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A DISCONJUGACY CRITERION FOR HIGHER ORDER
LINEAR VECTOR DIFFERENTIAL EQUATIONS

WiLLiaMm T. REID

For a higher order linear quasi-differential equation which
is non-self-adjoint there is presented a disconjugacy criterion
that is a consequence of the disconjugacy of an associated
self-adjoint quasi-differential equation. In particular, there
is considered the specific form of this criterion for a higher
order differential equation of the canonical form which has
been presented by the author, Transactions of the American
Mathematical Society, 85 (1957), 446-461.

1. Introduction. For self-adjoint Hamiltonian differential sys-
tems which satisfy a condition of definiteness that in the case of ac-
cessory systems for variational problems is the strengthened Legendre
or Clebsch condition, it is well-known, (see, for example, Bliss [1,
Secs. 89, 90], Morse [5; 6, Ch. IV], Reid [7; 9; 11, Sec. VIL. 5]), that
the condition of disconjugacy is equivalent to the positive definiteness
of the associated (Dirichlet) hermitian functional. In turn, for non-
self-adjoint differential systems one may derive a sufficient condition
for disconjugacy as a consequence of the disconjugacy of certain
associated self-adjoint systems. An example of this procedure in-
volving a linear homogeneous vector differential equation of the second
order is given in Reid [7, Sec. 5]; see also, Hartman and Wintner
[3]. The purpose of the present paper is to present corresponding
results for more sophisticated differential systems of higher order.

Matrix notation is used throughout; in particular, one column
matrices are called vectors. The n x n identity matrix is denoted
by E,, or merely by E when there is no ambiguity, and 0 is used
indiscriminately for the zero matrix of any dimensions. The conjugate
transpose of a matrix M is denoted by M*. The symbols M = N,
{M > N}, are used to signify that M and N are hermitian matrices
of the same dimensions and M — N is a nonnegative, {positive}, de-
finite matrix. A matrix function is termed continuous, integrable,
etc., when each element of the matrix possesses the specified property.

If a matrix function M(t) is a.c., (absolutely continuous), on a
compact interval [a, b], then M’(¢) signifies the matrix of derivatives
at values where these derivatives exist, and zero elsewhere. Similarly,

if M(t) is (Lebesgue) integrable on [a, b], then SbM(t)dt denotes the

matrix of integrals of respective elements of jl/[(t). For a given
interval [a, b], the symbols €,,[a, b], €}, [a, b], &,,la, 0], & [a, b], &a, b],
W,pola, 0], Az [a, b] are used to denote the class of p X ¢ matrix funections
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M) = [My@)], (=1, +--,p;8=1,+-+,q) which on [a, b] are respec-
tively continuous, continuous and possessing continuous derivatives of
the first # orders, (Lebesgue) integrable, (Lebesgue) measurable and
| Ms(t) |* integrable, measurable and essentially bounded, a.c., of class
€ 'a, b] with M™~1(t) € 2, [a, b]. For brevity, the double subscript pq is
reduced to merely » for the p-dimensional vector case specified by p,q=1,
and both subscripts are omitted in the scalar case p=1,¢ =1. For
n =1, the subeclass of vector functions yeU[a,bd] for which
y"I(t) € &[a, b] is denoted by Ar*[a, b]. Also for n = 1 the subclasses
of vector functions y belonging to €2[a, b], Az[a, b], A>*[a, b] for which
yte~ @) = 0 = yl*~(d), (@ =1, ---, n), are denoted by €7 [a, b], A= J[a, b],
Az2la, b], respectively. If matrix functions M(¢) and N(t) are equal a.e.
(almost everywhere) on their interval of definition we write simply
M) = N(@).

2. Preliminary results. Let F;;(¢) =[F,..;;(?)], ¢, =0,1, -+, n),
be r x r matrix functions defined on an interval I on the real line,
and satisfying the following hypothesis.

