ P(g)R R = PR ^ P, and it follows
that I(g)RR/P = 0. By Proposition 1, JP = 0, that is J g P, a
contradiction.

We remark that the functor _®Λ R is not faithful, even on maps
between finitely generated modules. For example, the embedding
Z/(pn) —> Z/(pn+1) is killed by tensoring with Z.

Let A be a finitely generated iϋ-module. For each prime ideal P
of R let rA(P) = r(P) be the minimum number of generators required
for AP over RP. By (2) and Nakayama's lemma, r(P) is the dimension
of A ®R R/P as a vector space over R/P.

PROPOSITION 2. Let AR be finitely generated. Then A ®Λ R is a
projective R-module if and only if for each n the set Un = {Pe Spec(i?) |
r(P) = n} is compact (in the Zariski topology).

Proof. The function r(P) is always upper-semicontinuous on X —
Spec(iϋ). In other words, if Vn = Uo U U Un, then the sets Vn are
always open in X. It follows that each Un is compact if and only
if each Vn is compact. But an open subset of X is compact if and
only if it is clopen in X. Therefore, the sets Un are all compact if
and only if the dimension of A ®R R/P is locally constant on X, that
is, if and only if A®RR is ^-projective [8, p. 63].

EXAMPLE 1. Suppose Spec(i2) has a noncompact open set U.
Write U = D(I), I an ideal of R, and let C = R/L Then, for P e
Spec(iϋ), we have CP = 0 if and only if C is annihilated by an element
not in P, that is, if and only, if Pe U. Thus Uo = U, and by Pro-
position 2 C0RR is not projective.

For each AR let d(A) = sup {rA(P)|PeSpec(i2)}.
(Since r(P) ^ r(Q) whenever P £ Q, it suffices to take the supremum
over all maximal ideals.) If R is regular, it is known [8, p. 57] that
d(A) is equal to the minimum number of generators required for AR.
Combining this fact with the remark preceding Proposition 2, we
have the following result:

PROPOSITION 3. Let AR be finitely generated. Then (A (g)Λ R)R

can be generated by d(A) elements, and no fewer.

3* Noetherian spectral spaces* Recall that a topological space
is noetherian if it has ascending chain condition on open sets, or,
equivalently, if every open subset is compact. A ring R will be
called weakly noetherian if Spec(i?) is noetherian, that is, if R has
maximum condition on intersections of prime ideals.
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THEOREM 2. The following conditions on the ring R are equi-
valent: (a) R is weakly noetherian, (b) {A (g)B R)R is projective for
each finitely generated AR, and (c) (C ®RR)R is projective for each
cyclic CR.

Proof, (a) => (b) by Proposition 2, (b) => (c) trivially, and (c) =>
(a) by Example 1.

Every spectral space (in fact every To space) has a natural partial
ordering: x <L y if and only if y e {x}~~ The dimension dim(X) of
the spectral space X is the greatest integer n such that there is a
sequence x o < ••• <«„ in I . If no such integer exists we say
dim(X) = oo. The dimension of Spec(J?) is just the Krull dimension
of R, that is, the supremum of lengths of chains of prime ideals in R.

Recall that the derived space Y' of a space Y is the complement
in Y of the set of isolated points of Y. A transfinite sequence {Y(a)}
of closed subsets of Y is defined as follows: F ( 0 ) = Y, Y(a+1) = (Y(a)y,
and Yiβ) — ΓΊ {Yia): a < β} if β is a limit ordinal. Suppose now that
Y is a Boolean space. We call Y superatomic if the associated
Boolean algebra is superatomic, that is, Y(ζ) = 0 for some ordinal ξ.
If ξ is the smallest ordinal such that Y(ζ) = 0 , then by compactness
ξ cannot be a limit ordinal, and we define λ(F) = ζ — 1.

If S is a subset of the spectral space X we shall write Sp for
the set S with the topology inherited from X. In case S is closed
in X, is is easily shown that S is a spectral space and S = Sp.

THEOREM 3. If X is a noetherian spectral space then X is
superatomic. If, in addition, dim(X) < oo, then X(X) ^ dim(X).

Proof. Let S be an arbitrary nonempty subset of X, and let x
be a maximal member of S. I claim that α? is an isolated point of
Sp. To see this, notice that X — (x)~, being compact open, is clopen
in X. Since {x} = S Π {x}~, the claim follows. Setting S = Xa), we
see that Xia+1} is properly contained in X{a) whenever X{a) Φ 0. It
follows that X is superatomic.

