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ON CERTAIN POSET AND SEMILATTICE

HOMOMORPHISMS

C. S. JOHNSON, JR.

In this paper a coordinating semigroup is used to define
and characterize certain homomorphisms on a bounded poset
or semilattice. These homomorphisms are determined by their
kernels and in the semilattice case the ideals which occur as
such kernels are characterized.

1. Introduction. In [4] B. J Thorne characterized certain con-
gruence relations on a bounded lattice by looking at AP homomor-
phisms on a coordinatizing Baer semigroup. We intend to carry out a
similar procedure for bounded posets and semilattices. It will turn out
that one of our semilattice results gives Thome's central result as a
corollary.

Our notation will be that of [4] If £ is a semigroup with 0 and
ASS we define L(A) = {x e S; xa = 0 for all a e A}, R{A) = {χeS;ax =
0 for all a e A], LR{A) = L(R(A)), RL(A) = R(L(A)), and so forth. If
xeS we write L({x}) = L(x) and R({x}) = R(x). We define £f(S) =
{L(x);xeS} and &(S) = {R(x);xeS} and say that S coordinatizes a
poset P in case P = ^f(S) when Sfiβ) is partially ordered by set
inclusion.

The coordinatization machinery which we will use is developed in
[2]. The following is a summary of the relevant material.

DEFINITION 1.1. A semigroup S with 0 and 1 will be called a pre-
Baer semigroup in case, for each xe S, there exist elements xr, xι e S
such that LR(x) = L(xr) and RL(x) = R{xι).

Recall that a map φ of a poset P into itself is residuated if the
inverse image of a principal ideal is again a principal ideal or, equi-
valently, if φ is isotone and there is another isotone map φ+ (called a
residual map) of P into itself such that xφ+φ ^ x ^ xφφ+ for all xeP.

LEMMA 1.2. If S is a pre-Baer semigroup and ze S, then
φz: J2f(S)—>£f(S) given by LR(x)φz = LR(xz) is residuated with
φt ^f(S) —* ^f(S) given by L(x)φi = L(zx) as its residual.

If P is a bounded poset we use S(P) to denote the semigroup of
residuated maps on P.

THEOREM 1.3. Every bounded poset can be coordinatized by a pre-
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Baer semigroup. In particular, if P is a bounded poset, then S(P) is
a pre-Baer semigroup which coordinatizes P. If S is any other pre-
Baer semigroup which coordinatizes P, then z\-+ φz is a homomorphism,
with kernel 0, of S into S(P) and the image of S in S(P) is a pre-
Baer semigroup which coordinatizes P.

DEFINITION 1.4. A pre-Baer semigroup S is a right Baer semi-
group in case for each xe S there exists an idempotent xreS such
that R(x) = xrS, i.e., such that xy = 0 *=• y = xry. S is a left Baer
semigroup in case for each xeS there exists an idempotent xι eS such

that L(x) = Sxι.

THEOREM 1.5. Every right (resp., left) Baer semigroup coordi-
natizes a bounded join (resp., meet) semilattice. Conversely, every
bounded join (resp., meet) semίlattice can be coordinatized by a right
(resp., left) Baer semigroup. In particular, if P is a bounded join
(resp., meet) semilattice, then S(P) is a right (resp., left) Baer semi-
group which coordinatizes P. If S is any other right (resp., left) Baer
semi-group which coordinatizes P then the image of S in S(P) under
the homomorphism zv->φz is a right (resp., left) Baer semigroup.

REMARK. If S is a right Baer semigroup the join operation in
<2?{S) is given by LR(x) V LR(y) = L(yr(xyr)1) = LR(x)Φyrφp. If S is a
left Baer semigroup the meet operation in Sf{β) is given by L(x) Π
L(y) = LR((yιx)ιyι) = L{x)φ\ιφyι.

2. Homomorphisms preserving r and L

DEFINITION 2.1. A homomorphism φ of a pre-Baer semigroup S onto
a semigroup T is called r-preserving in case, for each xeS, LR(xφ) =
L(xrφ) for some choice of xr. (Recall xr is such that LR(x) = L(xr).)
Φ is l-preserving in case, for each xeS, RL(xφ) = R(xιφ) for some choice
of xι. (Recall xι is such that RL(x) = R(x1).) Notice that if φ is r-and
I- preserving, then T is a pre-Baer semigroup.

LEMMA 2.2. Let φ be a homomorphism of a pre-Baer semigroup
S onto a semigroup T.

(i) If φis r-preserving, then Φ: Sf{β) —* J*?(T) given by LR(x)Φ =
LR(xφ) is well defined and isotone.

