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MAXIMAL MODELS IN THE LANGUAGE
WITH QUANTIFIER “THERE EXIST
UNCOUNTABLY MANY”

J. I. MALITZ AND W. N. REINHARDT

Fuhrken has shown that the language Lgl, obtained from

first order logic by adding a new quantifier Q and interpret-
ing @Qx as ‘“‘there are at least w, 2’s such that...”’ is countably
compact but not fully compact. The countable compactness
is not enough to yield strong analogs of the upward
Lowenheim-Skolem theorem, and the amalgamation pro-
perty. In fact, it is shown that for ‘““most’ cardinals «, there
are structures of power « with countable type that are maximal
in the sense of having no proper extensions with the same
L? L theory. From this the failure of the amalgamation pro-
perty is obtained. There is still the possibility that the
model theory of L? (with Qx interpreted as ‘‘there are at
least « «’s such that...”) for « > w,, is more analogous to
the model theory of first order logic.

Our investigations of L%, turn out to be closely related to questions
in first order logic studied by Rabin [13], Keisler [7], and Chang [2],
and in the logic of L? studied by Craig [3], and Keisler [6]. Our
development provides some unification of these results and some
strengthening (cf. Theorems 2.12 and Corollary 3.5) of Keisler’s
results on L2 characterizability. Fuhrken’s work on the compactness
of L? appears in [4].

0. Preliminaries and notation. Ordinals are denoted by the
letters «, B, v, and cardinals by £, \, ¢ with m, n reserved for finite
cardinals. The first uncountable measurable cardinal is denoted by
1°* MC. We identify each ordinal with the set of smaller ordinals
and the cardinals with the initial ordinals. ¢X will denote the car-
dinality of X. By *X we mean the set of all functions on Y to X.
c(*k) is written as k% 2k = Uae; % 26 = ¢($k). R, is the sets of
rank less than £. Sz = {t: t & =}.

Sans serif will be used for the nonlogical symbols, 0, @, 4, ¢ will
denote formulas. We use v, v for variables and v, v for finite sequences
of variables. The type 73 of a set Y of formulas is simply the set
of nonlogical symbols occurring in X.

Capital German letters will be reserved for structures, and the
corresponding Roman letters used for their universes. We also write
|| for the universe of . All structures are infinite unless explicitly
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assumed finite. The denotation of the symbol J in A will be written
J*. The type of U, written 72, is the set of all nonlogical symbols
having denotations in %Y. “x admits a structure such that - --” means
“there is structure ¥ such that ¢|%| =« and -..”.

An assignment in U is a function on the variables taking values
in |2]. If @ is a formula, and z is an assignment in A, we write
A = @[z] to mean that @ is satisfied in 9 under the assignment =z.
We write 3 & B to mean that 2 is a substructure of B (B is an
extension of 2A); A <, B means that A = B and for for every formula
@el" and every assignment z in U, A E=oz] iff Bz, A=B
means that for each sentence e I', W= ¢ iff B=0. We write < and =
respectively for <, and =, in case [ is first order logic, and <,, =, in
case ['is LY. ThA = {oe L: A = g}.

The language L¢, defined for k& = w, is obtained from first order
logic by the addition of a new quantifier symbol @, (we will write
simply @ if the cardinal is clear or immaterial). In L¢ Qu has the
interpretation “there are at least x u’s such that ---”. Thus in L%
the assignment z in 9 makes the formula Qup true in A iff ¢{be |A|:
Uk plzb)]} = k. Let t =7 and let ¢ = V< |A|. Then A|(V, )
is the ¢t-reduct of the substructure of U determined by V, i.e., if B
is the substructure of U determined by V, UA|(V, t) is the structure
€ with universe |B| and type ¢ determined by R® = R® for R in ¢.
We write %A\t for A|(|A], ¢). If v is a unary relation symbol, then
we will write %|(v, t) for (the relativized reduct) A|(v* ). If (R;:
1€ I) is a family of relations on |2|, then (%, R,);.; denotes a struc-
ture which results from % by extending the type of U to include new
relation symbols R;, 2 € I, with RY = R,.

1. In this section we introduce the notion of strongly maximal
structure, which encompasses the two maximality notions which most
concern us in this paper, those for L and L¢. This will be shown
in Theorem 1.2 and its partial converse, Theorem 1.10. Also in
81 are examples of strongly maximal models which are basic to our
development (Lemmas 1.3, 1.7 and following remarks).

DEeFINITION 1.1. (a) U is L-maximal iff whenever 2 =, 3 and
A =B then A = B.

(b) A structure U = {4, U¥, <%, ---> with U* unary and <™ binary
is called strongly maximal iff

(i) any structure Lg-equivalent to {U*, <*> is countable and

(ii) whenever 2 = B, A = B, and U® is countable then A = B.

