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EXTREME MARKOV OPERATORS AND THE

ORBITS OF RYFF

RAY C. SHIFLETT

Let X be the unit interval with the Lebesgue structure
and let m be Lebesgue measure. A Markov operator with
invariant measure m is an operator T on Lco(X, ra) such that

Γl = 1 and ί Tfdm = f fdm for all / in L^X, ra). If θ is a

measure-preserving transformation on X, then θf — foθ defines
a Markov operator. Each such θ is an extreme point in the
convex set of Markov operators.

Let Ω(f) be the set of all geL^X.m) such that Tf = g
for some Markov operator T. This convex set is called the
orbit of /. The extreme points of Ω(f) are equimeasurable
to / and arise from Markov operators of the form θσ*. This
paper shows the connection between extreme points of the set
of Markov operators and the extreme points of Ω(f). The set
of Markov operators which carry / to a given extreme point
of Ω(f) is shown to contain an extreme Markov operator. The
Markov operators of the from θa* are shown to be extreme
when θ is invertible. It is also shown that not all extreme
operators factor into θd* and that there are θ and σ such that
θd* is not extreme.

This papsr deals with the problem of extreme points in the convex
set of Markov operators and how they relate to the extreme points of
orbits of elements from Lγ as defined by J. V. Ryff. The author would
like to express his gratitude to Professor J. V. Ryff for discussing this
work with the author and to the referee for his helpful comments.

A Markov operator, with Lebesgue measure invariant, is an oper-
ator T defined on LTO(X, ra) (X = [0, 1] and m is Lebesgue measure)
which satisfies:

(1) T is a positive operator
(2) 21 = 1

(3) J x/dm ^
The norm of T, in the L^ norm, is one. T may be extended to
such that \\T\\X = 1 and, using the Riesz convexity theorem, Γmay be
extended uniquely to Lp as a contraction mapping for each p, 1 < p < oo.
Therefore, T is defined on the Hubert space L2 and the adjoint, T*,
is well defined.

If Θ:X—*X is a measure-preserving transformation, that is, if θ
is measurable and m{θ~'ιA) = m(A) for every measurable A, then the
operator defined by θf = foθ is an extreme point in the set of Markov
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operators. If T is extreme, then T* is extreme. James R. Brown
proved that the set of operators induced by invertible measure-pre-
serving transformations was dense in the set of Markov operators in
the weak operator topology on Lp, 1 < p < °o. He also proved that the
set of Markov operators is the closed convex hull of the set of opera-
tors induced by invertible measure-preserving transformations in the
strong operator topology [1].

There are examples of self-adjoint, extreme Markov operators which
are not induced by a measure-preserving transformation. R. G. Douglas
[3] and J. Lindenstrauss [5] gave, independently, the only known char-
acterization of the extreme points of the set of Markov operators.

J. V. Ryff gave the following definition.

DEFINITION. The orbit of feLl9Ω(f), is the set of geL, where
g = Tf for some Markov operator T.

Ryff's work, [6, 7,8], with these orbits suggests a possible con-
nection between the extreme points of the set of Markov operators and
the extreme points of Ω(f). The first theorem makes this connection
explicit. Theorems 2, 3, and 4 give further clarification of this rela-
tionship. Theorems 5 and 6 show the limitation of this approach.

THEOREM 1. // Mfg is the set of Markov operators which map f
to g and if g is an extreme point of Ω(f), then Mfg contains an extreme
point of the convex set of Markov operators.

Proof. Let tT, + (1 - t)T2 be in Mfg where Tx and T2 are Markov
operators and 0 < t < 1. Then tΎJ + (1 - t)T2f = g. Therefore, TJ =
T2f = g since g is given as extreme. Thus Mfg is an extremal subset
of the set of Markov operators.

The set of Markov operators is compact in the weak operator
topology [1]. Now let < Ta > be a net in Mfg which converges to T
in the strong operator topogy; that is, TJ converges to Tf for every
/ in Lγ. Thus Tf = g since TJ = g for every α. Therefore, Te Mfg.
This proves that Mfg is closed in the strong operator topology. A
convex set has the same closure in the weak operator topology as in the
strong operator topology. Thus Mfg is a closed, compact, convex, ex-
tremal subset of the set of Markov operators, which is a convex subset
of a locally convex topological vector space. Thus Mfg contains an
extreme Markov operator, see page 67; [9].

