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RATIONAL HOMOLOGY AND WHITEHEAD

PRODUCTS

MICHAEL DYER

D. W. Kahn defined a spectral sequence C^{X\ R) for
the Postnikov system &{X) of a 1-connected CW-complex
which converges to H*(X; R), the singular homology of X with
coefficients in R. We study ^(X; R) in two settings: (a) to
give a generalization of the classical theorem of Eilenberg
and MacLane concerning the dependence of Hi(X; Z) on the
first nonzero homotopy group of X (2.1) and (b) to give a
complete computation of Ht(X; Q) (Q = rationale) for i ^ S c(X)
(c(X) = connectivity of X) in terms of the graded homotopy
group Π®Q = {π%{X) (g) Q | 0 < ΐ ^ 3 c(X)} and the Whitehead
product on this group (0.1 and 0.2).

In § 1 we give a quick description of c(f{X\ R) for later use and
in § 2 we generalize the Eilenberg-MacLane theorem by giving an
exact sequence involving the first two nonzero homotopy groups.
^ ( X , Q) is studied in § 3, with the result that we are able to identi-
fy Eι(X; Q) somewhat above the diagonal (Kahn identified it below the
diagonal in [7]) (3.3) and to show that the Whitehead product is the
only non-zero differential operator, provided the total degree is less than
3 c(X) (3 10). Section 4 gives the computations of H^X; Q) and vari-
ous other applications.

1* Description of the Spectral Sequence of .^(X). In this note
X is a (n — reconnected space, n > 1, having the homotopy type of
a CW-complex. All maps and spaces are "pointed".

Let {Xiy ri9 TΓJ = 3^{X) be a Postnikov system for X (see [6] for
definition). Choose m > n and convert the map rm: X—> Xm into a fiber
map. Use the same notation for the new map. In the tower of spaces

X > Λm > Λm^t > > > Λn = K(πn(A), n)

Ka° °πmorm ~ ?'α_! (n + 1 ^ a ^ m). Let rα_1 denote this composi-
tion, a — n + 1, , m. Since all these maps are Hurewicz fibrations,
ra^(a — 1 < m) is a fiber map. Let Fi+ι — riι (base point) denote the
fiber of r{\ X—>Xίy i ^ m. The following is proved in [7].

LEMMA 1.1. (a) Fi+1 is i-connected.
(b) Fi+ι is fibered over K(πi+1(X), i + 1), with fiber

Fi+2, via the map ri+1\Fi+1.
(c) X = Fn z> Fn+ι =) z> Fm =) Fm+ι is a finite de-
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creasing filtration of X.

For each m, the exact couple ([7]) ^(.^(X), m; G) is defined by

{Hr+s(Fr; G), if r, s ^ 0 .

0 , otherwise,

I f r f s ( F r , F r + 1 ; G), if r, s ^ 0 .

0 , otherwise,

where G is any abelian group and H* is singular homology. If D1 —
Σ Θ Dι

r,s, E1 = Σ θ Eι

r,s then the couple maps i: Dι -> D\ j : Dι -> J5ι and
k:Eι->Dι are of bidegree (respectively) ( - 1 , 1), (0,0), (1, - 2 ) . The
bidegree of the differential operator d{\ Eι —> Eί is (£, — i — 1).

In [7], Kahn shows that

(1.2) E],s = Hi+β(F,; Fi+ί; G) — Hβ,s{πά{X), j ; G)

is an isomorphism, provided s ^ j , where

q. — r3\F3: (FjΊ Fj+1) —> {K{π3-{X), j), *)

thus indentifying the E1 term below the diagonal.

2* Generalization of a theorem of Eilenberg-MacLane* In [4],
Eilenberg and MacLane showed the dependence of the first few homology
groups of a space X upon the first nonzero homotopy group of X.
We prove the following generalization.

