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ON THE OPERATOR M(Y)= TYS' IN LOCALLY
CONVEX ALGEBRAS

F.-H. VASILESCU

Let % be a locally convex separated unitary algebra over
the complex field. If 7 and S are fixed elements of % and S
is invertible, it is possible to define on % the linear operator

M(Y)=MT,S)Y)= TYS!

for all Ye?%. The purpose of this paper is to construct a
functional calculus with analytic functions for the operator
M(T,S), by means of T and S, in order to obtain “multipli-
cative variants” of some results of M. Rosenblum. In the last
section these results are applied to normal operators and
matrices.

In what follows U will be a locally convex algebra i.e., an algebra
which is a locally convex space and where the multiplication is sepa-
rately continuous. The topology on ¥ is defined by a family of semi-
norms {P,}.., and the space is assumed to be quasi-complete, i.e., every
Cauchy net is convergent. It is also supposed that the mappings Y —
YZ (resp. Z — YZ) are uniformly continuous when Z (resp. Y) belongs

to a bounded set.
Denoting B(2l) the algebra of all continuous linear operators on

A, the topology on B() is defined by the family of seminorms
{pa.B}aeJ,Be;B, where

Da,s(L) = sup p(I(Y)) ,

for each L e B(l), B being the family of all bounded sets of 2l.

When T, Se and S is invertible, it is shown that the spectrum
o(M) of the operator

M(Y) = TYS™

is contained in the set o(T). o(S™) (Proposition 2.4) hence, taking a
complex-valued function f, analytic in a neighbourhood of the set
o(T)-0(S7"), we can construct the operator f(M) in each point of ¥,
as well by means of the functional calculus of T, S and they are
equal (Theorem 2.9). Since the logarithm of an element of U does
not always exist, this case is more general than Rosenblum’s results
(see [3] and Proposition 3.1).

All the statements of this paper can be applied to linear operators
on Banach spaces or on locally convex ones, with supplementary
properties.
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1. Preliminaries. It is useful to recall some of the concepts and
results contained in [1] and [4].

On a locally convex algebra it is possible to define the spectrum
o(T) and the resolvent o(T) of an element Te U (these sets are con-
sidered in the complex compactified plane C. = CU{}) [4].

We recall that C.>xe o(T) if there is a neighbourhood V, of A
such that:

1° (eI — T)'e A for any pe V,;NC (here I is the identity of 20).
2' the set {(uI — T)7*; pe V;NC} is bounded in .

In the following we shall write for s simply z.

For each T'e A let us denote by F(T) the set of all analytic func-
tions in a neighbourhood of ¢(T) = (o(T). Then, if I" is a contour
(throughout we mean by “contour” a finite system of curves, admis-
sible for the integral calculus) “surrounding” o(T), contained in the
domain of definition of f e F(T), we put, by definition

"_‘1 g FOOON — T)'dn if o(T)$
2miJr
S(T) =

F(ee) + —LS FO)ON = T)"dn if o(T) 5 oo
2miJr

where the integral exists since the space is quasi-complete [1], [4].
For such functions we have the “spectral mapping theorem”, namely

o(f(T)) = f(o(T))[4] .

Let us remark that if L e B®), f € $(L) and I" is a contour in the
domain of f “surrounding” o(L), then we may define the expression
FIL)(Y), by using the natural extension of the formula given above
for the elements of . Since A is quasi-complete, the integrals do
also exist.

2. A functional calculus of the operator M. For two sets
A, B in the complex compactified plane with the property that if one
contains the point «~ then the other does not contain zero, we denote
by A-B the set {Ay; ne 4, pe B}, Also, if 450, we denote by A~
the set {1/x;ne A}, In the following we need the next geometrical
result:

LEMMA 2.1. Let K and F be two closed sets in C., 0§ K3 co. If
NeK-F and V, is a closed meighbourhood of A\, disjoint from K-F,
then there is an open set G, > K such that V,NGy,F = @. Moreover,
of I’y 18 a contour wm G, which surrounds K and separates it from
zero, then I'y = M7t is a contour such that the set F is “outside” it,
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Sfor each ne Vi, 0 = N 5 oo,

Proof. If we put
G, = {ne € aist (4, K) < 1},
on account of the compactness of F, K and V; in C., there is an index
n, such that V;nG, -F = @. We take G, = G,. We can actually
suppose that G,30. Now, let I', be a contour in G, surrounding K

and separating it from zero. Then for M€ V,, 0% N % = we have
ry=\xry*cV,Gy* and V,-Gi'*NF = Q.

LEMMA 2.2. Let I" be a system of curves in the complex plane,
admissible for the integral calculus, V,C C. a closed set and F:V, x
I'— A, G I'— A two continuous functions. Then for any e V,NC
we can define on A the linear continuous operator

B(Y) = | F, 9 YG@:,
for each Ye.

