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COVERING RELATIONS AMONG LATTICE VARIETIES

DANG X. HONG

0* Introduction* It is shown in this paper that the equational
class generated by the family of all projective planes can be charac-
terized by a finite set of lattice identities. The methods developed here
may provide a framework to attack similar problems and a useful
medium for studying modular lattices in general.

By a variety, or equational class, of lattices we mean the class
of all lattices satisfying a given set of lattice identities. A lattice
variety is finitely based if it can be defined by a finite set of identities.
Let A be the lattice of all lattice varieties. A systematic study of
the lattice A dates back seven or eight years ago. Most recent results
in this field, including ours here, are stimulated by an important
discovery of Bjarni Jonsson in [7], Corollary 3.2. (See Baker [1], [2],
Gratzer [4], Hong [5], Jonsson [7], [8], McKenzie [9], [10], Wille [11].)
Our study here continues the works of Gratzer in [4] and of Jonsson
in [8], where the latter completed an unfinished result of the former
and in particular proved that the variety generated by all projective
lines is finitely based.

The rest of the paper is divided into four sections. In §1 we
state our main theorem and its applications but postpone the proofs
until §4. In §2 we discuss the main methods employed here: the
method of strong covering, and the notions of normality and strong
normality of sequences of transposes. In case the family of all varie-
ties that strongly covers a given variety is finite, then the variety
is finitely based. The notions of normality and strong normality, due
to Gratzer and Jonsson respectively, are developed rather completely
in Theorem 3.1. We hope that this theorem will have some applica-
tions elsewhere. Section 4 gives details of the proof of the main
lemma stated in Section 1.

In the sequel, almost every theorem and lemma has its dual, even
though we rarely make explicit mention of this fact. Also, the nota-
tion L denotes a fixed modular lattice.

We wish to express our sincere gratitude to Professor Bjarni
Jonsson for his helpful suggestions in the ideas as well as the pre-
sentation of this paper. We also wish to thank the referee for his
detailed suggestions.

1* The main theorem and its applications* For any family K
of lattices, let S(K), H(K), PU(K) denote respectively the families of
sublattices, of homomorphic images and of ultraproducts of members
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of K. The important discovery of Jonsson, mentioned in the introduc-
tion, asserts that every subdirectly irreducible member of the variety
generated by a family K of lattices belongs to HSPU(K). Let AL, A2,
Az, Msk, where k is a positive integer, denote the lattices in Fig. 1.

Mr.

FIGURE l

We first state the main lemma, the proof of which is postponed
until §4.

1.1. MAIN LEMMA. Let L be a suhdίrectly irreducible modular
lattice and

Al9 A2, As, M3n g HS(L) ,

where n is a positive integer. Then dim (L) ^ n.

The main application of this lemma is to prove the principal
result of the paper by the use of the notion of strong covering.
Consider a variety *W and let C{W^) be the family of all varieties
that cover "W". A family of varieties { ̂  | i e 1} is said to strongly
cover W~ if every 5^, ie I, covers <W and any variety that properly
contains W~ contains a variety ^ for some ie I. Then for each
ie I there is a lattice identity 6̂  that holds in W~ but not in 5^.
It is easy to see that modulo the lattice axioms, ^ is the variety
defined by {θi\iel}. Thus if / is finite, then Ύ/^ is finitely based.
(It is still an open question whether C{W~) always strongly covers

for any variety W~.) Now combining the Main Lemma, the above
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mentioned result of Jόnsson and the characterization of all modular
lattices of dimension ^ 3 in [6], one can easily prove the following
theorem and its corollaries.

1.2. MAIN THEOREM. Let ^C? be the variety generated by the
family of all projective planes. The five varieties generated by ^2
and each member of the family

{A,A2, A3, Λf33, Nδ] ,

where Nδ is the five-element nonmodular lattice, form a strong cover
for /J^s

COROLLARY 1. The variety ^fj is finitely-based.

COROLLARY 2. Let "W" be the variety generated by any finite
projective plane. Then C{"W*) is finite, can be effectively found and
strongly covers 'W". Consequently, "W" is finitely based.

REMARK. With some details added, one can show that the con-
clusions of Corollary 2 still hold when W~ is the variety generated
by P U Q, ~̂ €o2 UPUQ, or Λ2 U P U Q, where ^ J is the variety
generated by all projective lines, and

P is a finite family of finite modular lattices of dimension less than
or equal to 3,

Q is a finite family of finite modular lattices of the form Λf[Λl,Λ2...,WA?].
For the definition of Λf[ni,n2,...,Λjfe] and the details of the proof, the

reader is referred to the author's thesis [5].

Concluding this section, we state some conjectures for which we
hope the methods here may be helpful.

Conjecture 1. The variety generated by a finite modular lattice
is strongly covered by a finite number of varieties.

Conjecture 2. For each positive integer i, the variety ^L gen-
erated by the family of all modular lattices of dimension ^ i is strongly
covered by a finite number of varieties.