F,.(t) is nonsingular for tel, and for arbitrary compact sub-
wntervals [a,b]C I, and a,3= 0,1, -+, n — 1 we have:

()]

(a) F.., Fil, Fa, F;;'F,s and F,,F;; belong to L [a, b;

(b) F,; and F,, belong to L2,[a, b].
The (» + 1)r X (n + 1) matrix which for¢,5=0,1, -+, nand 0,7 =
1, ---,r has the element in the (¢r + o)th row and (jr + 7)th column
equal to F,.;;(f) will be denoted by F(f), and for £ =0,1, .-+, n the
r X (n + 1)r matrix whose element in the oth row and (jr + 7)th
column is F,.,;(t) will be denoted by merely F.(t). If [a,b]cI we
shall denote by Dla, b] the linear vector space of r-dimensional vector
functions y € A™?[a, b], and by D,[a, b] the subspace consisting of those
yeDla, b] with y“a) = 0 = y*1(b), (@ =0,1, -+, » — 1). Also, if
y€Dla, b] we shall denote by % the (n + 1l)r-dimensional vector
function with #;,+.(t) = ¥Y'(@), (1 = 0,1, ««e,m; T =1, <+, 7).

If [a,b]c I and y e Dla, b], z€ Da, b] then the integral

2.1) Tl zla, b = | 2 OF OO
is well defined, and is a sesquilinear form on Dla, b] X Dla, b].

Lemma 2.1. If yeDla, d], then
2.1) Jy, z|a, b] = 0, for ze Dya, ]

if and only if y 1s a solution on [a, b] of the vector quasi-differential
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equation
(2.2) Rly: F1¢t) = F)§@) — {Fi@QF(@) — {+ - — {F.()g@)} ---}} =0.

In conformity with usual terminology, (see, for example, Bradley
[2], Reid [9, Sec. 4]), an r-dimensional vector function y(f) is a
solution of (2.2) if ye Dla, b] and the r-dimensional vector functions
() = W), (0 =1,+++,7k =1, +++,n), defined recursively as
(1) = F(0)7(t)
vn——;n(t) = Fn—p(t)g(t) - 'U;L—pﬂ(t): b= 1,seeyn—1,
all belong to ¥U,[a, b] and on [a, b],

(2.4 Zly: F1() = F@)g(t) — vi() = 0.

2.3)

The result of Lemma 2.1 follows by the classical proof of the funda-
mental lemma of the caleulus of variations, (see, for example, Bliss
[1, Sec. 5] for simplest instance; Reid [11, Probs. III. 2:1-8] for more
general cases). Indeed, if for an integrable vector function w(f) on

[a, 8] we introduce I[w](t) for Stw(s)ds, and for ye Dla, b] we set

wy(t) = Fo(t)g(0)

B2 ) = F030) — Iw)l(),  p=1,+een—1,

then upon suitable integration by parts condition (2.1) becomes
b
(2.6) S 2 F(8)7(s) — I[w,](s)}ds = 0 for ze Dyfa, b] .

By the more familiar form of the fundamental lemma we obtain the
existence of a vector polynomial P,_(t) of degree at most n — 1 such
that on [a, b] we have

2.7 F.()9®) — Iwa](f) = Poey(?) .

Relation (2.7) clearly implies that v,(¢) = I[w,](t) + P,_.(t) is a vector
function of class %,[a, b] such that v, = F,§ and

Va(t) = wa(t) + Pi_y(?)
= n—-l(t)g(t) - I[wn—ll(t) + P'r:—l(t) .

Then v,,(t) = Ilw,.]J(t) — P,_,(t) is a vector function of class %,[a, b]
such that v, () = F,._,())§(t) — v,(¢), and iteration of this procedure
leads successively to vector functions v, ,(t) = If[w,_,](t) + (—1)?P? ()
of class ,[a,d] and satisfying the equations (2.3). In particular,
v(t) = Ifw](@®) + (=1)"P3Zi(¢) is a vector function of class %U,[a, b]
satisfying »,(¢) = F,(()7(t) — vi(t). Since PL*3Y(¢) is constant it then
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follows that 0 = w,(t) — v(t) = Fy(t)§(t) — vi(t), which is the equation
2.2).