Ryff characterized the extreme points of Ω(f) as those elements
which are equimeasurable to / [6]. These arise from Markov operators
which may be written as 0) o (σ)* where Θ and σ are measure-pre-
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serving transformations. Let IA ba the characteristic function of the
set A.

THEOREM 2. If θ and σ are measure-preserving transformations
with θ invertible then T = θσ* is extreme.

Proof, θ is an invertible measure-preserving transformation if and
only if θ is unitary [1]. θ is unitary if and only if θ and θ* are iso-
metries. Thus Θ~L = θ*. Therefore, θσ* = (σθ~1)*. Since σθ~ιIB =
IB(θ~ισ) and m{{θ-ισ)~ιB) = m(B), the operator θσ* is the adjoint of
that oparator induced by the measure-preserving transformation θ~ισ
and is therefore extreme.

THEOREM 3. If θ and σ are measure-preserving transformations,
then there is an f e Lγ such that θσ*f is extreme in Ω(f).

Proof. Let A be given with m(A) > 0 and lef / be the charac-
teristic function σ~ιA. Any g which is extreme in Ω(f) must be equi-
measurable to / and is, therefore, essentially a characterictic function of
a set B with m{B) = m(A). Let C be a measurable set, then (Ic, σ*f) =
(σlc, f) = (σlc, σIA) = (Ic, IA). Thus 5*/ - IA. Therefore, θσ*f =
ΘIA = IAoθ, which is the characteristic function of θ~ιA with m(θ~ιA) —
m{A).

It is well known that any Markov operator which carries charac-
teristic functions to characteristic functions is extreme. The next
theorem is a partial result to a conjecture suggested by the above fact
and Theorem 3. The conjecture is that given an extreme Markov
operator there is some measurable set B such that 0 < m(B) < 1 and
such that TIB is extreme in Ω(IB). This would say that TIB = IA for
some A with m(A) = m(B).

THEOREM 4. If T is extreme then there is a set B such that
0 < m(B) < 1 and such that TIB = IA + F where m(A) > 0 and F = 0
on A.

Proof. Suppose for every B, with 0 < m(B) < 1, it is true that
0 ^ TIB < 1 [m]-almost everywhere. Then 1 ̂  TI_B > 0 [m]-almost
everywhere. But —B is measurable with o < m( — B) < 1 so that
0 < T/_β < 1 [m]-almost everywhere. Thus, for every J5, 0 < TIB < 1
[m]-almost everywhere. This implies that (IA, TIB) > 0 for every A
and B with m(A) >0 and m(B) > 0. By Theorem 2, [2], T is not
extreme.

After the discovery that the extreme points of Ω(f) were given
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by θσ*f, the conjecture was made that the extreme points of the set
of Markov operators are characterized by those operators which factor
into θσ*. The last two results of this paper answer this conjecture
completely.

J. R. Brown proved that μ(A x B) = (IAi TIB) gives a one to one
correspondence between the set of doubly stochastic measures and
Markov operators [1], The notation μ0 will be used to denote the
measure associated with θ. The measure for σ* is denoted by μ* and
for θσ* by μ. The next technical result is needed for the last two
theorems.

PROPOSITION. μo(A x B) = μ(A x σ~ιB) and μ*(A x B)=μ(θ~ίA x B).

Proof.

μo(A xB) = (IA, ΘIB) = (σθ*IAy σIB) = (§*IA, σ*IB<>σ)

= (IA, 0σ*IBoσ) = μ(A x σ~ιB) .

The other equality is established in a similar manner.

THEOREM 5. There are extreme Markov operators which are not
of the form θσ*.

Proof. Let T be defined by

TIB = (l/2)72jB+(1/3) i f ΰ c [0, 1/3] and

TIB = 7(1/2)(jB_(1/8)) + (1/2)7, if B c [1/3, 1] .

Let μ be the associated doubly stochastic measure. It is easily
seen that 1/3 of the mass of μ is uniformly distributed over the sets

{(x, y): y - (l/2)(s - 1/3)} n ([1/3, 1] x [0, 1/3]) ,

{(x,v):y = x}Γι([lβ,l] x [1/3,1]) and
{(x, y):y = 2x + 1/3} Π ([0, 1/3] x [1/3, 1]) .

By Theorem 2, [2], μ is extreme. It can be shown that T = T* [4].
Suppose T = θσ*. By the proposition, μo(B x A) = (IB9 TIAoσ) =

(TIB, IAoσ) - ((l/2)7ω+(1/8), IA°σ) = (l/2)μo([2B + (1/3)] x A) for every
B c [0, 1/3] and A measurable. Also μθ(B x A) = m(B Π θ~ιA) and
therefore,

(1) m(S Π Θ-'A) = (l/2)m([2B + (1/3)] n (σ^A) .