For example condition (bi) is satisfied if U*, <*) =<w, <), as
this is L%-characterizable (up to isomorphism) as an infinite linear
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order in which each element has finitely many predecessors.

THEOREM 1.2. If U is strongly maximal, then A is both w-maximal
and w-maximal.

Proof. That strongly maximal implies @w,-maximal is obvicus since
in L2 we can say directly that U is countable. To see that strongly
maximal implies w-maximal it is enough to see that if ¥ is a strongly
maximal structure with A =B and A =,B then U® is countable. In
Lemmas 1.3 and 1.7 we give examples of strongly maximal models
which are basic to our development.

LEMMA 1.8 Let w, < \. There is a strongly maximal model A
with ¢|A| = o and et = .

REMARK. The case A = 2¢ is immediate from Rabin’s result
that the complete structure on @ has no proper elementarily equivalent
extension of cardinality @ (Rabin [13]; see also Malcev [11], Keisler
[6], and Chang [2]). The case )\ < 2* is implicit in Rabin’s proof.
The examples we give are different from Rabin’s. Chang’s argument
makes essential use of the complete structure (see remark after
Theorem 2.10).

Proof. It is enough to find a countable structure with no coun-
table proper equivalent extensions, as we may realize the structure
on @ and add the relation < required in the definition of strongly
maximal.

G. Carpenter, while an undergraduate at Boulder, pointed out the
following particularly simple proof. Let 2 =<Q, Z, +, +, D>p.x Where
@ is the rationals and X is any uncountable set of reals (left De-
dekind cuts). In any proper equivalent extension B of 9, there must
be an infinitesimal ¢. In fact since B satisfies VxIm, n(ZmAZnAm-x ~
n), there must be a nonstandard integer n* e z® whose reciprocal is an
infinitesimal. But for each De X, there is be B within ¢ of D, i.e.,
(D(b) A ~D(b +¢€)) V (D(b — €) A ~D (b)). Different D’s get different
b’s, so B is uncountable.

LEMMA 1.4. If U is a strongly maximal structure with ¢|A| = &
and ¢t < k then there is a strongly maximal B with finite type and
c|B| = k.

Proof. We may suppose without loss of generality that % has
£ m-place relation symbols R,., so that A = &k, RY Dncwacee We in-
troduce a new type ¢ = {S,: n€ w} where S, is a new relation symbol
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of rank n + 1. Define € of type ¢t U {U, <} by putting |€]| = &, U®
U&(’ <@ — <Y(’ and

Su(@y, « oo, w,) UHE RY . (2, o0, 2,) -

Let B be an expansion of € with Skolem functions, so that B & ¥’
implies B < B’. Clearly B has countable type. We claim that 8 is
strongly maximal. Suppose B =W, B =B, and ¢(U®) = w. Define
A" of type A by |W] = [B'|, U = U, <Y = < and R} . (@, +++, @,_,)
ifft s (a, 2y, -+, 2,_). Since B <P, A =A; since BV, A=A,
since UY = U", ¢(U") = w. But U is strongly maximal, so || = |B’'| =
[N =k and B = B'.

The reduction to a finite type may be accomplished, in the usual
way, by coding everything with a binary relation. We omit the proof.

For the proof of Lemma 1.6 we need the following well known
fact.

LeEMMA 1.5. For each cardinal £, if N = £+ or N = 2, then there
18 a structure B whose type is finite and includes a unary predicate
K, and such that |B| =\, K® = £, and whenever BSE, B = €, and
K¢ = &, then B = G.

Proof. For n = 27, choose B = {Sk, £, € ). For A = £*, choose a
binary function F so that for aex~k, F(a, -) enumerates the pre-
decessors of & on k. Then take B = {k*, k, €, F).

LEMMA 1.6. Let X = k¥ or v = 2. If there is a strongly maximal
model A with ¢|A| = k, then there is a strongly maximal B with
c|B| =N and etB < e + 2.

Proof. Let A be a strongly maximal model with || = £. By
Lemma 1.5, choose € with |€]| = A so that whenever € = ¢, € = ¢,
and K* = £ then € = €. Choose B so that B|7€ = €, B (K, zA) = A.
We claim that 8 is the desired strongly maximal structure. For
suppose that B S B, B = V', and ¢(U®) = w. Then W = B'|(K, 7A) =
BI(K, A=A so AS WA, A =W, and ¢(U") = w. But A is strongly
maximal, so K¥ = k. By choice of €, we now have € = €’, hence
B =B,

LEMMA 1.7. Let N\ =, or N = 2° Then there is a strongly
maximal model of cardinality N and fiwite similarity type.