(ii) If φ is l-preserving, then Φ: Sf(β) —* Sf{T) given by L(x)Φ =
L(xφ) is well defined and isotone.

Proof. (i). Suppose that φ is r-preserving and that LR(x) £ LR{y).
Choose yr so that LR(yφ) = L(yrφ). Then we have LR(x) S LR(y) =>
x e LR(x) £ L(yr) =>xyr=0=> xφyrφ = 0=>xφe L(yrφ) = LR(yφ) => LR(xφ) £
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LR(yφ). This shows that Φ is well defined and isotone. Finally,
LR(x)Φ = L(xrφ) e ^f(T).

(ii). Suppose that φ is Z-preserving and that L(x) S L{y). Choose
xι so that RL(xφ) = R(xιφ). Then we have L(x) £ £,(3/) ==> J?L(̂ /) £
RL(x) =>ye RL(y) £ i2(sl) => αfy = 0 => αfy^ = 0 => yφ e i?(αfy) = RL{xφ) =»
RL{yψ) S RL(xφ) => L(xφ) s £0/0) This makes Φ well defined and
isotone.

REMARK. Notice that, in part (i) of the lemma, L(#)0 = LR(xι)Φ =
LR(xιφ). Hence L(x)Φ = L(^) for all a; e S iff ^ is ^-preserving. Simi-
larly, in part (ii), LR(x)Φ — L(xrφ) and it is clear that LR(x)Φ = LR(xφ)
for all x e S iff φ is r-preserving. If φ is r-and i-preserving, then the
mappings in parts (i) and (ii) of the lemma coincide.

If S is a pre-Baer semigroup and φ: S -» T (i.e., from S onto T)
an r-preserving homomorphism, then the map defined in part (i) of
Lemma 2.2 induces an equivalence relation = on S^iβ) by the rule
LR(x) = LR(y) iff LR(x)Φ = LR(y)Φ iff LJB(^) = LR{yφ). It is this
equivalence relation we wish to examine.

DEFINITION 2.3. If S is a pre-Baer semigroup and ^ :S-»Γ an
r-preserving homomorphism, then the equivalence relation on Sfiβ) just
described will be called the equivalence relation on Jzf(S) induced by φ.

DEFINITION 2.4. An equivalence relation = on J*f(S) where S is a
pre-Baer semigroup is S-compatible in case LR(x) == LR(y) ==> LR(x)φz =
LR(y)φz for all ^eS. It is S4-compatible in case Li2(α;) = LR(y) ==>
LR{x)Φt = LR{y)Φt for all ^ S .

DEFINITION 2.5. An equivalence relation = on a poset P is ordered
if P/ = is partially ordered by the rule [x] ̂  [y] <=> there exist elements
xι e [cc] and yt £ [y] such that xγ^yx.

REMARK. Congruence relations on lattices and semilattices are
ordered.

LEMMA 2.6. If = is an equivalence relation on £f{S), S a pre-
Baer semigroup, and Jzf(S)/= is partially ordered in such a way that
LR(x) £ LR(y) => [LR{x)\ <£ [LR(y)], then the following are equivalent.

(a) [LR(x)φzr] = [0] => [LR(x)] ̂  [0^,], for all xeS.
(b) [LR(x)] = [0] => [Li2(x)̂ 2

+,] - [O#rJ, /or αϊi α? 6 S.
(bf) Li?(x) = 0 =» LR{x)φir = 0̂ +r - LΛ(ίί), /or αίί a? e S.

Proof, (b) <=> (b') This is only a difference in notation.
(a) => (b). Suppose [LR(x)] = [0]. Since LR(x)φi-φzr £ Li2(α;), we
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have [LR{x)φtrφzr] = [0]. Now by (a), [LR(x)φi ] ^ [Oφi]. The reverse
inequality holds since Oφtr £ LR(x)φiτ.

(b) =- (a). If [LR(x)φ2r] = [0], we have by (b) that [LB(x)φ^ψi] =
[Oφtr]. Now LR(x) £ LR(x)φzrφtr gives [LR{x)\ ^ [LR{x)φzrφir] = [0&+r].

THEOREM 2.7 If S is a pre-Baer semigroup and φ: S -» T an r-
preserving homomorphism, the equivalence relation = on £f(S) induced
by φ has the following properties:

( i ) For each zeS,zr can be chosen so that LR(x) = 0 => LR(x)φtr =
Oφtr for all xeS.

(ii) == is ordered*
(iii) = is S-compatible.