THEOREM 2.1. Let X be an (n — l)-connected space having the
homotopy type of a CW-complex, n^2. Suppose πi{X) = 0 for n<i <p
and p <i <q <L2n. Then H^X; G) ^ Hi(πn(X), n; G) for n ^ i < p
and any abelian group G. Furthermore, if we abbreviate H3(πι(X), I] G)
by Hj(l; G), we have the exact sequence

rlq\n, <JΓ) > ϋ 7 _ ι ( ^ , (JΓ) > llq-^X, (jΓ) > Ilq-.ι{n, <JΓ) » * * '

ΦQ XΪ Φi
i\P, yjr) > £±i\Λ., \JΓ) * £lι\7lj \JΓ) > Σli—iyp, KJΓ) > -

> Hp(p; G) - ^ HP(X; G) — Hp(n; G) > 0 .

φ. = Tiθ(k)*, where k: K(πn(X), n) -> K(πp(X), p + 1) is the first k-in-
variant in a Postnikov decomposition of X and T3: Hj(πp(X)y p + l G) —+
H3 -λ{πp(X), p; G) is the transgression, which is an isomorphism provided
0 < j fg 2p. Further, ψp is the Hurewicz homomorphism.

Proof. We consider ^(.^(X), m; G) for m > 2n. π{(X) = 0 for
n<i<p,p<i<q implies by 1.1 (b) that
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(2.2) X = Fnz> Fn+1 = . = Fp u Fp^ = . . = F
q

Thus Er,s = 0 for 0 ^ r < n, n<r<p,p<r<q and all s. This
gives a two-term condition (see [5], chapter VIII) on the El-term of
%?(&>(X), m; G). Using (1.2) we have that H^X; G) « H^π^X), n; G)
forn^i<p(a, 1-term condition here) and for p ^ i < q we have the
exact sequence of the theorem. Note that we did not need q <L 2n in
order to obtain the two-term condition, but only in order to use (1.2).
It is clear from [7] that ψp (the edge homomorphism) is the Hurewicz
homomorphism.

We will now show that Φi — T* <>(&)*. Since Φi is essentially

has significance in its own right, we give it as a separate lemma.

Lemma 2.3 If π^X) = 0 for l<^i < n, n<i<p,p<i<q, then
(a) E).}S = E?~n for r = n, p provided s ^ q — p.
(b) The following triangle commutes for s ^ min {n, q — p}.

Hn+8(πp(X), p + l G)

where ( i ) k: K(πn(X), n) —> K(πp(X), p + 1) is the first k-invariant,
(ii) T is ίAe composite dow^1

where K(πp, p) c=—> PK(πp, p + 1) • -S^(^p, 2> + 1) (^ P = ^P(-3Γ)) ^ s ^
usual path space fibration. T is an isomorphism provided n + s ίg 2p.

Proof, (a) follows because 7Γ̂ (X) = 0 for 1 ^ i < n, n < i <C p

for all s, since dp"Λ: £^i>β —> ^ ,_(,,_„)_! is the first nonzero differential
operator, Ep>s = j^J^n provided s^q — p since 7τ (̂X) = 0 for n < i < p,
p < i < q implies that d{\ E{

p^ s+ί+1 —> Eι

p s is zero unless i = p — n and
dι\ Ep,8 —> Eΐ+i^-i^ is zero provided s ^ q — p.

(b) since cP~% is given by the composition (see 2.2)

Hn+s(Fni Fp) > Hn+s^F)

we are asking that the following diagram commute:

(2.4)

Hn+s(Fn, Fp) • Hn+s-l(Fp) • > Hn+s-l(Fp, Fq)

)H(PK, K(πp(X), p))-*H%+.-1(πp(X),) ,p
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where k is defined by (2.6) below, and q{ — r{\F.. (2.4) commutes if
and only if

Hn+s(Fn, Fp) > Hn+S

Hn+s{PK, K{πp{X), p)) - ^ βn+a^p(X)f P)

commutes. We have the following situation:

k

(2.6) X=Fn

U

FP

U

-*» PK

w

where koqn = koπporp = wokorp => w^ok+oq^ = k*orp*. But ko
koqp is clearly the same as koqpoj considered as maps of the pairs
(FP9 *) -> (Fp, Fq) ~> {PK, *)• This shows that (2.5) commutes.

