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ON CERTAIN POSET AND SEMILATTICE
HOMOMORPHISMS

C. S. JOHNSON, JR.

In this paper a coordinatizing semigroup is used to define
and characterize certain homomorphisms on a bounded poset
or semilattice. These homomorphisms are determined by their
kernels and in the semilattice case the ideals which occur as
such kernels are characterized.

1. Introduction. In [4] B. J. Thorne characterized certain con-
gruence relations on a bounded lattice by looking at AP homomor-
phisms on a coordinatizing Baer semigroup. We intend to carry out a
similar procedure for bounded posets and semilattices. It will turn out
that one of our semilattice results gives Thorne’s central result as a
corollary.

Our notation will be that of [4]. If S is a semigroup with 0 and
A S S we define L(A) = {xe S; xza = 0 for all ae A}, R(A) = {xeS;ax =
0 for all ae A}, LR(A) = L(R(A)), RL(A) = R(L(A)), and so forth. If
xeS we write L({x}) = L(x) and R({z}) = R(x). We define Z(S) =
{L(x); x € S} and Z(S) = {R(x); xS} and say that S coordinatizes a
poset P in case P = (S) when <°(S) is partially ordered by set
inclusion.

The coordinatization machinery which we will use is developed in
[2]. The following is a summary of the relevant material.

DEFINITION 1.1. A semigroup S with 0 and 1 will be called a pre-
Baer semigroup in case, for each z ¢ S, there exist elements z7, 2’ e S
such that LR(x) = L(z") and RL(x) = R(z').

Recall that a map ¢ of a poset P into itself is residuated if the
inverse image of a principal ideal is again a principal ideal or, equi-
valently, if ¢ is isotone and there is another isotone map ¢* (called a
residual map) of P into itself such that xs*¢ < x < x¢s™ for all x e P.

LEmMMA 1.2. If S is a pre-Baer semigroup and ze S, then
6,0 L(S)— &L(S) given by LR(x)¢, = LR(xz) ts residuated with
¢7: L (S) — ZL(S) given by L(x)¢; = L(zx) as its residual.

If P is a bounded poset we use S(P) to denote the semigroup of
residuated maps on P.

THEOREM 1.3. Ewery bounded poset can be coordinatized by a pre-
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Baer semigroup. In particular, if P is a bounded poset, them S(P) is
a pre-Baer semigroup which coordinatizes P. If S is any other pre-
Baer semigroup which coordinatizes P, then z+ ¢, is a homomorphism,
with kernel 0, of S into S(P) and the tmage of S in S(P) is a pre-
Baer semigroup which coordinatizes P.

DEFINITION 1.4. A pre-Baer semigroup S is a right Baer semi-
group in case for each xe¢ S there exists an idempotent z"e S such
that R(z) = 7S, i.e., such that 2y = 0=y =2"y. S is a left Baer
semigroup in case for each x e S there exists an idempotent ' ¢ S such
that L(x) = Sz’

THEOREM 1.5. FEwery right (resp., left) Baer semigroup coordi-
natizes a bounded join (resp., meet) semilattice. Conmwversely, every
bounded join (resp., meet) semilattice can be coordinatized by a right
(resp., left) Baer semigroup. In particular, if P is a bounded join
(resp., meet) semsilattice, then S(P) is a right (resp., left) Baer semi-
group which coordinatizes P. If S is any other right (resp., left) Baer
semi-grouwp which coordinatizes P then the image of S in S(P) under
the homomorphism z+ ¢, ©s a right (resp., left) Baer semigroup.

ReEMARK. If S is a right Baer semigroup the join operation in
Z(S) is given by LR(x) \V LR(y) = L(y"(xy")) = LR(x)$,-¢5>. IfSisa
left Baer semigroup the meet operation in <~ (S) is given by L(z) N
L(y) = LE((y'2)'y") = L(2)¢Lig,u.

2. Homomorphisms preserving r and L

DEFINITION 2.1. A homomorphism ¢ of a pre-Baer semigroup S onto
a semigroup T is called r-preserving in case, for each x ¢ S, LR(x¢) =
L(z"g) for some choice of 2". (Recall x" is such that LR(z) = L(xz").)
¢ is l-preserving in case, for each x ¢ S, RL(x¢) = R(x'¢) for some choice
of #'. (Recall #! is such that RL(x) = R(z').) Notice that if ¢ is r-and
[- preserving, then T is a pre-Baer semigroup.