Conversely, if »,(t), ---, v,(t) are vector functions of class 2,[a, b]
satisfying with a vector function y e Dla, b] the system of equations
(2.3), (2.4), then

n—1 .
Z*FY = z*v] + >, 2w, + v}y, ] + 25,
i=1
n—1 ,
= {3 2" e}
pores

and consequently (2.1) holds.
For a vector function ye Dla, d], let the r-dimensional vector
functions w,(t), « -+, u,(t) be defined as

(2.9) wi(t) = y*I0) = Wou(®))y  (k=1,--+,m).

Finally, let w(t) and v(f) denote the wr-dimensional vector functions
(wo(?)), (v,(8), (0 =1, - -+, mr), With

WUirsolt) = ?/Evi](t) = Upiia(f) »

2.9
( ) ’U,-,._)_,,(t :va:i+1(t)y (7::0’ 1,---,n—1;0:1,---,r) .

The above quasi-differential equation (2.2), or the associated system
(2.3), (2.4), may then be written in the matrix form

Flu; v]t) = —v' @) + COuE) — DE)vE) =0,
Zlu; v](¢) = w'(t) — AQ)u(t) — Bt)v(®) =0,
where A(t), B(t), C(t), D(t) are (nr) x (nr) matrix functions which will

be written as partitioned matrices in » X r matrices as A(t) = [4.. ()],
B(t) = [Bu.(D)], C®) = [Chi(D)], D) = [Dyi(®)], (hy &k =1, «++, n), with

Ahk(t) = Bk,hﬂEw (h: 1, ,m — 1,k=1, ""n)

(2.10)

®) 4t) = —FoOF @), k=1, ooy

pany () Bul) = 0BuFR (0, (b= 1, -, )
(¢) Cul®) = Foppst) = Froy s®F 2O F st (b k=1, -+, ) ;
() D,(t) =0nprB, k=1, e, m—1Lh=1, 4 m),

Dhn(t) = _'Fn—lm(t)F;vt(t)y (h =1,.--, 'n) .

It is to be noted that whenever hypothesis () is satisfied the
differential system (2.10) in (u; v) is identically normal; that is, if
u(t) = 0, v(t) is a solution of (2.10) on a nondegenerate subinterval I,
of I then u(t) =0, v(t) = 0 throughout I. Indeed, if () =0, v(¢) is a
solution of (2.10) on I, then from the equation Ffu, v](t) = 0 it
follows that v,(f) = 0 on I,. In turn, from Z[u, v](f) = 0 it follows
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that —v,,, +v,=0,(h =1, -+, n — 1), and consequently also v,(t) =
Oon I, for h=1,.--,n — 1. From the condition w(f) =0, v(t) =0
on I, it then follows that u(t) =0, v(f) = 0 on I, thus establishing
the identical normality of (2.10) on I.

Two distinet points ¢, and ¢, on I are said to be (mutually) con-
jugate with respect to (2.2), or with respect to (2.10), if there exists
a solution (u(f); v(t)) of this latter system with «(¢) = 0 on the sub-
interval with endpoints ¢, and ¢, while u(¢,) = 0 = u(t,). Since u,(t) =
Y1), (h = 1, +++, n), this condition states that ¢ = ¢, and ¢ = ¢, are
zeros of the vector function y(tf) of order greater than or equal to n.
Moreover, if ¢t,el and U(t), V() are (nr) X (nr) matrix functions
whose column vectors are solutions of (2.10), and satisfying the initial
matrix conditions

U(tl) =0, V(tl) = Em‘ ’

then a value ¢, + ¢, is conjugate to ¢, if and only if U(¢,) is singular.
If U(t,) has rank nr — ¢, so that there are ¢ linearly independent
solutions (u*'(t); v (t)), (0 =1, -++,q), of (2.10) satisfying u''(¢,) =
0 = u'(t,), then ¢, is said to be a conjugate point to t, of order q.