By an argument similar to Lemma 2.3, we may identify the dι

operator below the diagonal. This was claimed in [7], page 176.

LEMMA 2.4. The following commutes for s ^ j .

Hj+S(πjy j) • Hj+ι(πj+u j + 1)

\ /

Hj+s(πj+ι, j + 2)

where (a) kd: Xό—> K{πj+1{X), j + 2) is the jth k-invariant,
(b) if. K{πά{Y),j) c—> Xy is ίΛe inclusion, and
(c) T is Λ̂e transgression (which is an isomorphism for s ^

i + 2).

3* Rational homology and Whitehead products* In this sec-
tion we consider Kahn's spectral sequence with coefficients in Q, the
ration&ls. For this special case we are able to identify the Eι-teτm
considerably above the diagonal. This occurs because for Q coefficients,
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H*{π, n; Q) & a Hopf algebra over Q on dimρ(ττ ®ZQ) generators of
degree n.

In [8], J. P. Meyer demonstrated how to compute Whitehead
products in π*{X) from a Postnikov system for X and in [7], Theorem
9.1, D. W. Kahn used Meyer's results to show that a certain higher
differential operator in C^{X) Q) is the Whitehead product. In the
range of our identification, we show that this differential is the only
nonzero differential operator. This allows a complete computation of
Hi(X; Q), i S 3 c(X), in terms of the homotopy groups of X and the
(rational) Whitehead products, where c(X) is the connectivity of X.

DEFINITION 3.1. Let G be an arbitrary Q-vector space and p be a
positive integer. The skew-symmetric tensor product SP(G) is defined
as

where R is the subspace generated by {gi®g$ — ( — l ) p ' % ® ^ | ^ , g5 e G).
Suppose v = dimρ G, and let Λ(v, p) be the free commutative graded
algebra over Q on generators (t19 •••,£„) where degree t{ = p (v need
not be finite).

At \ ί ^ I * 1 ' ••% ̂ ] if P e v e n ,
A(v, p) &

[EQ(tί9 •••,«„) if p odd ,

where Q[tlf •••] is the graded polynomial algebra over Q, EQ(tlf •••)
is the graded exterior algebra over Q, on generators tL, , tv of degree
p. Then it is easy to see t h a t SP(G) ^ Λ(v, p)2p, the Q-module of
Λ(v, p) in degree 2p.

LEMMA 3.2. Let G be an abelian group. Then H2p(G, p; Q) f&
SP(G®Q).

Proof. This follows because H*(G, p; Q) = yl(dimρ (G (x) Q), p).

THEOREM 3.3. Let c(X) = n- 1, for n^2. In <ί?{^{X), oo; Q),
the Ex-term is given as follows ((x) means (x)z): For all p > 0,

; Q)

where TΓ* = TΓ^X) (see Figure 3.1).

^ p (x) Q, if q = 0

0, if 0 <q <p ,

, if q =

, if p
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p = q

FIG. 3.1.

Proof. Let p > 1 and consider the homology Serre spectral
sequence [5] for the fibration Fp+ί <=—> (FP9 Fp+1) -> (Iffo, J>), *). The
j©2-term, with coeflficients in Q, is

, p), *; fΓ.ίFp^; Q) ^ J?r(τrp, >̂; Q)(x)ρ Hs(Fp+ί; Q) .

Note that if r < 2p, then i?*,s — 0 unless r = p and

It is easy to see from this, 1.1 (a), and the fact that

fl*fo, Pi Q) ** Λ (dimρ (7ΓP ® Q), p)

that
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Epq(X\Q)f*Hp+q{Fp,Fp+ι\Q)

^ (πp 0Z Hq(Fp+ι; Q), if 0 ^ q ^ 2p - 2, q Φ p .