In part ( i ) any zr such that L(zrφ) = LR(zφ) suffices.

Proof. Recall that LR(x) Ξ= LR(y) <=> LR(xφ) = LR(yφ).
( i ) . JSf(S)/= is partially ordered by [LR(x)] ^ [LR(y)]^>LR(xφ) S

LR(yφ). Choose 2r so that L ( ^ ) = LR(zφ). Since Li?(αO S L-B(ί/) =>
LR(xφ) S LR(yφ) by Lemma 2.2, we can apply Lemma 2.6. Since
LR{x)φzr = O=*L#(α;3r0) = 0 = > ^ ^ = 0 ==> ^ € L{zrφ)=*LR{xφ) £ LJB(sίί)
for all a G/S, part (a) of Lemma 2.6 is satisfied and part (b) is what
we are trying to prove.

(ii). It will suffice to show that LR(xφ) £ LR(yφ) => there exists
yxeS such that LR(x) £ LR{yλ) and LR{y^) = LR(yφ). If Li?(a#) £
Li2(l/^) = L(i/V), we have a#i/r0 = 0 => LR(xyrφ) = 0 => LR(xyr) = 0.
By (i), LR{xyr)φp = 0 ^ = LJ?(^/). Since LR{xyr)φp = L(yr(xyr)r) =
LR((yr(xyr)r)1), this says that LR((yr(xyr)r)ιφ) = LR{yφ). Letting ^ =
(yr(xyrYY finishes the proof since α? G L(yr(xyr)r) => Li2(x) £ L(yr(xyr)r) =

(iii). LJ?(a?) =• LJ?(ί/) => Li2(a;^) = L i 2 ( ^ ) => LR(xφzφ) = LR(yφzφ) =>
LR(xzφ) = LR(yzφ) => LR(x)φz = LR(y)φz.

The equivalence relation in Theorem 2.7 has another nice property.
It is determined by its kernel.

THEOREM 2.8. Lei = 6e £/ιe equivalence relation of Theorem 2.7.
following are equivalent.
(a) LR(x) = LR(y).
(b) 1/ L(ar0) = LR(xφ) and L(yrφ) = LR(yφ), then LR(x)φyr = 0
LR(y)φxr = 0.

Proo/. (a) => (b). Since = is S-compatible,
LR{x)φyr = LR{y)φyτ = 0. Similarly LR(y)φxr = 0.

(b) => (a). P a r t (b) of Lemma 2.6 is satisfied by Theorem 2.7, so
by part (a) of Lemma 2.6, LR(x)φyr = 0 => [LΛ(α?)] ^ [0^+r] = [L#(?/)].
Similarly LR(y)φxr ~0^ [LR{y)\ ^ [Li2(x)] Thus [LJ2(a?)l = [LΛ(»)].
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We now wish to show that any equivalence relation on £f{β) having
the three properties of Theorem 2.7 is induced on J*f(S) by some r-pre-
serving homomorphism.

LEMMA 2.9. Let S be a pre-Baer semigroup and let = be an S-com-
patible equivalence relation on Jίf(S). For each ze S define Φz: J?f(S)/=
— .Sf (S)/Ξ= by [LR(x)]Φz = [LR(x)φz] = [LR{xz)\. Φz is well defined be-
cause of S-compatibility. Let S' denote the semigroup generated by
{Φz; ze S} under composition. The map 2κ-> Φz is a homomorphism of
S onto S" and if = also possesses properties ( i ) and (ii) of Theorem
2.7, this homomorphism is r-preserving.

Proof. It is a clear that z H^ ΦZ is a homomorphism of <S onto S'
Let ze S and choose zr to satisfy part ( i ) of Theorem 2.7. ΦzΦzr = 0
since zzr = 0 so we have LR(ΦZ) £ L(Φer). To show that L(Φzr) £ LR(ΦZ)
we suppose that Φx e L(Φzr) and show that Φy e R(ΦZ) implies ΦxΦy — 0.
Since Φxzr = 0 we have [LR(l)]Φxzr = [Lu?(£2r)] = 0 and by Lemma 2.6,
which applies since we are assuming part ( i ) of Theorem 2.7, [LR(x)\ ^
\LR(z)]. Since = is ordered, the elements of S' are isotone maps and
we have [LR{xy)\ = [LR(x)]Φy ^ [LR(z)]Φy = [LR{zy)\ = [LR(l)]Φzy =
[0]. Now [LR(l)]Φxy = [0] implies Φxy = ΦxΦy - 0.