LEMMA 2.2. Let ¢ be a homomorphism of a pre-Baer semigroup
S onto a semigroup T.

(i) If ¢ 1is r-preserving, then @: ¥ (S) — < (T) given by LR(x)® =
LR(xg) is well defined and isotone.

(i) If ¢ is l-preserving, them @: £ (S) — L (T) given by L(x)® =
L(zg) is well defined and isotone.

Proof. (i). Suppose that ¢ is r-preserving and that LR(z) & LR(y).
Choose " so that LR(y¢) = L(y"¢). Then we have LR(x) & LR(y) =
ze LR(») S L(y") =y =0=2¢y"¢=0=1¢ € L(y'¢) = LR(y$) = LE(v$)<
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LR(y¢). This shows that @ is well defined and isotone. Finally,
LR(x)® = L(z"¢) e £ (T).

(ii). Suppose that ¢ is l-preserving and that L(x) & L(y). Choose
2! so that RL(x¢) = R(x'¢). Then we have L(x) & L(y) = RL(y) =
RL(x)=1y € RL(y) & R(2") =2'y = 0=2'gy¢ = 0=1y¢ € R(x'¢) = RL(xg) =
RL(y3) S RL(x¢) — L(zg) S L(yg). This makes & well defined and
isotone.

REMARK. Notice that, in part (i) of the lemma, L(x)® = LR(x)® =
LR(z'¢). Hence L(x)® = L(zg) for all x ¢ S iff ¢ is [-preserving. Simi-
larly, in part (i), LR(x)® = L(x"¢) and it is clear that LR(x)® = LR(x¢)
for all x e Siff ¢ is r-preserving. If ¢ is r-and l-preserving, then the
mappings in parts (i) and (ii) of the lemma coincide.

If S is a pre-Baer semigroup and ¢: S > T (i.e., from S onto T)
an r-preserving homomorphism, then the map defined in part (i) of
Lemma 2.2 induces an equivalence relation = on &(S) by the rule
LR(x) = LR(y) if LR(x)® = LR(y)® iff LR(x¢) = LR(y$). It is this
equivalence relation we wish to examine.

DEFINITION 2.3. If S is a pre-Baer semigroup and ¢:S—» T an
r-preserving homomorphism, then the equivalence relation on &(S) just
described will be called the equivalence relation on £ (S) induced by 4.

DEFINITION 2.4. An equivalence relation = on &°(S) where Sis a
pre-Baer semigroup is S-compatible in case LR(x) = LR(y) = LR(x)¢, =
LR(y)¢, for all zeS. It is S*-compatible in case LR(x) = LR(y)=
LR(x)¢; = LR(y)s; for all ze S.

DEFINITION 2.5. An equivalence relation = on a poset P is ordered
if P/= is partially ordered by the rule [#] < [y] « there exist elements
2, € [2] and ¥, € [y] such that =, < y..

REMARK. Congruence relations on lattices and semilattices are
ordered.

LEMMA 2.6. If = 1is an equivalence relation on Z(S), S a pre-
Baer semigroup, and F(S)/= s partially ordered in such a way that
LR(x) & LR(y) = [LR(z)] < [LR(y)], then the following are equivalent.

(@) [LER(x)$.-] = [0] = [LE(w)] < [04.:], for all xeS.

(b) [LR(z)] = [0] = [LR(x)¢5:] = [04%], for all xeS.

(b)) LR(x) = 0= LR(x)¢} = 0¢} = LR(z), for all xzeS.

Proof. (b) = (b’). This is only a difference in notation.
(@) = (b). Suppose [LR(x)] = [0]. Since LR(x)¢;¢,» = LR(x), we
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have [LR(x)¢5¢.-] = [0]. Now by (a), [LR(x)¢:] < [06:]. The reverse
inequality holds since 04;; & LR(x)¢;:.

(b) = (a). If [LR(x)¢.-] = [0], we have by (b) that [LR(z)¢.-6:] =
[0¢5]. Now LE(x) S LR(x)$.¢7 gives [LR(x)] = [LR(x)$.-63] = [045].

THEOREM 2.7. If S is a pre-Baer semigroup and ¢: S T an r-
preserving homomorphism, the equivalence relation = on F(S) induced
by ¢ has the following properties:

(i) For each ze S, 2" can be chosen so that LR(x) = 0 = LR(x)¢}: =
0¢): for all xze S.