** {H2p(πp, p; Q) = Sp(πp (x) Q), if q = p .

Now we show that if p£q^2p - 2, then Hq(Fp; Q) & Hq(Fq; Q) &
ftq ®z Q If Q — P> then HP(FP; Q)^7ΓP0Q by 1.1 (a) and the Hurewicz
theorem. Consider the homology Serre spectral sequence with coeffi-
cients in Q of the fibration Fp+ι c Fp—> K(πp, p) given by 1.1 (b). If
p < q g 2p — 2, then the exact sequence of [5], page 284, implies
that i*: Hq{Fp+1) ^ Hq(Fp). Similar arguments on the homology Serre
spectral sequences for Fi+ί

 c—> i^ —• i ί ( ^ , i), i ~ p + 1, , q show
that

Hq(Fp; Q) ^ Hq(Fp+1; Q) ^ ~ Hq(Fq^; Q) ^ Hq(Fq; Q)^πq(g)Q

provided p ^ q ^ 2p — 2.

COROLLARY 3.4. (Rational Hurewicz Theorem) If i ^ 2c(X) then
hi (x) 1: TCi(X) (x) Q —> H{(X; Q) is an isomorphism.

Proof. This is follows from 3.3 because the only non-zero term
Ep,Q of total degree i (for i g 2c(X)) is El>0 — π{(X) 0 Q = J^*o. Thus
Ki(X) (x) Q —> H{(X; Q) is an isomorphism. Kahn's theorem 4.1 [7]
identifies this map (the edge homomorphism) as hi (x) 1.

This result was known to Cartan and Serre in [2].
We will now study the differentials in ^ ( X ; <>°; Q). According to

Theorem 2.2 of [3] (see also [9], Chapter 2), given X, 3 aCTF-complex
X(x)<3 and a map f:X-+X(x)Q

(a) τr,(X(x)Q)^7r,(X)(x)Q
(b) / is a homotopy equivalence modulo the class j / of torsion

groups.
(c) 3 an isomorphism v such that the following commutes:

t πi{X)®Q

where t(a) = a 01, for aeπ^X).

Let X 0 Q be the space obtained from I ( x ) Q by killing off all the

homotopy groups of X(x)Q in dimensions ^ 2 c(X) + l; i: X(g)Q—>X(x)Q

the inclusion map. Consider the composite map iof: X—>X(x) Q. This

induces an exact couple map from

; Q) ^ Ά &>(&>(X®Q); Q)
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which we shall see is an isomorphism in a certain range of dimensions
on the E^term. Theorem 4.4 of [3] implies that all the fc-invariants
of X0Q are trivial, i.e.,

This implies that the spectral sequence {El(X® Q; Q); d1} collapses;
i.e., all the dι are zero. It follows from a theorem of Kahn [6], that
ί°f induces maps &(iof): ,^(X) —> .^(X(x) Q) such that the following
diagram commutes.

and πi(Xn) >πi((X®Q)n) (ί > 0) is an isomorphism mod ,j/ .
The commutativity of (3.5) => (ipf)(Fn(X)) c Fn{X®Q) ΐoγn^2 c(X).
An easy induction using the mod J7~ 5-Lemma [5], and the homotopy
ladder induced by

Fn(X)-
(iof)\i

K(πn(X), »Q, n )
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shows that (ίof\FniY;h:Hj(Fn(X)',Q)~~>Hj(Fn(X^Q);Q) is a ^- i so-
morphism for j ^ 2'c(X) (and an epimorphism for j > 2-c(X)). By
the Whitehead theorem mod j7~ [5], page 512, we then have that

(3.6) (i°/l*v.v>)*: Hi(Fn{X)) Q) - Hj(Fn(X0^Q); Q)

is an isomorphism for j ^ 2-c(X) and an epimorphism for j = 2-c(X) +
1.

By the naturality of the universal coefficient theorem and the Serre
spectral sequence, we have the following commutative diagram for
p <; 2 c(X) and p < q <; 2p - 2.