2* Methods*
A. Diamond, transpositions and translations.
1. Diamond. By a diamond we mean a five-termed sequence

[u ^ x, y, z ^ v] of elements of L whose terms are all equal (in which
case the diamond is said to be degenerate) or else form a non-distri-
butive lattice Mz in Fig. 1. The intervals [x, u], [y, u], [z, u] are called
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the first, second and third upper edges, and [v, x], [v, y], [v9 z] the first,
second and third lower edges. For any two members t, V of {x, y, z},
the intervals [t9 u] and [v, tf] are said to be adjacent if t = t'; other-
wise they are said to be opposite. In case there is no ambiguity we
can identify a diamond with the sublattice whose elements are its
terms; the order of the vertices is then irrelevant.

2. Transpositions. Translations. It is well known that an
interval [a, b] is said to transpose down onto an interval [c, d], or [c,
d] up onto [a, b], if a + d = b and ad = c. We write then

[a, b] \ * lc> d]9

 o r lc9 d] s>^* la> b] .

We know that the mappings φ: r—>rd for every r in [a, b] and ψ:
s-+s + a for every s in [c, d] are isomorphisms of [a, b] onto [c, d] and
[c, d] onto [a, b] respectively. They are called the transposition between
these two intervals. We now come to the definitions of transpositions
and translations between two diamonds, say Dι = [ut ^ xi9 yi9 zt ^ vt]9

i = 1, 2. We say that
(i) D1 transposes down onto D2, or D2 transposes up onto D19 in

symbols

A \ * A, or D2 ̂ * D,
(1) (1)

if [vu uλ] transposes down onto [v29 u2] and in this transposition the
vertices x19 y19 z1 are mapped into the corresponding vertices x2, y2, z2.

(ii) Dι translates down onto D2, or D2 translates up onto D^ if
a lower edge of A transposes down onto an upper edge of D2. If
specifically [v19 zj transposes down onto [x2, u2], then we write

A ^ * A .
(2)

Also, if A translates up onto A by [zi9 u,] transposing up onto
[v2, x2]9 then we write

A ^ A
(2)

Note that A / A does not imply Ό2\iΌγ.
(2) (2)

The following lemma will be frequently used subsequently.

3. Transposition Lemma. Suppose [α, 6] and [c, d] are two in-
tervals in L.

(i) If D = [u ̂  x, y9 z >̂ v] is a diamond such that

( 1 ) [z9 u] ^ [c, d] \ [α, ί>] and a + i; = c ,

then we have a diamond [6M ^ δ#, by, bz :> δv], in symbols bD, satisfying
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the condition D\bD and [bz, bu] /* [a, b],
(1)

(ii) If [v, u] is an interval such that

(2) [v, u] ^* [c, d] \ ^ [a, b] and a + v — c ,

then [v, u] \ [bv, bu] / [a, b].

Proof. Suppose (1) holds. Clearly b + v = d, hence [v, d] trans-
poses down onto [bv, b]. Under this transposition, bD, [bz, bu] and
[a, b] are respectively the images of D, [z, u] and [c, d]. Therefore bD
is a diamond, D transposes down onto zD, and [bz, bu] transposes up
onto [a, b].

The proof of (ii) is equally trivial.

REMARK. Observe that the part (i) of the lemma also holds when
[z, u] is replaced by any upper edge of D. In later applications, we
will use this observation without mentioning it.

4. String of diamonds. Given a sequence of k diamonds, Dγ, D21

D3, , Di, , Dk such that for 1 < i < k, Ό{ translates up onto Di+1

and down onto D^ by two opposite edges, the sublattice formed by
these diamonds is called a string of k diamonds, denoted in each
occurrence by Λf8"*. Thus, M3k is also a string of k diamonds.

B. Projectivities and projective distance. Two intervals [a, b]
and [c, d] are said to be connected by the sequence of transposes [ak, bk],
k = 0, 1, 2, , n, if [aQ, 6J = [a, b] and [an, bn] = [c, d], and for k = 0,
1, 2 , n — 1, the kth term transposes alternately up and down onto
the next. Two intervals are said to be projective in n steps if they
are connected by an n + 1-termed sequence of transposes. For any
two intervals [a, b] and [c, d], let P([a, b], [c, d]) be the smallest non-
negative integer with the property that there exist nontrivial subin-
tervals [a, b] and [c, d] of [a, b] and [c, d] respectively, which are
projective to each other in n steps. If no such integer exists, then
let P([a, b], [c, d]) = <*>• We call P([a, b], [c, d]) the projective distance

between [a, b] and [c, d]. Thus if P([a, b], [c, d]) < oo, then [a, b] and

[c, d] must be nontrivial intervals. In the four-element lattice generated
by two elements, e.g. {a, b, a + b, ab), it is easy to see that P(a, b +
a], [ba, b]) — 1, but P([a, b + a], [ba, a]) = oo.