(ii) = 1s ordered.

(ili) = s S-compatible.
In part (i) any 2" such that L(z'¢) = LR(z$) suffices.

Proof. Recall that LR(x) = LR(y) < LR(x$) = LR(yg).

(i). ~2(S)/= is partially ordered by [LR(2)] £ [LR(y)] = LR(2¢) &
LR(yg). Choose z" so that L(z"¢) = LR(z¢). Since LR(x) & LR(y) =
LR(x¢) & LR(y¢) by Lemma 2.2, we can apply Lemma 2.6. Since
LR(x)¢,» = 0= LR(x2"¢) = 0=2¢2"¢ = 0 = x¢ € L(2"¢) = LR(x¢) = LR(29)
for all xe S, part (a) of Lemma 2.6 is satisfied and part (b) is what
we are trying to prove.

(ii). It will suffice to show that LR(z¢) & LR(y$) = there exists
y, € S such that LR(x) & LR(y,) and LR(y,¢) = LR(y¢). If LR(z¢) &
LR(y¢) = L(y"¢), we have x4y"¢ = 0 = LR(xy"¢) = 0 = LR(zy") = 0.
By (i), LR(zy")¢;r = O¢;> = LR(y). Since LR(zy’)¢;- = L(y'(xy’)") =
LE((y"(xy")")"), this says that LE((y"(xy")")'¢) = LR(y¢). Letting y, =
(y"(xy")")* finishes the proof since = e L(y"(xy")") = LR(x) & L(y"(zy")") =
LER((y"(zy")")") = LER(y.).

(iii). LR(z) = LR(y) = LR(»¢) = LR(yg) = LE(x¢z¢) = LR(y¢2¢) =
LR(xz¢) = LR(yz¢) = LR(x)¢. = LR(y)¢..

The equivalence relation in Theorem 2.7 has another nice property.
It is determined by its kernel.

THEOREM 2.8. Let = be the equivalence relation of Theorem 2.7.
The following are equivalent.

(a) LR(x) = LR(y).

(b) If L(z"¢) = LR(x¢) and L(y"¢) = LR(y¢), then LR(x)¢, =0
and LR(y)¢,r = 0.

Proof. (a)=(b). Since = is S-compatible, LRE(z) = LR(y) =
LR(x)¢,» = LR(y)¢,» = 0. Similarly LR(y)¢. = 0.

(b) = (a). Part (b) of Lemma 2.6 is satisfied by Theorem 2.7, so
by part (a) of Lemma 2.6, LR(2)¢,» = 0 = [LR(x)] < [0¢;-] = [LR(¥)].
Similarly LR(y)¢,» = 0 = [LR(y)] < [LR(x)]. Thus [LR(x)] = [LR(v)]-
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We now wish to show that any equivalence relation on %2 (S) having
the three properties of Theorem 2.7 is induced on <~(S) by some r-pre-
serving homomorphism.

LEMMA 2.9. Let S be a pre-Baer semigroup and let = be an S-com-
patible equivalence relation on £ (S). For each ze S define @,: < (S)/=
— Z(S)/= by [LR(x)]?, = [LR(x)$,] = [LR(x?)]. @, is well defined be-
cause of S-compatibility. Let S denote the semigroup gemerated by
{@,; z€ S} under composition. The map z+— @, is a homomorphism of
S onto S’ and if = also possesses properties (i) and (i) of Theorem
2.7, this homomorphism 1is r-preserving.

Proof. It is a clear that z+ @, is a homomorphism of S onto S’.
Let ze S and choose 2" to satisfy part (i) of Theorem 2.7. 0,0, =0
since zz" =0 so we have LR(?,) < L(®,-). To show that L(®,.) & LR(?,)
we suppose that @, e L(9,,) and show that @, e R(®,) implies @,0, = 0.
Since @, = 0 we have [LR(1)]®,.- = [LR(xz")] = 0 and by Lemma 2.6,
which applies since we are assuming part (i) of Theorem 2.7, [LR(x)] <
[LR(z)]. Since = is ordered, the elements of S’ are isotone maps and
we have [LRE(zy)] = [LE()]?, < [LR(2)]?, = [LR(zy)] = [LE1)]2,, =
[0]. Now [LR(Q)]®., = [0] implies 0,, = 9,9, = 0.