REMARK. If an S-compatible equivalence relation ΞΞ possesses pro-
perties ( i ) and (ii) of Theorem 2.7, and if we denote the kernel of
z\-*Φz by I, then z\-> Φz is the homomorphism studied by R. S. Pierce
in [3]. To prove this we must show that Φx = Φy<=> axb e I iff ayb e I.
Suppose Φx = Φy. Then axbel*=> Φaxb = ΦaΦxΦb = 0 <=> Φayb = ΦaΦyΦb =

0 <=> ayb e I. Now suppose axb e I iff. ayb e I. Then Φzxw = 0 iff Φβ y w =
0 => [LΛOKBW)] = [0] iff [LR{zyw)\ = [0] => [Li2(«a?)^I - [0] iff [LR(zy)Φw] -
[0]. Setting w = (zx)r, where (zx)r is chosen as in part ( i ) of Theorem
2.7, and using part (a) of Lemma 2.6 we have [LR(zy)] ^ [L{(zx)r)\ —
[LR(zx)]. Similarly we have [LR(zx)\ g [LR(zy)]. Thus [LR(zx)\ =
[LR{zy)\ for all ^ e S , but this just says that Φx = Φ .̂

THEOREM 2.10. Lei S be a pre-Baer semigroup and let = δβ α^,
equivalence relation on J*f(S) which possesses properties ( i ) , (ii), and
(iii) of Theorem 2.7. Then = is induced on Sf(S) by the r-preserving
homomorphism zv-*Φz described in Lemma 2.9. Furthermore, z\-* Φz

is the largest r-preserving homomorphism (considered as a congruence
relation on S) which induces = .

Proof. Consider the r-preserving homomorphism z H-> ΦZ of Lemma
2.9. We wish to show that LR(ΦX) = LJB(Φ,,) iff LJB(a?) Ξ L B ( I / ) . Let
LR{ΦX) = LR(Φy) and choose 2/r as in part ( i ) of Theorem 2.7. Then



708 C. S. JOHNSON, JR.

R{ΦX) = R{Φy) and we have ΦxΦyr = 0 since ΦyΦyr — 0. Φxyr = 0 means

[LR{xry)\ = [0] and by Lemma 2.6 [LR(x)] ^ [LR(y)]. Similarly we get
[LR(y)] ^ [LR{x)\ and thus LR(x) = LR{y). Conversely, suppose
LR(x) = LR(y). Choose of and yr such that L ^ r ) = LR(ΦX) and LίΦ^) =
LR(Φy). By ̂ -compatibility we have LR(xyr) = LR(yyr) = 0 and LR(yxr) =
LR(xxr) = 0. This means ΦβJ,r = Φya,r = 0. Now Φ* 6 £(0^) = I/JB(ΦJ

gives Li2(Φβ) S U2(Φ^) and Φ, e L(Φβ* ) = Llί(Φβ) gives LR(Φy) £ LR(ΦX).
Finally, suppose ^ is another r-preserving homomorphism which

induces == . Then χφ = yφ=* zxφ = 33/̂  for all z e S => LR(zxφ) = LR(zyφ)
for all z e S => LR(z)φx = LR(z)φy for all « € S =» Φ,, = Φy

REMARK. The r-preserving homomorphisms which induce = all
have the same kernel since, if φ is such a homomorphism, xφ = 0 <=>

= 0 <=> Li2(α?) = 0.

THEOREM 2.11. Let S be a pre-Baer semigroup and φ: S -» T an
r-preserving homomorphism. Let Φ: ̂ f(S) —> J*f(T) be the map des-
cribed in Lemma 2.2 ( i ) , i.e., LR(x)Φ = LR(xφ). The following are
equivalent.

(a) ker ψ e Sfiβ).
(b) ker φ is a principal ideal.
(c) Φ: £f(S) -> Sf(T) is residuated.

Proof, (a) <=> (b). This follows from the observation that x e ker φ <=>
xφ = 0 <=> LR(xφ) = 0 <=> Li2(α?) e ker Φ.