By the proposition, μ*(A x B) = μ{θ~ιA x B). Similar manipula-
tions as those yielding (1) will yield

(2) m(B Π σ~ιA) = (ll2)m(θ~ιA Π [2B + (1/3)])
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for B c [0, 1/3] and A measurable.
Let C = 2B + (1/3) c [1/3, 1]. Then μ*(A x C) = μ[Θ~ιA x C] =

(IAoθ, TIc) = (IAoθ, /α/2)((7_(1/3))) + (l/2(i>0, Iσ) = m((l/2)[C-(l/3)] Π 0~ιA)-|-
(l/2)m(C Π "1A). Therefore,

(3) m([25 + (1/3)] n σ-'A) = w(J8 Π fl-'-A) + (l/2)m([2J5

Equations (1) and (3) yield

(4) m([2B + (1/3)] Π <Γ1A) = m([2B + (1/3)] Π θ~ιA)

for all measurable B c [0, 1/3] and all measurable A. Equations (2)
and (4) yield

(5) (l/2)m([2B + (1/3)] n σ~ιA) = m(B n σ~ιA)

for B c [0, 1/3] and all A. Then (5) and (1) give

m(B n σ~ιA) = m{B n 0~ιA)

for all measurable 5 c [0, 1/3] and all measurable A. Since every
C c [1/3, 1] is the image of some B c [0, 1/3] under 2B + (1/3), for any
measurable A and C, μθ(A x C ) = μσ(A x C). Thus μ* — μσ and θ = σ.

Thus, if T = θσ*, it must be that T = θθ*. However,

(• [̂0,1/3], TIίQ>ll3}) — (l/2)(Iί0tlj^, /[i/3,l]) = 0 .

Then (/[0,1/3], ΘΘ*IM31) = (§*I[Ofl/8], 0*/[o,i/8]) - j2:(^*I[o.i/8])2dm - 0. Then

^*/ [ 0 1 / 3 ] = 0 [m]-almost everywhere. This says that (1, £*/[0,i/8]) = 0,

which is a contradiction. Thus Γ i s not of the form θσ*.

THEOREM 6. There are operators T — θσ* which are not extreme.

Proof. Let σ(x) = 2#(mod 1) and θ(x) = Sx if αj e [0, 1/3] and θ(x) =
(l/2)(3a - 1) if .τG [1/3, 1]. For any

feL2, (σ*f)(x) = (l/2)f(x/2)

Thus

μ(A xB) = (IA, TIB) = (7Xf ^[(1/2)7^

- (1/2) [ IA(x)I2B(3x)m(dx)
J[0,1/3]

+ (1/2) f
J

+ (1/2) (
J[0,1/3]

IA(x)Its((Sx - l)/2)m(dx)
[l/3 1]

(1/2) ( IA{x)I2B^{{Zx - l)/2)m(dx) .
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If B c [0, 1/2], this equality will yield

μ(A xB) = (l/2)m(A Π (l/3)[2£ U (4B + 1)]) .

If B c [1/2, 1], μ(A x B) = (l/2)m(A f] (l/3)[(2£ - 1) U (4B - 1)]). So,
for A c [0, 1/3] and 5 c [0, 1/2], μ(A x B) = (l/2)m[A Π (2J5)/3] Then
1/6 of the mass of μ is distributed uniformly on y = (3/2)a; in [0, 1/3] x
[0, 1/2].

Similar manipulations show that the 1/3 of the mass is on y =
(3/4) (a - (1/4)) in [1/3, 1] x [0, 1/2] and 1/6 on y = (3/2)<c + (1/2) in
[0, 1/3] x [1/2, 1] and 1/3 on y = (3/4)α + (1/4) in [1/3, 1] x [1/2, 1]. By
Theorem 1, [2], this T is not extreme.

Theorem 5 does not answer the more general conjecture, which
the author made, that every extreme Markov operator factors into a
product of operators induced by measure preserving transformations and
the adjoints of such operators. The author has not been able to answer
this question. It is easy to show that this conjecture could be stated
as every extreme Markov operator T may be written as T = TλT2 ' Tn

where T{ = θβ^ (θι or σn may be the identity transformation). Theo-
rem 6 shows this property can not characterize the extreme points.
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