Proof. Immediate from Lemmas 1.3, 1.6, and 1.4.

REMARK. (a) In the case N = 2°, there is a strongly maximal
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structure which is particularly easy to describe. Namely, <R, Q,
Z, +, +> is such a structure (R = reals), as the proof of Lemma 1.3
shows.

(b) We now give an example of a strongly maximal structure
which admits many automorphisms. This will be useful later. Let
T = Uneo "2, so that (T, <> is the full binary tree. Let L, = "2, the
set of points at the nth level. We now define a four place relation
F by Fabyy if t S ac“2,y < be“2 and for some necw, x, yc 2.
Now the structure v~ =<{T'U"2, T, &, L,, F),.., is strongly maximal.
To see this, suppose B = .7 ,B 2 .77, T° is countable and = is a new
point in B. Evidently we may suppose that xe 1°. Clearly x¢ 12 for
any n€w. Hence U{te| 7 |1t <=2} is a maximal branch be “2.
Clearly {y: for some ac “2, F°baxy} is uncountable. Indeed, if Fbaxy
and Fba’zy then U{se“2:s&®%y} =a =a’. This contradicts the
countability of 1°. What makes & useful in constructing examples
is that any automorphism of (T, <) induces a unique automorphism
of 7.

The next two theorems combine the notion of *-theory (as is found
in Morley-Vaught [12, § 3]) and Fuhrken’s normal form [4].

THEOREM 1.8. FKwvery structure A of power at least & has an ex-
pansion A* with ctW* = w + ¢t and with a unary predicate symbol
UetA*, such that whenever A* =B and W* =B and cU® = k£ then
A* <1 B,

Proof. Let € be an arbitrary structure with Ue 7€ and cU® = k.
For each formula ¢ of type 7€ we choose new function symbols f,
and g, and corresponding functions on C such that the structure ©’
obtained from € by adjoining thess functions is a model of the follow-
ing sentences:

(i) Vo(@vps, v— @u, f.(0))

(ii) Vu(— Qvpa, v — Vv(Pu, v — Ug,(T, v)))

(i) vG, v, V(ge(®, v) ~ go(3, v) = v~ V)
where ¢ is some enumeration of the free variables of @ other than v.

Now expand the given structure ¥ to A, = A, U%) where U™
is any subset of A of power x£. By induction define

W,e. = () (where ' is as above) .

Now U* is defined by 7U* = U,c, 7U,, and A* |7, = A,. We claim
that UA* has the desired properties. Suppose U* S B, A* =B and
¢(U®) = k. We prove by induction on formulas @ of L+ that

A* = plz] iff B E ¢z]
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for any assignment z in A. For the induction we introduce the
following ranking of formulas:

0 if @ is atomic

6 + 1 if ¢ is—6
r@ =<1, + 16, + 1 if ¢ =06,—06,

rd 4+ 1 if @ = 3vh

rf + 4 if o= @Qvo.

The induction is straightforward. We consider only the case @ = —
QvOuv. Assume that for every assignment z in A, %A* = ¢[z] if and
only if %B = 6[z]. Clearly, A* = Qvf[z] implies B = Qvl[z]. Suppose
A* = — Qvplz]. Since (ii) holds in A*, we have A* = Vv(6(v) — Ugs(o,
v))[2]. Hence by induction B = Vv(d(v) — Ugs(y, v))[2]. Since B=U*
we have by (iii) that g} is 1 — 1 as a function of v. Also, by hypo-
theses c¢(U®) = k. Hence {be B: B = 0[2(v/b)]} is of cardinality x. Thus
B — Qvﬁ[Z].

THEOREM 1.9. Ewvery structure A has an expansion A* with ctA* =
o + et and a unary predicate symbol U and a binary predicate
symbol < im tW* such that (U™, <¥) is k-like and whenever A* & B
and A* =B and U, <*> is k-like then A* <,B. (An ordering is
k-like iff it has cardinality # and each proper initial segment has
cardinality less than &.)

Proof. The construction of ¥* is as in the preceding theorem
except that we choose U, so that 7, includes the binary predicate <,
and {U%, <%» =k, € ». The proof differs only in the treatment of
the quantifier Q. Since U* = — QvA[z] means that {be A: A*E
0[z(v/b)]} has cardinality < «, using (ii) we see that A* & JuVv(fv —
go(w, v) < u)[?2]. Hence by induction B = FuVvlv — gs(w, v) < u)[2]. Also
(iii) holds in %* as well as a sentence saying that the field of < is
U. Since A* =B, these sentences are true in B. Since U®, <*) is
k-like, it follows that ¢{be B: B E 6[2(v/b)]} < k.