(c) => (b). This is clear.
(a) => (c). Suppose ker φ = LJB(w). Define Φ+: .Sf (Γ) -* £f(S) by

L(xφ)Φ+ — L(xwr). Φ+ is well defined and isotone since when L(xψ) S
L(yφ) we have z e L(xwr) => zxwr = 0=*zxe ker ̂  => z^a;̂  = 0 ==> ̂  e L ( ^ ) g
L(i/^) ==> 2̂ 2/̂  = 0=>zy 6 ker ̂  => zyvf = 0 => ze L(ywr), which says that
L(xwr) S L(ywr). Choose xr so that L(xrφ) — LR(xφ). Now since # e
L(x r^ r) we have LR(x) S L ^ ^ O = L(xrφ)Φ+ = LR(xφ)Φ+ = LR(x)ΦΦ+.
Now all that remains is to show that L(xφ)Φ+Φ £ L(xφ). Since
(xwr)ιxwr — 0 => (ίcw;r)^ G ker ̂  => (ajιι;r)VίC^ = 0 => (ajtc;*")1^ € L(cc )̂ we have
L(xφ)Φ+Φ = L(xwr)Φ = LR((xwr)ιφ) £ L(α#).

If Sf is a pre-Baer semigroup and ^ G S , notice that &(S) is dual
isomorphic to ^f{S) and the residuated map on &(S) given by
i?L(α;) ι-» RL{zx), considered as a map on J*f(S), is ^ί (See Lemma
1.2.) Bearing this in mind and applying left-right duality to the results
obtained thus far, we find that every Z-preserving homomorphism on
a pre-Baer semigroup S induces on Sfiβ) an ordered £+-compatible
equivalence relation = with the property that, for each zeS, zι can
be chosen so that LR(x) = 1 => LR(x)φyι = lφtι for all xeS. Further-
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more, every such equivalence relation on Jzf(S) is induced by some
Z-preserving homomorphism on S. We now have

THEOREM 2.12. Let φ be an r-and l-preserving homomorphism on
a pre-Baer semigroup S. The ordered equivalence relation on Jίf(S)
induced by φ is S- and S+-compatible. Furthermore, every S- and S+-
compatible ordered equivalence relation on Jzf(S) is induced by some
r- and l-preserving homomorphism on S.

Proof. This follows from previous results and the remarks pre-
ceding the theorem if we make the following observation: If an
ordered equivalence relation = on Jzf{S) is S- and S+-compatible, then
Φz: ^{S)l = => £f(S)/= given by [LR(x)]Φz = [LR(x)φz] is residuated
with residual Φi: ̂ ?(S)/ = => £f{S))= given by [LR{x)]Φt = [LR{x)Φi\.
Since residuated maps uniquely determine their residuals and vice versa,
the r-preserving homomorphism z H> ΦZ (considered as a congruence on
S) coincides with the Z-preserving congruence on S associated with the
anti-homomorphism zv-^Φi.

3* RAP and LAP homomorphisms*

DEFINITION 3.1. If S is a right Baer semigroup, a semigroup homo-
morphism φ: S -» T is right annihilator preserving or RAP in case
R(xφ) = R(x)φ. Notice that R{x)φ = {xrφ)T. Dually, if S is a left Baer
semigroup, φ is left annihilator preserving or LAP in case L(xφ) =
L(x)φ. Finally, φ is annihilator preserving or AP if it is both RAP
and LAP.

REMARK. Any RAP homomorphism is r-preserving since LR(xφ) =
L((xrφ)T) = L(xrφ). Dually, any LAP homomorphism is Z-preserving.

LEMMA 3.2. In a right Baer semigroup S we have
( i ) LR(x) V LR(x)φyr V LR{y)φ%r = LR(y) V LR(x)φyr V LR(y)φxr.
(ii) LR(zy) V LR(xy) = LR(zxry) V LR{xy).
(iii) LR(x) V LR(y) V LR(xyr) = LR(y) V LR(xyr).

Proof. It is shown in [2] that, in a right Baer semigroup S, R(x) Ω
€ ̂ ( S ) and that the join operation in £f(S) is given by LR(x) V

LR(y) - L(Λ(α?) Π R(y)).
( i ) . It is enough to show that R(x) Π R(xyr) ΓΊ i2(i/α?r) = i2(a/) Π

R(xyr) Π i?(ί/^r) If ^e R(x) Π i2(^ r ) Π i?(2/^r), then z = α;r^ and 2/2 =
τ/^r2 = 0 so ze R(y) Π R(xyr) Π R(yxr). The other inclusion follows by
symmetry.

(ii). It is enough to show R(zy) Π i?(aψ) = R(zxry) Π R(xy). This



710 C. S. JOHNSON, JR.

follows from the observation that if xyw = 0, then yw = xryw so that
zyw = 0 <=> zxryw = 0.

(iii) It is enough to show that R(y) Γ) R(xy) S R(x) Π JB(I/) ΓΊ i?(αψr).
If 7/^ = 0, then w — yrw so that xyrw = 0 => xw = 0.