(3.7)

£}.,(# Q) ^ ^ EUX^Q; Q)

X), Fp+ι(X); Q)

*(X)

^ ) * ® i -- iίP(7Γp (x) Q, p) 0 Hq(F

Hp(K(πp(X), p); H,[FP^(X)\ Q))

UCT

where s( ) in the above is the isomorphism defined from the Serre
spectral sequence for Fp+1(-)cr—> Fp( ) —> K(πp( ), p). In this range of
dimensions (p fg 2 c(X), p < q ^ 2^ — 2) the vertical arrows are isomor-
phisms. 3.6 implies that the bottom row is an isomorphism, provided
q^ 2 c(X). A similar argument gives the case q = p.

From this we deduce that

(3.8) Eι(iof): Elq(X\ Q) -> Elq(X^Q\ Q)

is an isomorphism provided 0 ^ p ^ 2 c(X), 0 ^ ^ ^ 2 c(X). See Fig-
ure 3.2. (3.8) implies

(3.9) El q(X; Q) -^^U Elq{X®>Q; Q)

is an isomorphism for p + q ^ 3c(X) + 1, p ^ 2c(X). (see Figure 3.2.)
Assume now that c(X) ^ 2. "FΓe will show that

Elg = Eι

p,q for 2 ^ ΐ ^ q - 2

whenever c(X) + 1 ^ p ^ 2 c(X), p <^ q ^ Sc(X) — p. (These are the
only nonzero terms of total degree ^ 3c(X) such that (/ > 0. See
shaded area in Figure 3.2.) Furthermore, all differential operators
coining into El

p q (i > 0) are zero and all differential operators issuing
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forth from EVyq are zero except for i = q — 1.

We show this by arguing on the total degree j (2e(X) + 2 <; j ^

3cX).
(a) p + Q = 2c(X) + 2 => p = c(X) + 1. All differential operators

with range E\x+ι cX+1 are zero for i > 0 'since Eι

cX+1^ cχ+1+i+ι = 0 for all
i > 0. Similarly all d{\ Elx+ι cX+ι — JE^+i+i.cAr+i-i-i are zero for i S
c(X) - 1 since the latter group is zero in that range.

ZcX

2c{X) = 2n - 2
2n - 3

(b) Suppose j > 2e(X) + 2. Consider p + q = j ^ 3c(X), where
+ 1 ^ p ^ [jβ]f and the following commutative diagram

J-Jp~l,q+2 XJp—1,9+2

dp+ι

where Eι = Eι(X; Q), Eι = E'iX^Q; Q). Eψf), (k = p - 1, p, p +1>
is an isomorphism by 3.9 since the total degree in each case is 5S 3c(X) + 1 -
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Since d{ = 0, we have d{ = 0 for i = p, p + 1. Thus Eι

p>q = 2£Jfff for
(p, g) satisfying the above. Similar arguments imply Eρ>q = £7*,,, for
ί = 3, 4, • • - , ? - 2.

(c) dim. Eρ>g —> J5*+ι,ff_ί_1 is zero for i > g — 1 since # — i — 1 < 0 =>
Ep+i.g-i-! = 0. d**: Eρ^q+i^ — 2?j,g is zero for i ^ q — 1 since i ^ g — 1,
g ^ p = ^ p - i ^ p - g + l = - Ei-i^+i^ = 0.

Thus the only (possibly) nonzero differential operator for each (p, q)
satisfying c(X) + 1^ p ^ 2 c(X), p ^ q ^ 3c(X) - 3? is

But this has been identified by Kahn in [7], Theorem 9.1, as the
(rational) Whitehead product: If q > p

πp+q_ι (x) Q

ΐ« T« (̂  > P)

or, iΐ q ~ p

SP(πp ® Q) l i

h
where [, ] is the Whitehead product.

We have thus proved the following.

THEOREM 3.10. Let c{X) ^ 2 . If p + q ^ 3 (X) and q^ p, then
(a) dι: 2£j_ ί f f f + ί + 1 —> Eρ>q is zero for all i > 0.
(b) dι: E;,q -> EUi,q-i~i is zero for i = 1, 2, , q - 2, q, q + 1,
(c) dq~u. Eq~q —> E9

p+
ι

q-UQ is the rational Whitehead product.