The second assertion is proved by induction on dim(X). If
dim(X) = 0, every element of X is maximal, and therefore an isolated
point of X. Hence λ(X) = 0. Now assume dim(X) ^ 1 and let X'
denote the set X' with the relative topology as a subset of X. Then
X' is a noetherian spectral space. Moreover, X' contains none of the
maximal members of X, so dim(X') < dim(X). Then λ(X) = λ(X') +
1 = M(XY) + 1 ̂  dim(X') + 1 g dim(X).

EXAMPLE 2. A noetherian spectral space Xn such that dim(X%) =
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n and X(Xn) = n. Let Rly , Rn be principal ideal domains, each
with infinitely many maximal ideals. Let Y* = Spec^) and let Xn =
Yx x ••• x Yn with the usual product topology. By [5, Th. 7], Xn

is a spectral space, and it is easily seen that Xn is noetherian. Since
the partial ordering on Xn is the product ordering, it follows that
dim(X%) = n. Now Ϋt is the one-point compactification of the discrete
set of maximal ideals of Ri9 and the patch functor, being a right
adjoint [5], preserves products. Therefore Xn = Ϋ1 x •• x Ϋ%, and
clearly X(Xn) = n.

EXAMPLE 3. A noetherian spectral space X such that X(X) = ω.
Let X = {0} U {(i, j): 1 ̂  i ^ j < ω}. Topologize X by taking as a
closed subbase the sets Si3- = {(k, j): i ^ k ̂  i}. Then every proper
closed set is finite, so X is certainly noetherian. Since X(n) = {0} (J
{(ί, i): 1 <; ΐ <̂  j — n < ω}, we see that λ(X) = ω.

4* Homological properties. Let R be a (commutative) regular
ring and let X — Spec(iϋ). We say R is superatomic if its Boolean
algebra of idempotents is superatomic, or, in the terminology of the
last section, if X is superatomic. In this case we let X(R) = \(X).

PROPOSITION 4. Let R be a superatomic regular ring, and suppose
X(R) is finite. Then gl. dim(R) ^ X(R).

Proof. We argue by induction on X(R). If λ(jβ) = 0 then Spec(iί)
is discrete and therefore finite. It follows that R is a finite direct
product of fields, and gl. dim(i?) ^ 0. Assume X(R) = n ^ 1, and let J
be the socle of R. Then S^ec(R/J) = V(J) = X', the derived space of
X. Therefore X(R/J) =n — l, and by induction gl. dim(jβ/J) ^ n - 1.
By [4, Cor. 4], gl. dim(R) ^ n.

THEOREM 4. If R is weakly noetherian, the global dimension of
R is less than or equal to the Krull dimension of R.

Proof. Immediate from Theorem 3 and Proposition 4.

PROPOSITION 5. Let R be a superatomic regular ring. Then gl.
dim(iϋ) = sup {h. dimR(S)\RS is simple}.

Proof. We first show every nonzero jβ-module contains a simple
module. It suffices to show that every proper ideal I is contained
in an ideal J such that J/I is simple. Let X = Spec(iϋ) and let
C = V(I). Clearly C S X', and by induction C{ξ) = 0 for some
ordinal ξ. In particular, C Φ C, so there is a point xeC such that
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C — {x} is closed in X, say C — {x} = V(J). Clearly J/I is simple.
Now if A is an arbitrary ϋJ-module, define a transfinite sequence of
submodules Aa as follows: Ao = 0; if Aα is defined and Aa Φ A, let
Aa+JAa be a simple submodule of A/Aa; if /3 is a limit ordinal, let
A^= U α^Λ*. By Auslander's lemma, h. dim^A^sup {h. dim(Aα+1/Aα)},
[1, Proposition 3].

In particular, if R is superatomic, then gl. dim(JS) = sup
{h. dim^(-B/P): Pe Spec(JS)}. If we look at a particular prime, we can
considerably sharpen the estimate of Theorem 4. Recall that the
dimension dim(P) of P is the Krull dimension of R/P, that is, the
supremum of lengths of chains of primes P = Po c c Pn in R.

THEOREM 5. Let P be a prime ideal of R. Assume D{P) is
compact and R/P is weakly noetherian. Then h dim^(R/P) ^ dim(P).

Proof. Let X - Spec(iί), V= V(P), D = D{P). Then X is the
disjoint union Dv U Vp, and each of these sets is clopen. Let d =
dim(P). If d = 0 then {P} = F. It follows that P is a direct sum-
mand of R; therefore R/P is projective. Now assume d > 0, and let
A be an arbitrary ^-module. Let S = JB/P and consider the S-module
B = (A/PA) (g)5 S. Let Z G Spec(S) be the 0-ideal. We shall show that

(3) Ex4(P, A) = Ext|(^, JB) .