LEMMA 3.3. If S is a right Baer semigroup and = is an S-com-
patible equivalence relation on J*f(S), the following are equivalent.

(a) ΞΞ is a join congruence.
(b) LR(x) V LR(z) = LR(y)VLR(z), LR(z) = 0 =

Proo/ (a) =* (b) Since LR{z) = 0, we have Li2(») = Li2(a;) V 0 =
LR(x)VLR(z) = LR(y) V LR(z) Ξ LB(y) V 0 = Li?(t/).

(b)=>( a). Suppose LR(x) = LR(y). If LR(z)e£f(S), we have,
using Lemma 3.2, that LR(x) V LB(s) V LR(x)φyr V LR(y)φxr = LJR(T/) V

V LR(x)φyr V LR(y)φxr. To show that Ljβ(α) V LJB(«) Ξ Liί(2/) V
it will suffice, by (b), to show LR(x)φyr V LR(y)φxr = 0. Since

ΞΞ is S-compatible we have LR{x)φyr = LR(y)φyr = 0 = LR{x)φxτ = LR(y)φχr.
Using (b), LR(x)φyr V LR(y)φxr V LR(y)φxr = LR{x)φyr V LR(y)φxr and
LR{y)φxr == 0 ==> LR(x)φyr V LR(y)φxr = LR(x)φyr = 0.

THEOREM 3.4. Le£ S be a right Baer semigroup and φ: S ^> T an
RAP homomorphism. Then the equivalence relation = induced on J*f(S)
by φ (recall Liϋ(α ) Ξ= LR(y) iff LR(xφ) = LR{yφ)) is an S-compatible join
congruence.

Proof. S-compatibility was proven in Theorem 2.7. By Lemma
3.3 it is sufficient to show that LR(x) V L#O) = LR(y) V LΛ(s) and

= 0 =* LR{xφ) = LR(yφ). Now Li2(a0) = 0 means that i2(^) =
= Γ, so 1^ = *V10 = ^ . Since LR(xzr) = (LR(x) V LR(z))φzr =
V LR{z))φzr = LR{yzr), we have Liί(α#) = LR{xzrφ) = LR(yzrφ) =

An S-compatible join congruence is determined by its kernel in
the following manner.

THEOREM 3.5. If S is a right Baer semigroup and == is an S-
compatible join congruence on Sf(S)y the following are equivalent.

(a) LR(x) = LR(y).
(b) LR(x)φyr V LR{y)φχr = 0.
(c) There is an LR(z) = 0 ŝ c/̂  ίfeαί

V L22(s) - LJ?(2/) V LR{z).

Proof, (a) => (b). If LR(x) = LR{y), then LR(x)φyr == LR(y)φyr =
0 = LR(x)φxr ΞΞ LR{y)φχr and hence LR{x)φyr V LR(y)φχr = 0.
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(b) ==> (c). Follows from part ( i ) of Lemma 3.2.
(c) => (a). Follows from Lemma 3.3.

COROLLARY 3.6. An S-compatible join congruence = has the pro-
perty that, for each ze S, any choice of zr gives LR(x) = 0 => LR(x)φi =
Oφtr for all x e S.

Proof. Since a join congruence is ordered, it is sufficient by Lemma
2.6 to show that LR(xzr) = 0 => [LR{x)\ £ [LR{z)\. Since by part (iii) of
Lemma 3.2 we have LR(x) V LR(z) V LR(xzr) = LR(z) V LR(xzr), it
follows from the theorem that when LR{xzr) = 0, LR(x) V LR(z) = LR(z).
Since = is a join congruence, this says that [LR(x)] g [LR(z)\.

THEOREM 3.7. If S is a right Baer semigroup and == is an S-com-
patible join congruence on J*f(S), then the homomorphism z\-*Φz des-
cribed in Lemma 2.9 is RAP.

Proof. We wish to show that R{ΦX) = ΦxrS' or, in other words,
t h a t ΦxΦy = 0^>Φy = Φ9rΦy. Notice t h a t ΦxΦy = 0 <=> [l]ΦxΦy = [0] «
[Li2(α?2/)] - [0] <=> LR(xy) = 0 and t h a t Φy = ΦxrΦy *=> LR(zy) = LR(zxry) for
all zeS. Since it is clear that Φy = Φ r̂Φ^ => ΦxΦy — 0, we will be
done if we can show that LR(xy) = 0 => LR(zy) = LR{zxry) for all zeS.
Since LR(zy) V LR(xy) = LR(zxry) V LR(xy) by par t ( i i ) of Lemma
3.2, LR(xy) = 0 implies by Theorem 3.5 that LR(zy)^LR(zxry) for all

COROLLARY 3.8. If S is a right Baer semigroup, then any S-com-
patible join congruence = (m *Sf{S) is induced by an RAP homomor-
phism on S.