If I, is a nondegenerate subinterval of I such that no two distinct
points of I, are conjugate with respect to (2.2), or (2.10), then this
quasi-differential equation or differential system is said to be discon-
Jugate or non-oscillatory on I.

Finally, it is to be noted that y e Dla, b] if and only if the (nr)-
dimensional vector function

N(t) = (D)), with 7;,.,(8) = ¥ ,

2.12
(2.12) (c=1,¢e,7ri=0,1, ¢+, —1),

has an associated (nr)-dimensional vector function {(¢) = ({,(¢)) € &.[a, b]
such that A7, {](t) =0 on [a, b]. In view of the form of B(¢),
clearly only the last » components of ((f) are uniquely determined,
with values

@13)  Lamprral) = B Fornl®U (0, 0 = 1, -o01)

3. Self-adjoint systems. The quasi-differential system (2.2), or
the equivalent first order system (2.10), is self-adjoint when the co-
efficient matrix function satisfies in addition to () the further con-
dition

() F(t) is hermitian for tel.

The hermitian character of F(t) is equivalent to the condition that
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the component 7 x r matrix functions F;; are such that [F;;(t)]* = F,:(t)
for tel. In particular, the diagonal component matrix functions
F,;(t) are hermitian on I. It follows readily that under hypotheses
(9) and (9,) the coefficient matrices of (2.10) are such that

(%) A(t) = D*(t), B(t) = B*(t), C(t) = C*(1) ,

and (2.10) is of the canonical form of a linear Hamiltonian system
for which one has a generalization of the Sturmian theory for real
scalar linear homogeneous differential equations of the second order,
(see, in particular, references [5]—[11] of the Bibliography).

Corresponding to the class Dfa, b] we shall denote by Dla, b] the
linear vector space of (wr)-dimensional vector functions 7(¢) which
are of class %,,[a, b], and for which there are corresponding (nr)-
dimensional vector functions () € &,[a, b] such that <57, L](t) =0
on this interval. The subspace of Dfa, b] on which 7(a) = 0 = 7(b)
will be denoted by Da, b]. The fact that a {(f) € &.[a, b] is thus
associated with 7(¢) e %,,[a, b] is denoted by the respective symbols
ne Dla, b]: £ and ne Dja, b]: L.

When hypotheses () and (9,) hold, and y*(¢) € Dla, b], (p = 1, 2),
let »®(@t) = (P(t)), (p = 1, 2), be defined by corresponding equations
(2.12), and {®(¢t) = (CP'(t)) associated vector functions of class 22,[a, 8]
whose last » components are specified by equations corresponding to
(2.13). The functional J[y®,y®|a,b] defined by (2.1) is then ex-
pressible in terms of %”'(¢), {?(t) as

(3.1) J[7](1), 77(2) la’ b] — Sb{C(Z)*BC(l) + 77(2)*077(1)}dt y

with the defining relations now equivalent to the condition that 7(f) =
NP (¢), L(t) =L (¢), (p=1, 2) satisfy the differential equation of restraint

3.2) Aln, CI() = 7'(¢) — A7) — BH)C(E) = 0 .

As pointed out at the end of the preceding section, if e Dfa, b]: ¢
the vector function { corresponding to a given % is not uniquely
determined; however, the vector function B{ is uniquely determined.
Consequently if »™ e Dla, b], (p = 1, 2), then the value of the integral
in (38.1) is independent of the particular corresponding (, so that
this integral does indeed define a functional of %™, 7"®. Moreover,
in view of the hermitian character of the coefficient matrix functions
Band C, J[p", n® | a, b] is an hermitian functional on DJa, b] x DJa, b].
In particular, J[y|a, b] = J[7, »|a, b] given as

(33 Tinle, b = (' BE + pCjar
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is a real-valued functional on DJa, b].