4. Applications. We are now in a position to compute H{(X; Q)
(i ^ 3 c(X)) completely in terms of the graded homotopy group Π =
{Ki (x) Q11 ^ i ^ S'c(X)} and the rational Whitehead product on this
group. For i ^ 2 c(X) this is given by the rational Hurewicz theorem
(3.4). Let

Ker {π3- (x) τ r w (x) Q — —> π^ (x) Q) , c(X) < j ^ \ ~ Ί

Ker {S(τrί/2 (x) Q) — %—> π^ 0 Q} , if i even, j = Γ-̂ -

o , if % odd, i = Γ ^ - Ί .
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and

Ker, = φ Ker^ ( 0 denotes direct sum),

where [ , ] is the Whitehead product.
Furthermore, let

, if c(X) <j^

im {S(π(U.l)l2 (x) Q) JLIΛ^LΠ^ n{(g)Q} , if i + 1 even, j =

0 , if i + 1 odd, j = Γ : ? L 4 1 ^

and (since Im^ c τr, (x) Q for each i)

Inii = Σ Im,;i c 7Γi® Q. (+ denotes sum, not necessarily direct)
( Γ K l ( ί D / 2 ]

THEOREM 4.1. // 2c(X) < i ̂  3 c(X),

i2i(X; Q) ̂  Ker, φ (TΓ, (X) Q/Im,)

Proo/. 3.4, 3.10 =» ̂ Πo ̂  fe ® Q/ImO and E^M*) <P^ [i/2],
p -f gr — ί) ^ Ker£ p. These are the only nonzero terms of total degree
i. Since all extensions split we have

H{(X; Q) ~ EZo θ θ E-ti-P
c(X)<v£ίil2l

™ (π* (x) Q/Irrii) 0 Ker, .

Since Kahn [7] has identified the edge homomorphism with the
Hurewicz homomorphism we see

THEOREM 4.2. // i £ 3 c(X) and h% (x) 1: π^X) (x) Q — H{(X; Q) is
the Hurewicz homomorphism, then

(a) Ker h, (x) 1 = Im,
(b) coker hi (x) 1 =

Proof. This follows because /̂  (x) 1 is the natural map

π% (x) Q -> Ker, 0 (;rt (

COROLLARY 4.3. If i^ &-c(X), then
(a) hi (x) 1 is α monomorphίsm <==> Im?; = 0
(b) Λi (x) 1 is an epimorphism <=> Ker, = 0.



RATIONAL HOMOLOGY AND WHITEHEAD PRODUCTS 71

Note. By Proposition 2.1 (respectively, 4.1) of [1], fc; (x) 1 is epic
(respectively, monic)^=>the ith ^'-invariant (fe-invariant) of any homology
(Postnikov) decomposition is of finite order. 4.3 gives another such
characterization. This gives, for instance, the following theorem.

THEOREM 4.4 1/ π^X; Q) - 0 for i>3 c(X), then all ^invariants
are of finite order <=> all rational Whitehead products vanish.

Finally, since it is usually easier to compute Hi(X; Q) than it is
the Whitehead product, we will use these relations (4.1 and 4.2) to
give information about the Whitehead products themselves.

THEOREM 4.5. Let i rg 3 c(X) and consider the following state-
ments:

(a) π{ (x) Q is generated by Whitehead products.
(b) For all r such that c(X) < r ^ [(i - l)/2], πr (x) π{_r (x) Q —

7Γ»-i ® Q is injective.
(c) / / i even, S(πi/2 (x) Q) —> π^ 0 Q is injective. The following

are true.

(d) ^ ( 8 ) l = 0 « ( a )
(e) coker ht (x) 1 = 0 <=> (b) and (c)
(f) HάX; Q) = 0 - (a), (b) and (c).
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