Proof. Since, by Corollary 3.6, = has property ( i ) of Theorem
2.7, the proof of Theorem 2.10 applies and says that = is induced on
^f(S) by the homomorphism z\-^Φz on S. By Theorem 3.7, z\-+Φz

is RAP.

COROLLARY 3.9. If S is a right Baer semigroup, then every S- and
S+-compatible join congruence on J*f(S) is induced by an RAP and
l-preserving homomorphism on S.

Proof. This follows from Corollary 3.8 and from Theorem 2.12
and its proof.

COROLLARY 3.10. If S is a left Baer semigroup, then any S+-
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compatible meet congruence on Jίf(S) is induced by an LAP homomor-
phism on S.

Proof. This is the dual of Corollary 3.8. (See the remarks pre-
ceding Theorem 2.12.)

COROLLARY 3.11 (Thorne). If S is a Baer semigroup, then every
S- and S*-compatible congruence on <=£f(S) is induced by an AP homo-
morphism on S.

Proof. This follows from Corollaries 3.8 and 3.10 and from Theo-
rem 2.12 and its proof.

4* Kernels of ^compatible join congruences*

THEOREM 4.1. Let I be an ideal of a join semilattice L = Jίf(S),
S a right Baer semigroup. The following are equivalent.

(a) I is the kernel of an S-compatible join congruence.
(b) Iφz £ / for each zeS.

Proof, (a) => (b). If LR(x) e I, then LR(x) = 0 and by S-compati-
bility LR(x)φz = 0φz = 0, i.e., LR{x)φz e I.

(b) => (a). Suppose Iφz S / for each zeS. Define LR(x) = LR(y)
iff LR(x) V LR(w) = LR(y) V LR(w) for some LR(w) e I. It is easy
to see that = is a join congruence. If LR(x) = LR(y), then LR(x) V
LR(w) = LR(y) V LR(w) with LR{w) e / and since φz, being a residuated
map, preserves join we have LR(x)φz V LP(w)φz = LR(y)φz V LR(w)φz.
Since LR(w)φz e I it follows that LR(x)φz = LR(y)φz. Clearly = has I
as its kernel.

LEMMA 4.2. iw cm?/ semigroup S with 0, i/ R(w) is a two-sided
ideal, for some weS, then LR(w) is a two-sided ideal. Hence, if S is
a pre-Baer semigroup, LR(w) is two-sided if and only if R(w) is two-
sided.

Proof. Suppose R(w) is two-sided. LR(w) is already a left ideal
so we must show that it is a right ideal. Let x e LR(w), yeS, and
z e R(w). We need xyz — 0. But yz e R(w) since R(w) is two-sided and
hence xyz = 0. The second assertion follows from the first and its dual.

Theorem 4.1 characterized kernels of S-compatible join congruences.
We now look at principal ideals which occur as kernels of S-compatible
join congruences.
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THEOREM 4.3. Let S be a right Baer semigroup. The following
are equivalent.

(a) [0, LR(w)] is the kernel of an S-compatible join congruence on
3*(S).

(b) LR(w) is the kernel of an RAP homomorphism on S.
(c) LR(w)φx S LR(w) for all xeS.
(d) xwr = wrxwr for all x e S and for any choice of wr.
(e) LR(w) is a two-sided ideal.
(f) R(w) is a two-sided ideal.

Proof, (a) <=> (b). Since every RAP homomorphism φ on S induces
an S-compatible join congruence = on Sfiβ) by the rule LR(x) Ξ= LR(y)
iff LR(xφ) = LR(yφ) and since every S-compatible join congruence arises
in this manner for some φ, it suffices to notice that x e ker φ *=> xφ =
0 « LR(xφ) = 0 <=> LR(x) = 0.

(a) <=> (c). Use Theorem 4.1.
(e) « (f). Use Lemma 3.2.
(d)«(f) . This follows from the dual of Theorem 1 of [1].
(b) ==> (e). This is obvious.
(d)=>(b). x\-*xwr is a homomorphism of S onto Swr and it is

jRAP since ywr e R(xwr) <=> xwrywr = 0 <=> ?/^r = wrywr = xrwrywr <=> 2/wr e
(xrwr)(Swr) = (R(x))wr.