For a system (2.10) which satisfies hypotheses (9) and (9, it
follows readily that if ¥® = (u®;+*®), (p =1,2), are solutions of
this system then the function

(w®, v [u®, v®)(t) = vy Qut) — uS@)v.(?)

is constant on I. If two solutions of this system are such that this
constant is zero, these solutions are said to be (mutually) conjoined.
If Y(t) = (U(t); V(t)) is a (2nr) x ¢ matrix whose column vectors are
linearly independent solutions of (2.10) which are mutually conjoined,
then these solutions form a basis for a conjoined family of solutions of
dimension ¢, consisting of these solution of (2.10) which are linear com-
binations of the column vector functions. In general, (see, for example,
Reid [7, Sec. 2; 11, Sec. VII. 2]), the maximal dimension of a conjoined
family of solutions of (2.10) is #r, and a given conjoined family of dimen-
sion less than nr is contained in a conjoined family of dimension nr.

If [a, b] is a nondegenerate compact subinterval of I, then the
symbol §.[a, b] will signify the condition that the functional J[y|a, ]
is positive definite on Pa, b]; that is, for yeDJa, b] we have
Jly|a, b] = 0, with the equality sign holding only if y(¢) = 0 on [a, 8].
This condition may be equally well stated as the nonnegativeness of
the functional (3.3) on the vector space Da,d], with J[y|a,d] =0
for an n e Dyfa, b]: £ only if n(¢) = 0 and B(#){(E) = 0 on [a, b].

From the basic result for canonical Hamiltonian systems con-
cerning disconjugacy on a compact interval, (see, for example, Reid
[10, Theorem 5.1] or Reid [11, Sec. VII. 4]), we have the following
criterion.

THEOREM 3.1. If hypotheses (D) and (9,) are satisfied, and [a, b]
is a mondegenerate compact subinterval of I, then $.[a,b] holds if
and only iof F,,(t) >0 for t a.e. on [a,d], together with one of the
following conditions:

(i) (2.10) is disconjugate on [a, b];

(i) there exists a conjoined family of solutions Y(t) = (U(t); V()
of (2.10) of dimension nr with U(t) nonsingular on [a, b].

4, A disconjugacy criterion for (2.2). Suppose that hypothesis
(9) is satisfied by the coefficient matrix function F(t) of (2.2) on an
interval I, and that [@, b] is a nondegenerate subinterval of I such
that ¢t = a and ¢ = b are mutually conjugate with respect to the
equation (2.2). Let y(t) be a solution of (2.2) such that y(¢) £ 0 on
[a, b], and y*I(a) = 0 = y**)(d), (@ = 0,1, ---,n — 1). Then y e Da, b],
and in view of Lemma 2.1 we have that
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(@.1) 0=Jly,yle,b = | T OFOIOL.

From this relation it follows that ReF'(¢) = 3{F(t) + F*(t)} and SmF(t) =
1V —1{F*(t) — F(t)} are hermitian matrix functions. If \,, ), are real
constants then

4.2) F(t;\) = A ReF(t) + N, SMEF(2)

is an hermitian matrix function such that the given solution y(f) of
(2.2) satisfies the condition

(4.3) Sig*(t)F(t; NF)dt =0 .

Now if F(t; ») has the partitioned representation [F;(¢t;MN)], (4,7 =
0,1, -+, m) in terms of » x » matrix functions, and F'(¢; \) satisfies
hypothesis (§) with F,,(¢; \) > 0 for ¢ a.e. on [a, b], then the conclusion
(i) of Theorem 8.1 applied to the self-adjoint matrix differential
equation L[y: F(-;\)](f) = 0 implies that this equation fails to be
disconjugate on [a, b]. Consequently, we have the following result,
corresponding to that of §5 of Reid [7] for a second order linear
homogeneous matrix differential equation. The reader is also referred
to Hartman and Wintner [3] for a similar treatment of disconjugacy
criteria for second order vector differential systems. For a consider-
ation of non-self-adjoint differential equations of even order by a
method which is similar in basic idea, but different in specific detail,
see Kreith [4].