Proof. By our assumption on the algebra 2, it is easy to see
that the product of two continuous funections is also a continuous
funetion (since if U is a neighbourhood of zero in 2 and B is a bounded
set then there are two neighbourhoods of zero U, and U, such that
UBcCU and BU,c U). Since the mapping &— F(\, §) YG(§) is con-
tinuous on I" for each ne V;NC and the algebra is quasi-complete,
then the integral

RAGRCOLE

exists as an element of 2.

Obviously, it defines a linear operator on % denoted by R,(Y). To
see that R is a continuous operator on ¥, let us denote by B, the set
{F(\, §); ne V,, £eI'} and by B, the set {G(¢); £ I"} which are bounded
in A, If U= {Te¥U;p(T) < ¢} then, by our hypothesis, there is a
neighbourhood U, of zero in ¥ such that B,UB,C 2r/|I"'|)U, where
|I"| is the length of I". Thus we have

1

Po(By(Y)) = ——

|| PO, 9 Y G lldz| <e

whenever Y e U, hence R, is continuous.

ProprosiTION 2.3. Let T, Se€U be such that S eW. If n¢o(T).
o(S™Y) and V, is a closed mneighbourhood of N\, such that V,No(T).
o(S™) = @, then there is an open set G,Do(S™), G, 0 such that V,.
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G, < p(T).
Moreover, if Iy is a contour in G, which surrounds o(S™') and
separates it from zero, then we have

(v — M(T, 8))~(Y) = S O — ET) V(& — S de
for each YeU and e V,NC.

Proof. By the spectral mapping theorem, ¢(S™!) = a(S)~* does not
contain zero and it is a compact set in C, therefore we may apply
Lemma 2.1, by putting F = ¢(T) and K = (S™"). Let G, and I", be
as in this lemma. Then V,-I";'C V,-G;* does not interseet the set F =
o(T), therefore M&ée o(T) for all e V,NC and eI, and o(T) is
“outside” I'y = A7 (0 #= N % o). By Lemma 2.2, the integral

exists, therefore we have for any ve V, (0 == N = o)

27r

o -t (| (- 1) e - s

o &
- 231 v

el

S (T 2+ )& - 1) e s - 08
_—Z%SFOYE * 27{1,81—0(% B T)—l%é
* 5e)

o YE-8)de=Y

Ty

<,

since

Ll & o,
2rydry &
1

| Ye- s =Y

2wy Jry

by the well-known functional calculus for an element of ¥ with the
spectrum compact in C and

since o(T) is “outside” NI
Analogously
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LSFO(A — T) (v — M(T, H(D)E — s—1>-19’§ =Y,

2m1 &

therefore
_ ~yy=L{ (> _ 1V ye - g%
O = M(T, 8)7(F) = = (3= 7) ¥ -5

If A =0 then 0¢o(T), hence T'e 2 and

— -1 —_— — 1 — _1__ T Q-1 —-1d__§
(—M(T, 8)(¥) = ~TYS = o=| —T¥( - §7)°%
and this finishes the proof.

PROPOSITION 2.4. With the same conditions as in the previous
proposition, we have

o(M(T, S)) co(T)-0(S7") .

Proof. We can suppose ¢(T)-0(S™") #= C.. By the preceding pro-
position, if N, ¢ d(T)-0(S™*) and V, is a closed neighbourhood of N, VN
o(T). o(S™ = @, then for any M e V,N C the operator (\ — M(T, S))™
exists and, by Lemma 2.2, it is a continuous operator. We have only
to prove that the set

{0 — M(T, 8))™; »ve V,NC}

is a bounded one in B(2).

For, let {p.}., the family of semi-norms on U and {p, slecs e
the family of semi-norms on B() (see the introduction). Define B, =
{h=¢ED" e V,NC, ¢} and B, = {(§ — S™) ™ &e I} which are
bounded in 2. Indeed, V,-I';'< o(T) and it is a compact set in C,
therefore by reasoning with a finite covering, we obtain the bounded-
ness of the family B,. A similar argument is valid for B,. If Be®B
is arbitrary, then B,BB, is also a bounded set, therefore we have

Pus((h = M(T, )™ = sup pu((h — M(T, S)™(¥))
< 2i sup | pi((h — 1) ¥(E — S)7) 2]
T yeB Iy

< C(a, B) < o=,

where we kept the notations of the preceding proposition. Conse-
quently \, € o(M(T, S)).

COROLLARY 1. If M = M(T, T) is an inner automorphism of the
algebra A then
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o(M) < o(T)-o(T) .