REMARK. If an S-compatible equivalence relation = possesses pro-
perties (i) and (ii) of Theorem 2.7, and if we denote the kernel of
z— @, by I, then z+— @, is the homomorphism studied by R. S. Pierce
in [3]. To prove this we must show that @, = @, = axbe I iff aybe I.
Suppose @, = &,. Thenaxbel =0,y = 0,0.0,=0=D,, = 0,0,0, =
0 = aybe I. Now suppose axbe I iff aype I. Then @,,, = 0iff 0,,, =
0 = [LR(zaw)] = [0] iff [LE(zyw)] = [0] = [LR(22)¢,] = [0] iff [LR(zy)®.]=
[0]. Setting w = (zx)", where (2x)" is chosen as in part (i) of Theorem
2.7, and using part (a) of Lemma 2.6 we have [LR(zy)] < [L((zx)")] =
[LR(2x)]. Similarly we have [LR(zx)] < [LR(zy)]. Thus [LR(z2)] =
[LR(zy)] for all ze S, but this just says that ¢, = @,.

THEOREM 2.10. Let S be a pre-Baer semigroup and let = be an
equivalence relation on F(S) which possesses properties (1), (ii), and
(iii) of Theorem 2.7. Then = is induced on Z(S) by the r-preserving
homomorphism z+> @, described in Lemma 2.9. Furthermore, z+— @,
18 the largest r-preserving homomorphism (considered as a congruence
relation on S) which induces =.

Proof. Consider the r-preserving homomorphism z— @, of Lemma
2.9. We wish to show that LR(®,) = LR(®,) iff LR(z) = LR(y). Let
LR(®,) = LR(®,) and choose %" as in part (i) of Theorem 2.7. Then
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R(®,) = R(?,) and we have 0,0, = 0 since 9,0, = 0. @, = 0 means
[LR(x"y)] = [0] and by Lemma 2.6 [LR(x)] < [LR(y)]. Similarly we get
[LR(y)] < [LR(x)] and thus LR(x) = LR(y). Conversely, suppose
LR(x) = LR(y). Choose z" and y” such that L(®,-) = LR(®,) and L(D,,) =
LR(®,). By S-compatibility we have LR(zy")= LR(yy")=0and LR(yx")=
LR(xx") = 0. This means 9,,, = @,,- = 0. Now 9,¢ L(9,-) = LR(®,)
gives LR(®,) = LR(®,) and @, € L(9,,) = LR(®,) gives LR(9,) = LR(®,).

Finally, suppose ¢ is another r-preserving homomorphism which
induces =. Then ¢ = yp = 224 = 2y for all ze S = LR(zx¢) = LR(2y5)
for all ze S= LR(2)¢, = LR(2)$, for all zeS=0, = 0,.

REMARK. The r-preserving homomorphisms which induce = all
have the same kernel since, if ¢ is such a homomorphism, 2¢ = 0 =
LR(x¢) = 0 = LR(x) = 0.

THEOREM 2.11. Let S be a pre-Baer semigroup and ¢: ST an
r-preserving homomorphism. Let @: £ (S)— L (T) be the map des-
cribed in Lemma 2.2 (i), t.e., LR(x)® = LR(x¢). The following are
equivalent.

(a) kerge (S).

(b) ker ¢ is a principal ideal.

() @: ~(8S) — L(T) is residuated.

Proof. (a) = (b). This follows from the observation that z ¢ ker ¢ =
2p = 0= LR(x¢) = 0 = LR(x) € ker @.

(¢) = (b). This is clear.

(a) = (c). Suppose ker ¢ = LR(w). Define 0+: &L (T) — £ (S) by
L(z$)®* = L(xw"). @+ is well defined and isotone since when L(xg) =
L(yg) we have z e L(xw") = zow"=0=2z2x c ker ¢ = 2¢x¢ = 0=2¢ € L(xp) =
L(y¢) = z¢y¢p = 0=zy e ker ¢ = zyw™ = 0 = ze L(yw"), which says that
L(xw") & L(yw"). Choose z” so that L(z"¢) = LR(xg). Now since xze
L(x'w") we have LR(x) & L(z"w") = L(2"¢)0@+ = LR(x¢)?" = LR(x)00+.
Now all that remains is to show that L(z¢)@*® & L(zp). Since
(xw")'zw” = 0 = (zw")'x € ker ¢ = (xw")'¢xg = 0 = (zw")'¢ € L(xp) we have
L(z¢)@+*® = L(zw")® = LR((xw")'¢) & L(x¢).