The right-hand side of (3) is 0 by Theorem 4. Since A was arbitrary,
it will follow that h. dim^(P) <J d — 1, and therefore that h. dim^(JS/P)
^ d.

We identify F with Spec(S) and let A (resp. B) be the usual
sheaf of modules over X (resp. Vp) corresponding to A (resp. B). If
ζ) e F, a straightforward computation shows that B/(Q/P)~B ~ A/QA,
that is, under the identification F = Spec(S), A and I? have the
same stalks over Vp. Since all the isomorphisms are natural,
we conclude that B = A \ Vp. Now by [10] we have Extf (Z, B) =
fP(Fp - {P}; B) = ίP(T^ - {P}; A), and Ext|(P, A) - Hd(X - {P}; A) =
^ ( F ^ - ί P J i ) © ^ ^ ; ! ) . But A\DP is acyclic since Dp is a
Boolean space [10]. Therefore Hd(Dp; A) = 0, and (3) is verified.

The estimates given in Theorems 4 and 5 are in general very
rough. For example, if R is any countable ring then R is countable
(proof in the next section) and therefore hereditary. On the other
hand, if R is a ring such that Spee(iϋ) is the space X2 of Example
2, with I ΓJ = ^o and | Y2\ = fc^, then R is not hereditary. (In fact,
it can be shown that gl. dim(β) = 2.) I know of no example of a
weakly noetherian ring R such that gl. dim(R) = n > 2, but I con-
jecture that the space Xn would provide one, if we were to take | Yi | <
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5* The ring R. For each aeR let a denote the saturated
multiplicative set generated by α, that is, the set of elements of R
that divide some power of α, Let ^t = {ά: ae R}. If S, Te ^ let
ST denote the smallest saturated multiplicative set containing S U T.
Then STe^f; in fact, if S = a and T = b then ST = ab. For each
S, Te^f there is a map Rs (g)Λ -Kr —• -B-sr defined by [w/s] (x) [v/t] ->
[wv/sί]. These maps make the i?-module .B = QΣRS into an iϋ-algebra.

We will define a natural homomorphism Φ:R—*R. First, we make
two trivial observations: (1) Every element of Rs (Se^f) can be
written in the form [u/s]> with s — S. (2) If s,teR, then s = t if
and only if D(s) = D(ί). Now if σeRs, write σ = [w/s], with s = 5,
and define Φs(σ) = [u, s] eR, (in the notation of §1). Then the maps
Φs are well-defined homomorphisms of iϋ-modules and induce an
algebra homomorphism Φ: R-+R.

THEOREM 6. Φ is surjective.

Proof. We first show every idempotent is in Im(Φ). For each
set U clopen in X (X = Spec(iϋ)), let eσ e R be the corresponding
idempotent: en(x) = 1 if x e U and 0 if xiU. Let G be the set of
clopen sets U for which euelm(Φ). Clearly G is closed under finite
Boolean combinations. Since G contains every set of the form D(s),
Se R, it follows that every clopen set is in G. Now let peR. By
the remark following Theorem 1, there are clopen sets Ui covering
X and element [ah b{] e R such that p(x) = [ai9 bi] (x) for each x e U^
Refining, we may assume the Ui form a finite disjoint cover. Then
p = Σteσi[aif bi]elm(Φ).

COROLLARY. Let R be a ring and let X — Spec(JS). Then R is
isomorphic to the subring of ΐ[{kx: xe X} consisting of all finite sums
of elements of the form [a, b].

COROLLARY. |fl| = \R/N\, where N is the set of nilpotent ele-
ments of R.

Proof. If R has no nilpotents, clearly ψ: R—>R is one-to-one.
Also, it is easily verified that R = (R/N)~. It follows from the
corollary that \R\ = \R/N\, at least in case R is infinite. But if R
is finite then R/N is semisimple, and R/N = (R/N)~ = R.

One might guess that the map Φ: R-^R is the start of a con-
venient flat resolution of R. Unfortunately, this does not seem to be
the case; there is no simple criterion for a "nonhomogeneous" element
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of R to be in Ker(Φ). Even though the computation of Tor̂ CR, A) ap-
pears formidable, we can simplify the problem to a certain extent:

PROPOSITION 6. For each R-module A and each n ^ 0 there is
a natural isomorphism Ύorζ(R, A) = A®& Ίorξ(Ry R).