PROPOSITION 2.5. Let T, S be in % with S~ e N, and M = M(T, S).
If N¢o(M)-0(S) and V, is a closed meighbourhood of N, such that
VoNna(M)-o(S) = ¢, then there is an open set G,D d(S), G, 0 such
that V- Gyt co(M).

Moreover, if I’y is a contour in G, which surrounds o(S) and
separates it from zero, we have

0= D(e=] 06— e (e - 57 = ¥
LI,
for all YeU and ve V,NC.
Proof. We apply Lemma 2.1 with F = o(M) and K = o(S).

Therefore, if I', is a contour as in the quoted lemma, then the integral

1
2n1

], = e (D — 9z

exists as an element of 2 for each e V,NC.
From the relation

MM —=EM)™(Y) — ET(L— EM)™' ST = Y

we obtain
TOv— EM)™ = (V0 — EM)(Y) = )8,
therefore we can write, for xe V,NC, » = 0,
1 -t Qe
(= Dl = (D - S

= | - e - s
T 1o

1 1 - -1
~ gm0 = EM)(Y) = (-1 4+ 66 — )

—1—5-2— O - emy(vyae — 1| By

271 2w Jr, &
1 S y _
27wt Jr, €—§7de =Y

since

2| “=o
2w Jry &

’
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1 -
—\ (¢E=9"d=1
27 I,

and

1 -1 _____];_ — -1 =
ol 0 — M) (e =~ — M= (¥)dy = 0

because o(M) is “outside” N7t
If x =0, a direct argument proves the validity of the given
formula.

PROPOSITION 2.6. With the same conditions as in the previous
proposition, if o(T) D co then o(M) 3 co.

Proof. Let us suppose that o(M)» . Then there is a closed
neighbourhood of <, let us say V., where we have

O~ () = 5, EHT)

n=0 A,"'H'

for all £e I, where the series is uniformly convergent in .
Hence we have

o |, v =SNG — S)ae

g
——1—§ iEM(Y)(s §)-'ds

2w Jrga=o A
S 1 g -
— " 1d
n=0 7\/’”’1 27’5 ¢ (E S) d
& Y
= nZ;‘ AL ’

thus the last series is uniformly convergent in a neighbourhood of oo
and defines, for Y = I, the inverse » — T.
Moreover, the set {(A — T)™; v e V.} is bounded in 2 since the set

i, 0= e - syas ve v

27

is bounded in % (see the proof of Proposition 2.4), thus < e o(T).
ProrosiTiON 2.7. Let T, S e U be such that S~ € W and M =M(T, S).

Suppose M invertible on A. If ¢ o(T)-o(M)™ and V, is a closed

netghbovurhood of N, such that V,No(T)-o(M)™ = @ then there is an
open set G,Do(M)™, G0 such that V,-G;*< o(T). Moreover, if I,
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is a contour in G, which surrounds o(M)™, we have
A — -1 1)~ E —_ =
(=],0— somem — 2o - 5 = ¥
for all YeN and ve V,NC.

Proof. If 1/¢e p(M) then from the relation

(- 2or- 20 -

we obtain

(M—-—) (s =4 (M——) (Y) - ¥8).

As in the proof of Proposition 2.5, we may apply Lemma 2.1 with
F =0o(T) and K = o(M)™ and if I, surrounds (M), we have for A
in a neighbourhood V, of A, 0 %% X\ = oo,

(k] 0 — emmiear - = E)o - )

(Gl G -7 gl () g =Y

since

(because o(T) is “outside” \[7') and

1 - _
i (M~ F) (NG = g = "Xy =
as I';' surrounds o(M).

If 0¢0(T)-0(M)™" then T7'e U and the formula is immediate.

LEMMA 2.8. Let F and K be two closed sets, 0¢ K3 = and GD
K.F an open set. Then there is an open set G,» 0, G, D> K such that
G>G,-F. Moreover, if I'C G is a contour surrounding K-F then
we can take o contour I'y in G, surrounding K and separating it from
zero such that £-F 1s “inside” I" for all e I,

Proof. The set [G is compact in C., therefore we can apply
Lemma 2.1 for any )\,e(G and, taking a finite covering of (G, we
obtain the set G,. If I" is a contour surrounding K-F, we can choose
G, such that G,. F is “inside” I', hence there is a contour I, in G,
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which surrounds K and separates it from zero such that I",- F' is “in-
side” I

THEOREM 2.9. Let T, Se N be such that S~ e . If o(T)-0(S™+#
C.. and f is an analytic function, defined in an open set containing

o(T)-0(S™), then there is a contour I, surrounding o(S™") and sepa-
rating it from zero such that f(¢T) is defined for each &e I', and