If S is a pre-Baer semigroup and ze S, notice that <#(S) is dual
isomorphic to <(S) and the residuated map on <Z(S) given by
RL(x) — RL(zx), considered as a map on <(S), is ¢7. (See Lemma
1.2.) Bearing this in mind and applying left-right duality to the results
obtained thus far, we find that every [l-preserving homomorphism on
a pre-Baer semigroup S induces on &(S) an ordered S*-compatible
equivalence relation = with the property that, for each ze S, 2’ can
be chosen so that LR(x) = 1 = LR(®)¢,,=1¢. for all zeS. Further-
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more, every such equivalence relation on .&(S) is induced by some
l-preserving homomorphism on S. We now have

THEOREM 2.12. Let ¢ be an r-and l-preserving homomorphism on
a pre-Baer semigroup S. The ordered equivalence relation on (S)
induced by ¢ is S- and St-compatible. Furthermore, every S- and S*-
compatible ordered equivalemce relation on Z(S) is induced by some
r- and l-preserving homomorphism on S.

Proof. This follows from previous results and the remarks pre-
ceding the theorem if we make the following observation: If an
ordered equivalence relation = on <~(S) is S- and S*-compatible, then
0, Z(S) == £ (S)/= given by [LR(x)]®, = [LR(x)¢,] is residuated
with residual @} : & (S)/== (S)/= given by [LR(2)]®; = [LR(x)®;].
Since residuated maps uniquely determine their residuals and vice versa,
the r-preserving homomorphism z+ @, (considered as a congruence on
S) coincides with the [-preserving congruence on S associated with the
anti-homomorphism z+— @;.

3. RAP and LAP homomorphisms.

DEeFINITION 3.1. If Sis a right Baer semigroup, a semigroup homo-
morphism ¢: S — T is right annihilator preserving or RAP in case
R(zp) = R(x)¢. Notice that R(z)¢ = (x"¢)T. Dually, if Sis a left Baer
semigroup, ¢ is left annihilator preserving or LAP in case L(xg) =
L(x)¢. Finally, ¢ is annihilator preserving or AP if it is both RAP
and LAP.

REMARK. Any RAP homomorphism is r-preserving since LR(xg) =
L((xz"¢)T) = L(xz"¢). Dually, any LAP homomorphism is l-preserving.

LEMMA 3.2. In a right Baer semigroup S we have

(i) LR(x) vV LR(x)¢, V LR(Y)¢p,» = LR(y) V LR(%)$,» \V LE(Y)$,r.
(ii) LR(zy) V LR(zy) = LR(zx"y) V LR(zy).

(i) LR(x) V LR(y) V LR(zy") = LR(y) V LR(zy").

Proof. It is shown in [2] that, in a right Baer semigroup S, R(x) N
R(y) € &#(S) and that the join operation in &°(S) is given by LR(z) V
LR(y) = L(R(x) N R(y)).

(i). It is enough to show that R(x) N R(xy") N R(yx") = R(y)N
R(zy") N R(yxn). If ze R(z) N R(xy") N R(yx"), then z = 22 and yz =
yxr'z = 0 so ze R(y) N R(xzy") N R(yx"). The other inclusion follows by
symmetry.

(ii). It is enough to show R(zy) N R(xy) = R(zx"y) N R(xy). This
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follows from the observation that if ayw = 0, then yw = a2"yw so that
yw = 0 = zx'yw = 0.

(iii). It is enough to show that R(y) N R(zy) & R(x) N R(y) N RB(xy").
If yw =0, then w = y"w so that 2y™w = 0 = zw = 0.

LEmMA 8.3. If S 4s a right Baer semigroup and = is an S-com-
patible equivalence relation on Z(S), the following are equivalent.

(a) = s a join congruence.

(b) LR(x) V LR(z) = LR(y)\/ LR(z), LR(z) = 0 = LR(x) = LR(y).

Proof. (a) = (b). Since LR(z) =0, we have LR(x) = LR(z) V 0 =
LR(x)\VLR(z) = LR(y) V LR(z) = LR(y) V 0 = LER(y).