Proof. If n = 0 this is the first corollary to Theorem 1. Assume
the statement holds for n. Then, since R is regular; Torξ(R, J) is
an exact functor from ^-modules to .β-modules. The long exact
sequence then shows that Tor*+1 (R, _) is a right exact functor of
jS-modules. Since this functor preserves coproducts, Tor*+1 (R, A) =
A (g)£ Tor*+1 (Rf R).

COROLLARY. If Tor*(#, R) = 0 for each p > 0, then gl. dim(B) ^
gl.

Proof. Straightforward induction shows that if A is an JS-module
and Tor̂ CR, A) — 0 for each p > 0, then h. dim^(A) ^ h. άimR(A).
Now apply Proposition 6.

Unfortunately, the hypotheses of the corollary are not likely to
hold under very general conditions. In fact, Torf (Z9 Z) Φ 0, since
the torsion subgroup of Z is easily seen to be @ ΣpZ/(p)

6* The functor R—»R. Let k be a fixed commutative ring,
and let <ĝ  denote the category of commutative unitary fc-
algebras. Let 5̂ ί be the full subcategory of ^ whose objects are
the regular ^-algebras. If Re^k clearly Re 3**. Suppose θ: R-+S
is a morphism in ^k. Let θ: R—>S be the unique homomorphism

such that (R-^R-^S) = (R-JL* $-£->§). From the construc-
tion of θ (§1) it is clear that θ is a fc-algebra homomorphism. Thus
Vk: ^u-^ "PI taking R to R is a functor. In fact, using [6, p. 128],
we can say much more.

PROPOSITION 7 ^ is a full, coreflective subcategory of &k. In
fact Vk: R\-+ R is the left adjoint of the inclusion 3^ —* ̂ .

COROLLARY. If R is the direct limit of the k-algebras Ri then R =
lim(Ri). If R and S are k-algebras, then (i2(x)/bS)" = (JS(2)fcS)^. If

either of the natural maps R®kR—>R or S®kS—*S is an isomor-
phism then (R (x)k S)~ = R(x)kS.

Proof. Since Vk has a right adjoint, Vk is right-continuous. In
particular, Vk preserves coproducts (when they exist) and direct
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limits. Since the ordinary direct limit of regular rings is obviously
regular, the direct limit in 5̂ ί is the ordinary direct limit, and the
first assertion follows. To prove the second statement, notice that
R0kS is the coproduct of R and S in <gV Therefore (R (x)k S)~ =
R Ji S, where JUL denotes the coproduct in 5^. But if A and B are
regular, then (A (g)fc By = A IL I? = A _U_ B. In particular, i? u_ S =
(R(g)kSy. To prove the last statement of the corollary, assume
R (x)A R —> R is an isomorphism. Then by [9] k~>R is an epimorphism
in £f, the category of not necessarily commutative rings. Since R—>
R is also an epimorphism in <_9% the map k-^R is an epimorphism
in S^ By [9] again, R®kR—>R is an isomorphism. (A direct proof
using associativity formulas is also easy.) The desired conclusion now
follows from the next lemma.

LEMMA. Let R and S be k-algebras. Assume R (g)* R —* R is an
isomorphism and S is regular. Then R(g)kS is regular.

Proof. Let A and B be ΐί-S-bimodules. Then A ®imS) B =
A ®(R®s) (R ®fc B) = (A0RR)0sB = A (g)s B. Therefore (A (g)(ms)-)
is an exact functor. Since A was arbitrary, R®kS is regular.

COROLLARY: If S is an arbitrary R-algebra then (R ®R S)~ —

7* Semiprime rings. Let R be a semiprime ring, that is, a
ring with no nonzero nilpotent elements. Then the natural map φ:
R—*R is an embedding, and we identify R with its image in R.
Since R is nonsingular (that is, not an essential extension of the
annihilator of any nonzero element), the maximal quotient ring of R
is the injective hull of RR. (See pp. 58, 64, and Theorem 1. + 2. on
p. 69 of [3].) Therefore R is a quotient ring of R if and only if RR
is an essential extension of RR.

THEOREM 7. The following condition on a semiprime ring R are
equivalent:

(a) R is a quotient ring of R.
(b) Every nonempty subset of Spec(R) that is open in the patch

topology contains a nonempty set of the form D(s).
(c) Distinct compact open subsets of Spec(R) have distinct closures.

(d) If I is a finitely generated ideal of R and rgV I then there
is an se R such that si = 0 but sr Φ 0.