THEOREM 1.10. If U is either w,-maximal, or U 1is w-maximal
and ¢ 4 ctA > w, then there is an expansion A* of A such that ctA* =
etA + w and A* is strongly maximal.

REMARK. In view of this theorem and Theorem 1.2, we will use
maximal to mean strongly maximal.

Proof. First assume that U is ®,-maximal of cardinality £ and
et = 1. We may assume that || = k. Since any expansion of an
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w,-maximal structure is w,maximal, we may assume that U, <
belong to 7 and U" = w, <* = €. We claim that the expansion 2A*
of 2 (chosen as in Theorem 1.8 with this U) is strongly maximal.
Clearly %A* is w,-maximal, and ctA* =A. Let A* =B and A* =B
and suppose that ¢(U®) = w. We must see that * = B. But thisis
clear since A* is w,-maximal and by Theorem 1.8 2A* <, B.

Now suppose that 2 is w-maximal, of cardinality £ and ¢zl =2
(where £ > ® or » > w). We may assume || = k. Since any ex-
pansion of an w-maximal structure is w-maximal, we may assume
that U, < belong to 7%, and U" = w. Moreover, if £ > @ we may
assume that the structure given by Lemma 1.7 (A = w,) is a relativized
reduct of 2, and if A > @ we may assume that the structure given
by Lemma 1.3 (A = w,) is a relativized reduct of 2. In either case
A has a strongly maximal relativized reduct, say € = %| (v, 7€). Now
we claim that the expansion 2* (chosen as in Theorem 1.9 with U as
above) is strongly maximal, with type of desired cardinality. Clearly
ctW* =\, and it is w-maximal. To see that it is strongly maximal,
suppose that A* = B, A* = B, and ¢(U®) = w. We must see that A* =
B. Since A* is w-maximal, it is enough to see that A* <,B. By
Theorem 1.9, it suffices to see that U® = U". Now let €' = B|(v, z€);
thus U® = U®. It follows that € = €', € = €, and ¢(U*) = w; but €
is strongly maximal, so we must have U® = U¥ = U® = U™ as desired.

2. In this section we investigate the class of cardinals admitting
maximal models. The notion of end extension plays an important role.

DEFINITION 2.1. Let 9 be a structure with a binary relation <*
on |[A|. We say that an extension B of % is an end extension of A
with respect to < iff x <®ye A implies x e A.

LEMMA 2.2. Assume that

(i) &= UM, where M is a set of infinite cardinals v € £ which
admit a maximal structure B, with |B,] = v and ¢B, <\
and

(i) <k, €) has an expansion A with ctA <N\ and such that A has
no proper elementary end extensions.
Then there is a maximal structure B with ¢|B| = £ and B < .

Proof. Let U satisfy (ii) and let A* be obtained from A by
adding Skolem functions. We may assume that the B, are disjoint
except for U and <, and disjoint from 7%*. Choosing new unary
predicate symbols V,, make up B so that B|7UA*, and B|(v,, B,) = B,.
To see that B is maximal, suppose that B <= B, B = B, and c(U®) =
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©. We must see that B =3'. Let peB'. Since 2* has Skolem
functions, B =B, and B < B’, we must have A < A’ = B'|7A. Now
2 has no proper elementary end extensions, therefore there is ve M
so that pe[¥B,|. Thus p is in the v, of B'. Let B, = B'|(v,, tB,);
then B, = B, B,= B, and the cardinality of the denotation of U in
B, is w. Since B, is maximal, we must have |B,| = [B,| = v, so pe
v& B. Thus B'= B and hence B=3". If A=k, ctB <\ and the
proof is complete. In any case ¢t®B < k£, and the proof may be com-
pleted by applying Lemma 1.4.

We now cite a series of results which tell us when the hypothesis
(ii) of Lemma 2.2 can be applied. For definitions of measurable and
weakly compact, see for example [1].

THEOREM 2.3. (Keisler) £ is measurable iff there is a proper ele-
mentary end extension of the structure {R., €, XDy z,.

Proof. See Keisler [7, Corollary 3.8]. We indicate a more direct
argument for the proof from right to left. Let B be the given
extension, and p€ B~ k. Then D = {X S k: pe®X?} is a k-complete
nonprincipal ultrafilter on £. As in [7], an ultrapower of (R, € , X >ycr,
on a k-complete ultrafilter establishes the converse.

In [9], Keisler and Silver prove that if £ is strongly inaccessible,
then £ is weakly compact iff for every S & R,, <R,, €, S) has a proper
elementary end extension. (The result first appeared without proof
in Keisler [5]). The next Theorem is an easy strengthening of this.