(b) = (a). Suppose LR(x) = LR(y). If LR(z)e <(S), we have,
using Lemma 3.2, that LR(x) \V LR(z) \V LR(®)¢,» V LR(Y)¢,» = LR(y) V
LR(2) V LR(x)$,» \/ LR(y)¢,~. To show that LR(x) \V LR(?) = LR(y) V
LR(z) it will suffice, by (b), to show LR(x)¢,- V LR(y)¢,» = 0. Since
= is S-compatible we have LR(®)é,-= LR(y)¢,»=0 = LR(%)$,» = LR(Y)@,-.
Using (b), LR(x)¢,» V LR(y)$,» V LR(y)¢,» = LR(x)¢,» V LR(y)¢,» and
LR(y)¢,» = 0 = LR(x)¢,» \V LR(y)¢.,» = LR(%)¢,r = 0.

THEOREM 3.4. Let S be a right Baer semigroup and ¢: S - T an
RAP homomorphism. Then the equivalence relation = induced on £ (S)
by ¢ (recall LR(x) = LR(y) iff LR(x¢) = LR(y¢)) is an S-compatible join
congruence.

Proof. S-compatibility was proven in Theorem 2.7. By Lemma
3.3 it is sufficient to show that LR(x) \V LR(z) = LR(y) \V LR(z) and
LR(z¢) = 0 = LR(x¢) = LR(y$). Now LR(z¢) = 0 means that R(z¢) =
#ZHT = T, s0 1¢ = 2'¢l¢ = z'6. Since LR(xz") = (LR(x) \V LR(2))é,r =
(LR(y) V LR(?))¢.- = LR(yz"), we have LR(x$) = LR(xz"¢) = LR(yz"¢) =
LR(yg).

An S-compatible join congruence is determined by its kernel in
the following manner.

THEOREM 3.5. If S is a right Baer semigroup and = 1is an S-
compatible join congruence on < (S), the following are equivalent.
(a) LR(z) = LR(y).
(b) LR(x)¢,» Vv LR(Y)d» = 0.
(¢) There ts an LR(z) = 0 such that
LR(x) Vv LR(2) = LR(y) V LR().

Proof. (a)= (b). If LR(x) = LR(y), then LR(%)¢,» = LR(y)p,» =
0 = LR(»)¢,» = LR(y)¢,» and hence LR(x)¢,» V LR(y)é,» = 0.
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(b) = (c). Follows from part (i) of Lemma 3.2.
(¢) = (a). Follows from Lemma 3.3.

COROLLARY 3.6. Amn S-compatible join congruence = has the pro-
perty that, for each ze S, any choice of 2" gives LR(x) = 0 = LR(%)¢: =
065 for all xe S.

Proof. Since a join congruence is ordered, it is sufficient by Lemma
2.6 to show that LR(xz") = 0 = [LR(x)] < [LR(2)]. Since by part (iii) of
Lemma 3.2 we have LR(x) \V LR(z) V LR(xz") = LR(z) \V/ LR(xz"), it
follows from the theorem that when LR(xz") =0, LR(x) \V LR(2) = LR(z).
Since = is a join congruence, this says that [LR(x)] < [LR(2)].

THEOREM 3.7. If S s a right Baer semigroup and = is an S-com-~
patible join congruence on Z(S), then the homomorphism z— @, des-
cribed im Lemma 2.9 is RAP.

Proof. We wish to show that R(®,) = @,.S’ or, in other words,
that 0,0, = 0 = @, = 0,,0,. Notice that 0,0, = 0 = [1]9,0, = [0] =
[LR(zy)] = [0] = LR(xy) = 0 and that @, = 9,.0, = LR(zy) = LR(zx"y) for
all ze S. Since it is clear that @, = 0,,0, = 0,0, =0, we will be
done if we can show that LR(zy) = 0 = LR(zy) = LR(zx"y) for all ze S.
Since LR(zy) V LR(xy) = LR(22y) \V LR(xy) by part (ii) of Lemma
3.2, LR(xy) = 0 implies by Theorem 3.5 that LR(zy)= LR(zx"y) for all
zeS.

COROLLARY 3.8. If S is a right Baer semigroup, then any S-com-
patible join congruence = on F(S) is induced by an RAP homomor-
phism on S.