FOIT, H(F) = 5| FED)YE - Sz
Sor all Ye U (where the left side is defined as in the Introduction).
Proof. We apply Lemma 2.5 with F' = ¢(T) and K = ¢(S™). Let
I and I', be as in this lemma. Suppose that o(M)> . Then, by

Proposition 2.4, we must have ¢(T)> . Hence, by Proposition 2.3,
we can write

FM(T, S)(Y)) = f()Y + 1/2m’§ SO — M(T, S))~(Y)dr
= ()Y + temi| FO)(=] 0 - e v - 87)az)an
By interchanging the order of integration, we obtain

7). O 5 (= ET)Y(E — S7)7dg )

[\] [\
1l 3l ﬁ|~

1G] s - eman) v — sy

], (78T = Fle) ¥ — Sy

Il

S FETY(E — SH™de — f(0)Y

since, by Lemma 2.5, o(¢T) = £0(T) is “inside” I" for all ée I,
In this manner we obtain

ST, S)(Y) = —S FED)Y(E — ST)7dé .

If o(T) 3 « we have (M) 3 ~ and a similar calculus leads to the same
formula. No other case is possible because of Proposition 2.6, and this
finishes our proof.

3. Some applications of the functional calculus. First of all,
we shall show that, in a certain sense, the commutator of two elements
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[3] can be found again as a function of the operator M.

ProrosITION 8.1. Let T, S be in A, with compact spectra in C
and with S e A. If none of the sets o(T), a(S) and o(T)-0(S™*) sepa-
rates the complex plane, we have the relation

(log M(T, 8))(Y) = (log T)Y — Y(log S),
for all Ye2l

Proof. By our assumption, log T, log S and log M(T, S) exist and,
from Theorem 2.9, it follows that

(log M(T, S))(¥) = —}ﬁg log (ET) Y(E — S~)~dé

= ——S (log &) Y(¢ — S7)~d¢ + —5 (log ) Y(E — S™)'dé
211,

= Y(log S™) + (log T = (log T)Y — Y(log S) .

Let now E(-) and F(-) two selfadjoint spectral measures on a
Hilbert space, defined on Borel sets of the complex plane. Then the
mappings

@(01)(Y) = E(Ul) Y
Zo)Y) = YF(,)

are two commuting spectral measures, Y being an arbitrary linear
bounded operator; therefore the mapping

(€ X )0, x 0,)(Y) = E(0,) YF(0)

induces a spectral measure on the space of the operators and it is
possible to integrate with respect to it (see [2] for details).

PROPOSITION 3.2. Suppose that U is the algebra of all linear
operators on a Hilbert space and T, S € A(S™ € A) two normal operators.

If E, F are the spectral measures of T and S respectively, them for
any function f, analytic in a neighbourhood of o(T)-0(S™), we have

FM(T, S))(Y) = SSf(N/f‘)dEz YdE,
for all Ye.

Proof. TUsing the same notations as in Theorem 2.9, we have

FM(T, $))(Y) = —S FET)Y(E — S)de
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§ reny([e - wyar, )

Il
>h_/-—ov__-—->h—-—ﬂm

(—§ FET)E — p)~ds) YaF,

271
(2_1'5 (SFENIEL)(E —~ “’)*%l&) YdF,
Q( S FENE — "l)"‘d5>dE; YdF,

BS FOpdE, YdF, .

PROPOSITION 3.3. Assume that the Hilbert space in the previous
proposition is finite dimensional and that

2

(where {E;} and {F,} are now finite orthogonal resolutions of the iden-
tity). If f is an analytic function in an open set containing the set
Ay v ooy N}y oo, 27} then we have
T T
FOUT, )(Y) = 3 3, FOuie) B, Y
for all Ye.

The proof follows easily from the preceding proposition.

PROPOSITION 3.4. Suppose that A, T and S are as in Proposition
3.8. Then a necessary and sufficient condition that the equation TY =
ZS have a solution Y e is that N\, = 0 implies E,Z = 0.

Proof. Let Y be a solution of the equation TY = ZS, hence

TYS" = 3 S\ B, YF, = Z .

i=1 k=1
From this relation we obtain easily
E.TYS'F, = \¢.'E.YF, = E.ZF, ,

thus N E,YF, = p,E.ZF,.

If A, =0, since g, =0 for all s, we have E,ZF, =0, hence
>.E.ZF, = E,Z = 0.

Conversely, if )\, = 0 implies E,Z = 0, let us consider the matrix

vY=3 z F‘kEZFk.

2570 k=
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We have

TYS = S gy
1550 k=1 7\,J

=S EZSF, =2
=1 t=1

g
121' ME

ﬂgm%

consequently Y is a solution of the equation.
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