THEOREM 2.4. «k is weakly compact and strongly inaccessible iff
for every SS R,,{R,, €,S) has a proper elementary end extension.

REMARK. In case k£ is inaccessible, there is a relation E on k&
such that (R,, € >={«, E)> and E is compatible with ¢ (i.e., xEy implies
xe€y); from this it is easy to see that the two preceding theorems
do give conditions assuring that <&, €) has an expansion with no
proper elementary end extensions.

Proof of Theorem 2.4. From Keisler-Silver [9], we need only
show that £ is strongly inaccessible if the right hand side holds. To
see that we cannot have v < £ < 2% let S be a 1 — 1 function on «
into R,.,. Now in any elementary end extension B, R®,, = R,,, S0
(R,+, N range S)® = (range S)® =range S. But if B is a proper ex-
tension, there must be a point p &k which is an ordinal in the
sense of B, contradiction. To see that £ must be regular, suppose
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S: v— k is cofinal and get a contradiction.

LEMMA 2.5. If » = U\ is singular, then there is a structure A
with countable type and wuniverse N such that A has no proper ele-
mentary end extensions.

Proof. Let k£ = cofinality of A, and let F:x-—X\ be cofinal.
Clearly {\, €, F'> has no proper elementary end extensions.

DEFINITION 2.6. A = (R,. € is said to have the //! reflection
property iff whenever ae R, and @(a) is a II} sentence (i.e., universal
second order) holding in (¥, a), there is an a e R, such that @(a) holds
in {R,, €, a).

THEOREM 2.7 (Keisler-Silver). Suppose that {R,, € > is a model of
ZF, and cofinality of £ > w. If A =<R,., €)> fails to have the I}
reflection property, then A has no proper elementary end extension.

REMARK. Keisler and Silver prove Theorem 2.7 for arbitrary
well-founded models <4, ¢,S) of ZFC allowing S in the replacement
schema; the definition of ‘/I! reflection property’ is then slightly more
complicated.

Proof. See Keisler-Silver [9].

DEFINITION 2.8. & is said to have the tree property iff when-
ever {T, <> is a tree such that T = Uu<. T. (where xze T, iff
{ye T: y < «} has order type a) and for each «, 0 < ¢T, < &, then
there is a branch B & T({B, <> linearly ordered) which meets each T..

THEOREM 2.9. If r is regular and & does not have the tree pro-
perty, them £ admits a structure with finite type which has no proper
elementary end extensions.

Proof. Let {T, <> be a tree which provides a counterexample
to the tree property for #. Thus we have T = ,., T. with 0 < card
T, < &£, where T, is the set of points # in 7 such that the order type
of lye T: y<"a} is «. By the regularity of £, we may assume that
T = £ and that the partial order <7 is so arranged that xe T, ye T},
and ¢ € B implies xe€y. We define an expansion 2 of the given tree
with new symbols e, E by putting ¢/ = ¢ (usual order on k) and E”
the equivalence relation on £ defined by xEy iff for some ack, 2, ye
T.. We claim that 9 has no proper elementary end extensions. For
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suppose 2 < B and B is an end extension. Then the following formulas
are valid in B because they are valid in 2L.

1) u< v—uvev

(2) vEv A v < w— vew

(3) vev— IW(WEu A w < v).

Now (1) assures that if ye T and © <®y, then xe T also. Simi-
larly (2) assures that if ye T and xE%y then xz e T also since for some
z€ T, ye®z and hence ze®2. Thus (3) says that if xe T, and xe%y, then
T.N{zeT: 2z <®y}+#0. Since any new point p€ B ~ T has z%p for
every € T, we see that the predecessors of p determine a branch
through T, contrary to the choice of T.

THEOREM 2.10. If < 1%t MC, then there is a maximal model
A with |A| = and A < 2%

Proof. We prove this by induction on x#. The case M = w is
Lemma 1.3. Suppose that A is a successor cardinal, say » = £%, and
£ has a maximal structure 2 with ¢z < 2°. Since 2* < 2%, we apply
Lemma 1.6 and obtain a maximal structure B on )\ with ¢zB < 28 <
2% as desired.

Now suppose that A = UXN, and ke implies that there is a
maximal structure on £ with type < 2f < 2%, By Theorem 2.3 there
is a structure ¥ on )\ with no proper elementary end extensions, and
¢t < 2., Thus Lemma 2.2 applies and we conclude that there is a
maximal structure B on )\ with ¢z < 2%

REMARK. Assuming the GCH, Theorem 2.10 for A < 1** uncoun-
table inaccessible follows easily from results in Rabin [13]. Theorem
2.10 may be proved directly (no GCH) by a slight modification of
Chang’s argument in [2].