Proof. Since, by Corollary 3.6, = has property (i) of Theorem
2.7, the proof of Theorem 2.10 applies and says that = is induced on
< (S) by the homomorphism z+— @, on S. By Theorem 3.7, z+— 0,
is RAP.

COROLLARY 3.9. If S is a right Baer semigroup, then every S- and
St-compatible join congruence on £(S) is induced by an RAP and

l-preserving homomorphism on S.

Proof. This follows from Corollary 3.8 and from Theorem 2.12
and its proof.

COROLLARY 3.10. If S is a left Baer semigroup, then any S*-



712 C. S. JOHNSON, JR.

compatible meet congruence on < (S) is induced by an LAP homomor-
phism on S.

Proof. This is the dual of Corollary 3.8. (See the remarks pre-
ceding Theorem 2.12.)

COROLLARY 3.11 (Thorne). If S is a Baer semigroup, thenm every
S- and St-compatible congruence on < (S) is induced by an AP homo-
morphism on S.

Proof. This follows from Corollaries 3.8 and 3.10 and from Theo-
rem 2.12 and its proof.

4. Kernels of S-compatible join congruences.

THEOREM 4.1. Let I be an ideal of a join semilattice L = F(S),
S a right Baer semigroup. The following are equivalent.

@) I is the kernel of an S-compatible join congruence.

(b) Ip, S for each ze S.

Proof. (a)=(b). If LR(x)e I, then LR(x) = 0 and by S-compati-
bility LR(x)$, = 04, = 0, i.e., LR(x)¢, ¢ I.

(b) = (a). Suppose Ip, = I for each ze S. Define LR(x) = LR(y)
iff LR(x)\V LR(w) = LR(y) V LR(w) for some LR(w)ecl. It is easy
to see that = is a join congruence. If LR(x) = LR(y), then LR(x)
LR(w) = LR(y) V LR(w) with LR(w) € I and since ¢,, being a residuated
map, preserves join we have LR(%)¢, V LP(w)¢, = LR(y)¢,\/ LR(w)p,.
Since LR(w)¢, e I it follows that LR(x)¢, = LR(y)¢,. Clearly = has I

as its kernel.

LEMMA 4.2. In any semigroup S with 0, ¢f R(w) is a two-sided
ideal, for some we S, then LR(w) is a two-sided ideal. Hence, if S is
a pre-Baer semigroup, LR(w) is two-sided if and only if R(w) ts two-
stded.

Proof. Suppose R(w) is two-sided. LR(w) is already a left ideal
so we must show that it is a right ideal. Let ze LR(w), ye S, and
z€ R(w). We need zyz = 0. But yze R(w) since R(w) is two-sided and
hence 2yz = 0. The second assertion follows from the first and its dual.

Theorem 4.1 characterized kernels of S-compatible join congruences.
We now look at principal ideals which occur as kernels of S-compatible
join congruences.
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THEOREM 4.3. Let S be a right Baer semigroup. The following
are equivalent.

(@) [0, LR(w)] is the kernel of an S-compatible join congruence on
Z(S).

(b) LR(w) is the kernel of an RAP homomorphism on S.

(¢) LR(w)¢, < LR(w) for all xeS.

(d) zw" = wzw" for all xe S and for any choice of w".

() LR(w) ts a two-sided ideal.

(f) R(w) is a two-sided ideal.

Proof. (a) = (b). Since every RAP homomorphism ¢ on S induces
an S-compatible join congruence = on £ (S) by the rule LR(x) = LR(y)
iff LR(z9) = LR(y$) and since every S-compatible join congruence arises
in this manner for some ¢, it suffices to notice that xecker ¢ < x¢ =
0 < LR(x¢) = 0 = LR(z) = 0.

(a) = (¢). Use Theorem 4.1.

(e) = (f). Use Lemma 3.2.

(d) = (f). This follows from the dual of Theorem 1 of [1].

(b) = (e). This is obvious.

(d) = (b). 2+ zw" is a homomorphism of S onto Sw” and it is
RAP since yw™ € R(xw") = 2w yw” = 0 = yw" = wyw" = "W yw" < yw" €
(xrw")(Sw) = (R(z)w".

REMARK. By Theorem 2.11, the kernel of an S-compatible join
congruence = is a principal ideal if and only if = is residuated in
the sense that the canonical join homomorphism taking &(S) onto
Z(S)/= is a residuated map.

In light of Theorem 4.1 we make the following definition.