THEOREM 4.1. Suppose that hypothesis () is satisfied by the co-
efficient matrixc function F(t) of (2.2) on an interval I, and for a
grven nondegenerate subinterval [a, b] of I there ewxist real constants
oy My SUCH that on [a, b] the matriz function F(t; N) = [Fy;(¢; M), (3,5 =
0,1, -+, m), of (4.2) satisfies hypothesis (D) and F,,(t;\) > 0 for ¢ a.e.
on [a, bl. Then whenever the self-adjoint quasi-differential equation
Lly: F(«; N)](t) = 0 is disconjugate on [a,b], the system (2.2) is also
disconjugate on [a, b].

It is to be emphasized that in the above theorem the constant
multipliers A, A, may depend upon the subinterval [a, b], and that
any criterion of disconjugacy for the associated self-adjoint equation
fy: F(-;M)](t) = 0 yields a sufficient condition for disconjugacy of
the original equation (2.2). In particular, the results of Reid [9,
Sec. 4] for scalar quasi-differential equations of even order, and their
analogues for vector equations, provide sufficient conditions for (2.2)
to be disconjugate on a non-compact interval (¢, o).
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5. A special canonical form. Attention will be directed now
to a linear differential expression of order m in the »-dimensional
vector function y(t) = (y,(t)) of the form

5.1 L) = 3 Pey0)

where the 7 x r coefficient matrix functions P.(f) = [P,...(t)] are
supposed to be of class 2,[a, b] for arbitrary compact subintervals
[a, b] of a given interval I on the real line. It is to be emphasized
that in the discussion leading to the result of Theorem 5.1 we do
not require the leading coefficient matrix P,(t) to be nonsingular, or
even to be nonzero. The purpose of this section is to present for
vector differential operators of the form (5.1) an analogue of the
results of Reid [8] for linear scalar differential equations, and to
note the particular form of the disconjugacy criterion of §4 for the
involved canonical form.

For a given compact subinterval [a, b] of I, let T, denote a
corresponding differential operator with domain €7]e,bd] and value
Ty = <Flyl. If D* denotes the totality of r-dimensional vector
functions ze¢&,.[a, b] with PX(#)z(t)e€&.,la,b], (#=0,1,..--,m), and
for which there exists a corresponding f, e &,[a, b] such that

(5.2) [z tiat = | rruat, for yecrila, b,

then the operator Ty with domain D* and value Tjz = f, is termed
the adjoint of T,. In particular, if P,e €f[a, b] and P,b(t) is nonsingu-
lar for te [a, b], then by classical results, (see, for example, Reid [11,
Sec. III. 9]) we have that ©* = Ar[a, b], and for ze Ar[a, b] the value
of Tz is given by the Lagrange adjoint >\ (—1)“{P*z}'*1. Of special
importance is the Hilbert space case that occurs when P,e £2[a, 8],
(#=0,1,.-+,m), and analogous to the above defined T, one considers
the operator with values .%“[y] on the domain of functions % e A", [a, b]
such that #[y] € ¥[a, b].

Of particular significance for the present considerations are dif-
ferential expressions [y] = 4,[y; P] where P is an 7 X r matrix
function, and

Aly; P1(t) = P(&)y(?), 4o,ly; P1(t) = {PO)y""' (@)},
Aps[y; P1(&) = {P@)y™~H@O +{PRY™(E)"™, (@ =1,2,:-+),

with the understanding that in the definition of 4,, and 4,,_, the
involved matrix function P is of class A?[a, b]. If for (5.1) we have
Flyl = 4,ly;P], (m = 1), then the fact that A*[a, b] € D* and Tz =
d,lz; (—1)"P*] for zeAr[a, b] is a direct consequence of the well-

(5.3)
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known equation
#*A,ly; Pl — (—=1)™{4.[z; P*]}*y = {K.ly, 2; P]}Y

for arbitrary y, z of 2A™[a, b], where K,[y, z; P] is the so-called bilinear
concomitant of the form 7, 2* () K, .(t; P)y'*~"(¢).