COROLLARY 2.11. If A < I8* MC then there is a maximal model
A with ¢|A| = 2* and ctA finite.

Proof. Use Lemmas 1.6 and 1.4.

The next theorem summarizes our positive results for cardinals
admitting maximal models with countable type.

THEOREM 2.12. Let M be the set of cardinals k£ such that there
18 a maximal structure on k with finite type. Then M has the follow-

ing closure properties:
(a) w,eM
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(b) if N <18 MC, then 2°e¢ M

(¢) of Ne M then NTe M

d f »=UOnnNM) and N singular, then ne M

) i = UMnNM) and )\ does not have the tree property, then
reM

(f) of N s strongly tinaccessible and mnot weakly compact, then
Ne M.

Proof. The first two are restatements of Lemma 1.7 and Corollary
2.11 respectively. The “successor case” lemma (Lemma 1.6) immedia-
tely yields (c). Each of (d), (e), and (f) is obtained by use of the
lemma for the limit case (Lemma 2.2), together with the lemma for
reducing the type (Lemma 1.4); the hypothesis ii) of Lemma 2.2 is
obtained (respectively for d,e, f) by Lemma 2.5, Theorem 2.9, and
Theorem 2.4.

REMARK. Let 6 be the first inaccessible, first Mahlo cardinal [cf.
10], ete. (These 6 have the property that <R, € fails to have the
Il!-reflection property where R, is the sets of rank < #.) Using the
Keisler-Silver Theorem 2.7, our proofs show that 2 =<R,, w, €) is
weakly maximal in the following sense:

A<B and ¢U®) = 0—-A=DB.

This gives maximal models of power # which have simpler descriptions
than the models given by the proof of Theorem 2.1.

DEFINITION 2.13. We say that a cardinal ¢ has the £ end ex-
tension property iff every expansion 2 of {4, <> with ¢t = £ has a
proper end elementary extension (with respect to the usual order <
on 0).

It is clear from earlier lemmas that a cardinal with the end
extension property must be “large” (weakly inaccessible, etc.).

COROLLARY 2.14. Suppose that £ < 1% MC, and £ admits no max-
wmal model with countable type. Let vy = N {u:2* >k} (thus v <
£ < 2%). Then there is a cardinal 6, v < 0 < k, such that 6 has the
£ end extension property (and hence # admits no maximal model with
type of cardinality =< k).

Proof. If p <y, p admits a maximal structure with type of
cardinality < k. Let 6 be the first cardinal such that v < 0 < « and
¢ admits no maximal model 9 with ¢t < £ (£ is such a cardinal by
the lemma on reducing types, Lemma 1.4). We claim that ¢ has the &
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end extension proparty. Let ¥ be any structure on 6 with ¢t < k.
Choose an expansion B of A so that B|(V,, 7.,) is a maximal model
on « (for each cardinal a < 0), and B includes Skolem functions for
. Now B is not maximal, so B has an extension €. Evidently
€V, 7o) = B|(Vy, To), 80 B|7A must be a proper end elementary
extension of ¥ as desired.

THEOREM 2.15. Suppose that ¢|%N| = &, ¢t = N\, and that one of
the following holds:

1) &>1"MC

(2) & 1s weakly compact (including the case where £ = w) and
A= k.
Then A 1s not maximal.

Proof. By Theorem 1.2 it suffices to show that 2 is not w,-max-
imal. The case £ = @ follows easily from the countable compactness
of L%, (Fuhrken [4]; see also Keisler [8]) using the method of diagrams.

The case where £ is weakly compact and £ > ® (and hence £ > w))
is proved in the same manner, but using the weak compactness of
L, and the fact that every sentence of LY is logically equivalent to
a sentence of L, ,.

In case £ >yt = 1" MC, the ultrapower 20} provides a proper L, ,.
extension of 2 (and hence a proper L! extension) whenever D is a
p-complete nonprincipal ultrafilter.

COROLLARY 2.16 (GCH). Let M be as in Theorem 2.12. Then
e M f

(i) X\ 1s mot weakly compact, and

(i) o, £ x <1 MC.

Proof. The “only if” direction is immediate from Theorem 2.12
and the “if” direction from Theorem 2.15.

3. In this section we discuss characterizability; Theorem 3.3
gives a connection between maximal models and structures charac-
terizable up to isomorphism. This is used to obtain results of Keisler
(Corollary 38.4) and some improvements (for example Corollary 3.5).

DEFINITION 3.1. Let L be any language which includes first order
logic. A structure % is L-characterizable iff for all B, U =, B implies

A = B.

DEFINITION 3.2. A structure U is called firm iff 2 is isomorphic
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to no proper substructure of itself.