DEFINITION 4.4. An ideal I of a join semilattice L = &(S), S a
right Baer semigroup, is called S-compatible in case Ig, = I for all
zeS.

THEOREM 4.5. Let S be a right Baer semigroup and let L = £ (S).
The set I(L) of S-compatible ideals of L forms a subcomplete sublattice
of I(L), the lattice of ideals of L. Ig(L) is isomorphic to the lattice of
S-compatible join congruences on F(S).

Proof. 1If {I} is a family of S-compatible ideals of <~(S) it is clear
that M (L} is an S-compatible ideal. Suppose LR(x)e V;{[}. Then
there exist

LR(yl) € Iily LR(yZ) € Iizy ) LR(yn) € I«i”
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such that
LR(x) & LR(y,) V LR(ys) V+++V LR(y,).

Hence

LE(w)¢. < (LE(y) V LE(y,) V +++V LE(Y.))9-
= LR(y,)¢. V LR(Y:)$. \V +++V LE(Y,)$.

and since LR(y)¢. &I, (k=1,2,---,n) we have LR(x)¢,c V {L}.
Thus V.{L} is S-compatible and we have proven the first part of the
theorem. Now, if I'e I(L) let ©; denote the unique S-compatible join
congruence with kernel 7. In light of Theorem 3.5 it is clear that
IS J=0,Z06,.

THEOREM 4.6. Let S be a right Baer semigroup in which, for
each xe S, LR(x') = LR(x'2") for some choice of x'. Then Iy(L) ts dis-
tributive and obeys the following infinite distributive law:

IN(V:{)r = V.InJ}.

Proof. It will suffice to show I N (V:{/:}) & V:{{ N J;}. Suppose
L) = LR(@) e Iand LR(z") e Y.{J;}. Then LR(s")< LR(y,) \V LR(y,)V
«++V LR(y,) where LR(y,)ecd;, (k=12 ---,m). Now LR(z') =
LR("¢, S LR(Y,)$,. V LR(Y:)$1 V +++V LR(Y,)¢,1. For k=1,2 -+, m
we have LR(y,)¢.: €J;, by S-compatibility and LR(y,). = LR(y,x) &
LR(x)eI. Thus LR(yy)¢.cINd; fork=1,2, -+, n. Thus LR(z') ¢
Vi{InJ}.

REMARK. Theorem 4.6 applies, in particular, when S is a Baer
semigroup. In that case 2’ is taken to be an idempotent generating
L(z). The LR(2') = LR(«'¢") condition could also be taken care of by
requiring, in the definition of pre-Baer semigroup, that =~ and 2' be
idempotents. (It is pointed out in [2] that all our results involving
pre-Baer semigroups remain valid if 2" and ' are required to be idem-
potents.)

THEOREM. 4.7. Let S be a right Baer semigroup in which, for each
x€ S, LR(") = LR(z'x") for some choice of x'. Let L = £ (S). I(L)
18 pseudo complemented since it is complete and obeys the infinite dis-
tributive law of Theorem 4.6. If Ie Iy(L), its pseudo complement I*
is gwen by I* = {LR(x); LR(x) < L(J)}, where J is the kernel of any
RAP homomorphism which induces the S-compatible join congruence
with kernel I, t.e., yeJ <= LR(y)e L.

Proof. I* is an ideal since LR(x), LR(y) & L(J)=J & R(x) N
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R(y) = LR(x) vV LR(y) = L(R(») N R(y)) & L(J). Suppose LR(x)<c I* and
yeS. Then zeJ=yzedJ =ayz = 0=12ayec L(J) = LR(xy) S L(J) =
LR(x)¢, = LR(xy) € I*. Thus I* is S-compatible. Now suppose L(x) €
INI*. Then L(x) = LR(x)el=2'eJand LR(x") e [* = a'e LR(z") &
L(J). Thus z'a! =0 and L(x) = LR(¢') = LR(z's") = 0. Therefore
INI*=0. Finally, suppose IN K =0, with Ke I;(L). Let LR(z) ¢ K,
yed. Then LR(y)e I= LR(»y) < LR(y) e I and LR(x) e K= LR()$, =
LR(xy)e K. Thus LR(xy)eINK=0=2y =0=2x¢c L(J) = LR(x) =
L(J) = LR(x)e I*. Therefore K < I*.
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