Proof. (a)=>(b): Let X — Spec(β) and let U be a nonempty
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open subset of X. We may assume U is clopen in X. Let e e R be
the idempotent with support Z7, and choose r e R such that 0 Φ re e
R. Then 0 Φ D(re) £ U.

(b) ==> (a): Let σ be a nonzero element of R. Suppose first that
there exist a,beR and a clopen set F £ X such that F £ D(6), and
<7(α?) = a(x)/b(x) on F and 0 outside F. Then F Π D(α) =£ 0 , so let
0 ^ D(s) g 7 n D(α). Then sδσ = saeR. Also, sα ^ 0, since 0 Φ
s 6 "l/α and R is semiprime. In general, we can write σ — σγ + +
σn, where each of the σ{ is of the above form, and Rσk Π Σi*kR<?i =
0 for each k. We may assume σγ Φ 0. I claim that for each k there
is an rkeR such that 0 =£ rk(σ1 + + σ*) e JS. For Λ = 1 this has
already been verified. Assume, inductively, that rk has been chosen.
If rkσk+1 = 0, let rk+1 = rk. If not, let 0 Φ srkσk+1 e R, and let rk+1 =

(b) => (c): Let ?7 and F be compact open subsets of X, and
suppose U §£ F. Then [7 — F is a nonempty clopen subset of X, so
let 0 Φ D{s) S C7 - F._Then 2)(s) £ !7 but D(s) Π F = 0 , so U g F.

(c) => (d): If r g i/Fthen D(r) g D(I). Choose a point a? e D(r) -
Z)(I). Let D{s) be a neighborhood of x that misses ί>(/). Then si = 0
but sr =£ 0.

(d) => (b): Recall that the sets D{r) Π F(7), / a finitely generated
ideal of R, form an open base for X. If D(r) Π F(/) Φ 0, then r g
l/ZΓ Choose s e J? such that s i = 0 and sr Φ 0. Then 0 ^ D(sr) £
J9(r)ΓΊ

COROLLARY: If R is a quotient ring of R and R is either weakly
noetherian or semihereditary, then R — R.

Proof. Suppose R is weakly noetherian, and let M be an arbitrary
maximal ideal of R. Then X — {M} = D(M) is a compact open subset
of X = Spec(i2). By (c) of Theorem 7, D(M) must be closed in X.
It follows easily that M is a direct summand of R. Therefore R is
semisimple with minimum condition-

Now assume R is semihereditary. By (d) of Theorem 7, R has
the following property: (*) Every finitely generated proper ideal of
R has nonzero annihilator. But Bass [2, Theorem 5.4] has shown
that condition (*) is equivalent to the condition that every finitely
generated protective submodule of a protective module is a direct
summand. Therefore every finitely generated ideal of R is a direct
summand, and R is regular.

F. L. Sandomierski has pointed out that if R satisfies (*) then
the weak dimension of every RA is strictly less than h. dim^A) (if
A is not protective). By induction, it suffices to show RA is flat
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whenever h. dimB(A) ^ 1. Write A = P/K with P and K protective.
Let ϋΓφ T = F, a free module. Then A = (Pφ T)/F. But ί7 is the
direct limit of free submodules of finite rank, and (*) implies that
each of these is a direct summand of P © Γ . It follows that A is a
direct limit of protective modules and therefore is flat.

A module of protective dimension 2 may fail to be flat. In fact,
we give an example of a non-regular ring with global dimension 2
that satisfies the conditions of Theorem 7.

EXAMPLE 4. For each positive integer k let dk be the product
of the first k primes, and let Rk be the ring of integers modulo dk.
Let P = 0 ΣRk, and let R be the subring of JJRk generated by P and
the identity element. (R consists of all "eventually constant" seque-
nces.) Since R/P is isomorphic to the ring of integers, R is not
regular. For each xeR let x(k) eRk denote the kth coordinate of x.
Let x,y19 , yn e R It is easy to see that x e V(yu , yn) if and
only if, for each k, x(k) e l/(i/i(fc), , yn(k)) We now show that R
satisfies condition (d) of Theorem 7. Assume xg λ/(yu , yn). Since
each of the rings Rk is regular, there is some k and an reRk such
that rx(k) Φ 0 but ryt(k) = 0 for each ί ^ n. If s is the element of
R with r in the kth position and O's elsewhere, clearly sx Φ 0 and
sy{ = 0 for each i, as desired. To show that gl. dim(JS) = 2, we know
gL dim(lϋ) ^ 2, by the corollary to Theorem 7. But since Soc(J?) =
P and J?/P s Z, it follows from [4, Cor. 4] that gl. dim(Λ) ^ 2.
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