THEOREM 3.3. Let L be any language which includes the first
order predicate calculus.

(a) If U is L-maximal, (A, a),e, s L-characterizable and A is
firm.

(b) If A ws L-characterizable and firm, them A is L-maximal.
(Thus U, @),., is L-maximal iff it is L-characterizable.)

Proof. (a) Let oA be L-maximal. If (B, d,),., =, 3, @),c4 then
W =B |{b,|ac A} =A. Thus B is an extension of A'. But A (and
hence %) is L-maximal, so B = W'. It follows that the map a— b,
is an isomorphism, so (2, @),., is L-characterizable. Finally, if % =
B YA, then B =, A, and B is L-maximal, so B = A. Thus A is firm.

(b) Suppose A S B and A =,B. If A is L-characterizable, then
B = ,A. But then if A is firm, so is B, and f is an endomorphism
of B. Therefore f is an automorphism, and hence ¥ = B. This shows
that U is L-maximal.

COROLLARY 3.4 (Keisler). If £ < 1 MC then the (complete) struc-
ture {&, Ry,=, is L¢-characterizable.

Proof. Immediate from Theorem 2.10 and Theorem 3.3 using the
fact that any expansion of a maximal model is maximal. (One could
also argue directly as in the proof of Theorem 2.10 without appeal
to Theorem 3.3.)

REMARKS. 1. From Corollary 3.4 and Theorem 1.2 and 1.10 we
can deduce Theorem 2.10. Keisler’s proof of Corollary 3.4 [8] uses
several complicated theorems on ultraproducts.

2. Keisler’s proof [8] is given for the language L with quantifiers
Q. for /¢t measurable, and shows that the complete structure on any
cardianl £ is L-characterizable. It is easy to generalize the examples
in Lemmas 1.3 and 1.7 so as to yield maximal models for L?:. For
example, (R, €,0> is L -maximal, and, if S={y < p:cy < p},
U S,y €,0, XoDoe o With X, distinet has no L%equivalent extensions
B with ¢(U®) = 1. (Proof. The schema

VIV (Uev—Xiv))

w v v<w
holds, and in any proper L¢-equivalent extension, there must be a point
B greater than all vepu. If x, represents X, the x, are distinct.)
In this manner one can obtain the rest of Keisler’s result by our
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methods.
We also get some improvements of Keisler’s results from Theorem

2.14. The improvements consist in reducing ¢t (where B is the charac-
terized structure) from 2 to k. For example,

COROLLARY 3.5 (GCH) If £ < 1 MC and & not weakly compact,
then every structure N with ¢|W| = £ is the reduct of an Le-character-
1zable structure B having ctB < k + et

REMARK. The case £ < 1°* uncountable inaccessible was obtained
by Craig and Hanf (also assuming GCH) [3a].

REMARK. One cannot improve the condition on the type of B in
Corollary 8.5, as is easy to see using the downward Lowenheim-Skolem
theorem for L2. On the other hand, it is known that every cardinal
admits a firm structure with countable typz (se2 P. Vopanka, A. Pultr,
Z. Hedrlin, [14]).

4. In this section we use maximal models to show the failure of
the amalgamation property for LZ and the nonexistence of universal
models.

DEFINITION 4.1. We say that a triple of structures 2, B, % (all
of the same similarity typ2) with 2’ <, %, B can be L-amalgamated
in case there is a structure €, and L-embeddings f: A — €, ¢g: B— ¢,
such that f(x) = g(x) for ze |A|.

We give two proofs of the failure of amalgamation for LZ. The
first (Theorem 4.2) uses the downward Lowenheim-Skolem property of
L¢, and the second uses the obvious L¢-analogue of a criterion of
Tarski for elementary substructure (Lemma 4.3).

THEOREM 4.2. Suppose that any structure U of fimite type and
cardinality = £ has an L-substructure of power k. Suppose further,
that there is an L-maximal structure of finite type and of cardinality
N with 22 > 25, Then there is a triple W <, A, B which cannot be
amalgamated.

Proof. Let M be a set of structures each having the same finite
type, and such that

(1) e M implies ¢ = ©

(2) eM = (25)*

3) U, BeM and U ==B implies A =,V and A 2B and A is
L-maximal.
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To obtain such an M, let %, be L-maximal of power \ and finite type.
Clearly, there are 2‘ nonisomorphic expansions of ¥, that can be
obtained by adding one new binary relation to 2, and any expansion
of 9, is L-maximal. Since there are at most 2 complete extensions of
Th,N,, we can take M to be any set of (27)* of these expansions which

are L-equivalent.
For each 2 e M choose A’ <, A with card A’ = £ (by the downward

Lowenheim-Skolem property). Since there are at most 2 nonisomorphic
o', there must be A, Be M with A B but A’ = B’. We may assume
that %’ =B and that |A|N|B| = |W|. Then clearly there is no
amalgamation for the triple %’ <, A, B.