Let ¢ denote the r-dimensional unit vector e* = (6;.), (h =
1,.-.,7), and designate by g;(t), > = 0,1, ---) the particular scalar
polynomials g,(¢) = 1, g,(¢) = t*//Al, (AW=1,2,--.). Moreover, let Fk;
equal 7/2 or (7 + 1)/2 according as j is even or odd. Corresponding
to Theorem 3.2 of Reid [8], we now have the following representation
theorem.

THEOREM 5.1. Suppose that #[y] is given by (5.1) with P.c &,,[a, b],
(t=0,1, -+, m), and the differential operator T, is defined as spe-
cified above. If for h=1,«++,7r and Ax=0,1, ««+, k, — 1 the vector
functions g;(t)e™ belong to D*, then there exist matrixz functions
II,(t) e Aela, b], (k= 0,1, -+, m), such that

(5.4) L) = 3 4y 11,10) for yeUrla, b] ;
also Arla, b] < D* and
(TrA(0) = LA = 3 A (~DAIENE), for zeArla, b] .

Moreover, I1,e % [a, b], (= 0,1, -+, m), if and only if
TH{g.e®} e &a, b, (h =1, eee, ;A =0,1, v, k,— 1),

and P,e,]a, b, (#=0,1, ---, m — k,).

The result of the above theorem is a direct consequence of
Theorem 3.2 of Reid [8] applied to the associated scalar differential
operators

m

°ghk[u](t) = Z {e(h)*P#(t)e(k)}u[#], (hy k= 1! cc Yy T) ’
#=0
and expressing in matrix form the scalar results thus obtained.

If for a differential expression (5.1) with m = 2n we have that
Zly] is given in a corresponding form (5.4) then the differential
equation L[y](t) = 0 is of the form (2.2) with the (n + L) x (n + 1)r
matrix function F'(f) expressible in partitioned form [F;(f)] with F,
(#,7=0,1,---,7n), the r x »r matrix functions specified for %, =
0,1, .-+, m as



A DISCONJUGACY CRITERION FOR HIGHER ORDER 805

Fit) =0, if |4 —j|>1;
Fislt) = (=150, if |6 — 5] < 1.

For such a matrix function F(t) we have that Re F(t) = G(t) = [G;.(D)],
(4,k=0,1, ---, n), where each G;, is an r X r matrix function specified

for j,k=0,1,---,n as
Gu(t) =0, if |j —k[>1;
G;i(t) = (=1) Re I1,,(?) ;
Gjini(t) = Vfi(_l)i Sm I 5;4,(t) ;
Gy, ia(t) =V =L(—1) Jm I,;_,(t) -
Correspondingly, {m F(t) = H(t) = [H;,(¢)], (4, k= 0,1, +++, n), where
each H;, is an r x r matrix function specified for j, k = 0,1, -+, n as
Hy(t) =0, if |j—k[>1;
H;(t) = (= 1) Jm I,4(2) ;
H; () =V =1(=1)*" Re IT,,;,,(?) ;
H; ,_(t) =V =1(=1)""" Re I,,;_(¢) .
As an application of the result of Theorem 4.1 with multipliers

MN=1x=0,0r = —1 ) =0, one has the following special cri-
terion for disconjugacy of a differential equation (2.2).

(5.5)

(5.6)

G.7)

THEOREM 5.2. Suppose that (5.1) with m = 2n 1is expressible in
the form (5.4) with coefficient matrices I1\(t), ««-, I1,,(t) satisfying the
conditions given in Theorem 5.1, while Jm Il,; ,(t) = 0,5 =1, <+, m,
and on a given mondegenerate compact subinterval [a, b] of I we have
either Rell,,(t) >0 or Rell,(t) < 0. If the associated self-adjoint
differential system

.9 L0 = 3 Aulys Re 1,1(0) = 0

%8 disconjugate on [a, b] then the differential equation (5.4) is also
disconjugate on this subinterval.

In particular, the functions Jm I7,;_,(t), (7 = 1, + -+, m) are all zero
in the scalar case when » = 1, and the coefficients of (5.1) are real-

valued.
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