REMARK. By Theorem 2.11, the kernel of an S-compatible join
congruence = is a principal ideal if and only if = is residuated in
the sense that the canonical join homomorphism taking £f(β) onto
£f(S)l= is a residuated map.

In light of Theorem 4.1 we make the following definition.

DEFINITION 4.4. An ideal I of a join semilattice L = -Sf (S), S a
right Baer semigroup, is called S-compatible in case Iφz S Z for all
zeS.

THEOREM 4.5. Le£ S be a right Baer semigroup and let L =
The set IS(L) of S-compatible ideals of L forms a subcomplete sublattice
of I(L), the lattice of ideals of L. IS(L) is isomorphic to the lattice of
S-compatible join congruences on Sfiβ).

Proof. If {JJ is a family of S-compatible ideals of Sf(S) it is clear
that Γ\i{Ii} is an S-compatible ideal. Suppose LR(x) e V*W Then
there exist

LR(Vί) e Iil9 LR(y2) e Ih,
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such that

LR(x) £ LR{y,) V LR(y2) V V LR(yn).

Hence

LR(x)φz £ (LR(yd V L#0/2) V V LR(yn))φz

= LR{yι)φz V LR(y2)φz V V LR(yn)φz

and since LR(yk)φz £ Jifc (fe = 1, 2, , w) we have LR(x)φz e Viί^J
Thus V<W *s S-compatible and we have proven the first part of the
theorem. Now, if IeIs(L) let θ x denote the unique S-compatible join
congruence with kernel I. In light of Theorem 3.5 it is clear that

THEOREM 4.6. Let S be a right Baer semigroup in which, for
each x e S, LR(xι) — LR(xιxι) for some choice of xι. Then IS{L) is dis-
tributive and obeys the following infinite distributive law:

Proof. It will suffice to show / Π (ViW) SVi{/nJ i } . Suppose
L(x) = LRix^elandLRix^eVΛJi}. Then LR(xι) £ LR{Vl) V LR(y2) V
• V LR(yn) where LR(yk) e Ji]c (k = 1, 2, , n). Now LR(xι) =
LR(xι)φxι S LR{yx)φxι V LR(y2)φxι V V LR(yn)φxι. For Λ = 1, 2, , w
we have LR(yk)φxι e Ji]c by S-compatibility and LR(yh)φxι = LR(ykXι) £

) G /. Thus LR(yk)φxι e In Ji]c for A - 1, 2, . . . , % . Thus

REMARK. Theorem 4.6 applies, in particular, when S is a Baer
semigroup. In that case #* is taken to be an idempotent generating
L(α?). The LR(xι) = LR(xιxι) condition could also be taken care of by
requiring, in the definition of pre-Baer semigroup, that xr and xι be
idempotents. (It is pointed out in [2] that all our results involving
pre-Baer semigroups remain valid if xr and xι are required to be idem-
potents.)

THEOREM. 4.7. Let S be a right Baer semigroup in which, for each
xeS, LR(xι) = LR(xιxι) for some choice of xι. Let L = £f{S). IS{L)
is pseudo complemented since it is complete and obeys the infinite dis-
tributive law of Theorem 4.6. // IeIs(L), its pseudo complement I*
is given by I* — {LR(x); LR(x) £ L(J)}, where J is the kernel of any
RAP homomorphism which induces the S-compatible join congruence
with kernel J, i.e., y eJ <=> LR(y) e J.

Proof. I* is an ideal since LR(x), LR(y) £ L(J) => J £ R(x) Π
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R(y) => LR(x)VLR(y) = L(R(x) f]R(y)) £ L(J). Suppose LR(x) e I* and
yeS. Then zeJ=>yzeJ=*xyz = O=>xyeL(J)=>LR(xy)ξΞ:L(J)=>
LR{x)φy — LR(xy) e I*. Thus I* is S-compatible. Now suppose L(x) e
i n / * . Then L(x) = LR(xι) eI=>xιeJand LR(xι) el*=>xιe LR{xι) £
L(J). Thus xιxι = 0 and L{x) = LR(xι) = LR(xιxι) = 0. Therefore
I n I* - 0. Finally, suppose / Π K = 0, with i ί e IS(L). Let Ljβ(α ) e ϋΓ,
yeJ. Then LJR(?/) G /=> Li2(^) S I»i?(2/) e I and Li2(α;) G Z = > LR(x)φy =
LR(xy) G if. Thus LJ?(aψ) e/ΠίΓ = 0=»ίC2/ = 0=>flJ€ L(J) => Lβ(α?) S
L(J) => LJS(aj) e I*. Therefore K £ I*.
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