LeMMA 4.3. Suppose that A B, and that the following two con-
ditions are satisfied for all formulas 6 of LZ (with free variables
Vo, Uy o v+, V) and all a,, --+, a,€|Al:

(i) <f there is be |B| such that B = 0]b, a,, ---, a,], then there is
a, € || such that B & la,, a,, +--, a,]

(ii) 4f there are uncountably many be|B| such that B = 0[b, a,

-+, a,], then there are uncountably many ce< || such that B = b[ec, a,,
cee, .
Then A <, B.

Proof. By induction on formulas exactly as in the first order case.

LEMMA 4.4. Let f: 22— 2. Then there is a unique automorphism
g of 7 (the structure defined in Remark b after Lemma 1.7) such
that for all n and all x| 7 |.

7), = z, of f(@\n) =0
(g), = 1—2,1f f(x\n) = 1 (i.e., twist where f = 1) .

(We write @\n for the restriction of the sequence z to n.)

Proof. Clearly, g is 1 — 1 and onto; it is also an automorphism
since * S v iff g(x) S g(y), and any automorphism of {2 U “2, &> is
an automorphism of .

LEMMA 4.5. Given distinct branches a,b,, +++, b, €“2 there is an
automorphism g on on 7 moving a and keeping b, ---, b, fized.
Moreover there is an n such that for all z (g9x), = %, whenever p + n.

Proof. Choose ne® such that if a\m = b,\m then m < n. Now
set f: 2 — 2 constantly 0 except at a\n, and apply Lemma 4.4 to get
the desired automorphism.
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THEOREM 4.6. There is a triple W <, A, B for which the L2-
amalgamation property fails, and card A’ = card A = 2°, and A = B.

Proof. Let A = (7, R) where RS “2, xe R iff =, is eventually
1. Let B =(7,8), where S = RU {¢}, where ¢ is the constant se-
quence with value 0. Let A’ be the substructure of A obtained by
omitting c.

First we observe that 2 = B. In fact, the automorphism of 7~
induced (via Lemma 4.4) by the function f: ¢2— 2 given by

1 if x is constantly 1
f@) = 0 .
otherwise
is such an isomorphism. If ¢ is the induced automorphism, and d is
the constant function with value 1, then de R and g(d) = ¢. If be“2
and b= d, then b, g(b) differ at only finitely many places, so be R
implies ¢(b) e R. Similarly if b¢ R, g(b)¢ B. Thus g: A = B.

Next we observe that ' <, %. We apply Lemma 4.3, for which
it is sufficient to see that there is an automorphism of [ which moves
¢ but keeps fixed any preassigned finite set of elements of [%’'|. This
follows easily from Lemma 4.5. The same argument shows that if €
is the substructure of 2 obtained by omitting d, then € <, 2. Since
g’) = €, and g% = B, it is evident that A’ <, B.

Since &~ is maximal, so are A, B. Hence if © amalgamated A, B
we would have % = © = B, which is impossible.

REMARK. In general there are neither universal nor homogeneous
models in L (cf. Morely-Vaught [12] for the definition of homogeneous
and universal). For example, it is easily seen that the LZ? theory of
{A, C> where C is a countable unary predicate cannot admit homo-
geneous models of any power. Also if T is a complete theory with
two nonisomorphic maximal models of power &, or at least one maximal
model of power < £, then T admits no universal models of power k.

REMARK. In [4a, p. 125], G. Fuhrken has observed that there are
no maximal models in L? provided that & is not cofinal with w and
whenever /¢ < k£ then p* < k. To see this apply Theorem 1.9 with B
the ultraproduct (*)$ and use the fact that (x, <) is x-like. More-
over, the referee pointed out that conversely if ¢fk = w or if for some
M€k we have A = k, then there are L?-maximal structures of power
£k with countable type. This follows from Theorem 3.3 and Fuhrken
[4a, p. 124, (6)].

Open Problems.
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1. Does the amalgamation property hold in LZ, (or more generally

for v > w, and cf N # ®)?
2. In Theorem 4.6, could we take 0, %, B all isomorphic or all

of power w,?
3. If L is countably compact but not w, compact, and L includes
first order logic, must the quantifier “there exist at least w, 2’s” be

definable in L?

It has been brought to our attention that material in the first
three sections of this paper overlaps unpublished material in S. Shelah’s
dissertation, Hebrew University, Jerusalem (in Hebrew).
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