REMARK. The notion of projective distance is the main medium
used by Professor Jόnsson in [8] to extend the result of Professor
Gratzer in [4]. (The term "projective distance" was not used in [8]
but was suggested to the author by Jόnsson.)
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C Homothetίes. Given a diamond D = [u ^ x, y, z ^ v] and an
element w of one of its edges, e.g. [z, u], these six elements generate
a finite lattice whose isomorphism type is completely determined,
(For example, the sublattice generated by Όγ = [^ > x19 y19 zt > vj
and w, zι < w < ux, is the lattice on the right in Fig. 5.) In any case
we have two diamonds

[u ^ x + yw, y + xw, w ^ xw +

and

[xw + yw ^ xw, yw, z(xw + yw) ^ ?;] ,

which we denote by (D)w and (D)w respectively. Observing that w is
a term of (D)w even in the case it is an element of a lower edge,
we have

( 1 ) (D)w = (D)x+yw = (D)yw and (D). =

More generally, consider a subinterval [wy w'] of an edge of D, say
[z, u]. The sublattice ((D)w)w> is defined and can be checked to be the
diamond

[xwf + yw' ^ xw' + yw, yw' + xw, w(xw' + yw') Ξ> xw + yw] .

We call it the image of D under the homothety defined by [w, w'],
and denoted by (D)ίw,wΊ. Clearly if [w, w'\ is nontrivial, so is (D)ίw,wΊ;
and if w' — u then (D)ίvf.wΊ is just GD)W. If z < w < w' < u, then
the sublattice generated by D and {w, w'} can be checked to be the
lattice given in Fig. 2. However we will not need this fact, and we
will therefore establish only some interesting relations between D and
(D)iw, w] which will be used later. For convenience, we denote (D)[w,wΊ

by [u' ^ x', y', x' ^ v'\ and

FIGURE 2
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[s, s'] = [x + yw, x + yw'], [t, V] = [y + xw, y + xw']

[p, p'] = [xw, xw'], [q, q'] = [yw, yw'],

[r, r'] = [z(x + yw), z(x + yw')]

Then one can easily check that: The interval [p, p'] is the image of
[w, wf] under the transposition of [z, u] onto [v, x] and

[w, wf] \ * [z', ^'] \ ^ [ΐ/, &'] \ , [p, p'] ,

' = t'w' = s'ί' = w'

Using these preceding relations, one can extend in an obvious manner
the definition of (D)lw wΊ to the one of (M^k)[w,wΊ, where [w, wf] is a
subinterval of an edge of a diamond in a string of diamonds i l ί j .
Then (M^k)[w wΊ is also a string of diamonds.

D. Ker(xγ, x2, xs). Given three elements xί9 x2, xz in L, the sub-
lattice generated by them is a homomorphic image of the free modular
lattice of three generators FM(S) (see Birkhoff [3]). It contains as a
sublattice the diamond [u ^ x, y, z Ξ> v] where

u = Π fe + »y) v = Σ ^ ^ i

α? = (x2 + aJaXa?! + X2X3), y = (a?i + # 3)te + ^A),

This diamond is denoted by kerfo, α;2, α?8). Since a homomorphic image
of a transpose is also a transpose, we have the following observations:

( i ) For the two element x19 x2, ker (xl9 x2, χ9) has the properties
that its upper edge [x, u] transposes up onto a subinterval I1 = [x1 +
3̂̂ 2, ^1 + ffβ(#i + 2̂)] of [»!»! + a?J, its lower edge [v, x] (adjacent to

[x, u]) transposes down onto a subinterval I 2 = [xxx2 + x5xu xγ{x2 + α?3)]
of [X&Ϊ, Xx], its lower edge [v, y] (opposite to [x, u]) transposes down
onto a subinterval /3 = [xλx2 + x2xz, x2{xz + ^J] of [x^, xL], the intervals
Iλ and /3 are the images of each other under the transposition between
[xlf xγ + x2] a n d [xxx2, x2].

(ii) If ker (x19 x2, α?8) is degenerate, then the sublattice generated
by x19 x2, xB is distributive.

3* A diamond-normal form of projectivities* In this section
we develop rather completely the notions of normality and strong nor-
mality of sequences of transposes. We first state the main theorem of
the section the terminology employed here will be gradually defined.

THEOREM 3.1. Suppose [α, b] and [c, d] are two nontrίvial intervals
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in a modular lattice L, and assume that

P([a, b], [e, d]) = %

where 2 < n < <χ>. Then some nontrivial subintervals [α, b] of [a, b]
and [c, d] of [c, d] can be connected by a strongly normal n + 1-termed
sequence of transposes such that the associated sequence of diamonds,
Dly D2, D3, , Dn-ι has the property that for k = 1, 2, , n — 2 the
pairs Dk, Dk+ι alternately satisfy the conditions

Dk ^» Di+1 or Dk ^ Dk+1 ,
(1) (2)

and

Dk \ * Dt+1 or Dk ^ Dk+1 .
(1) (2)

Furthermore [a, b] and [c, d] can be chosen so that for k = 2, 3, 4, ,
n — 2, Dk — D*+1, whenever Dk transposes onto JD*+ 1, and it can not
happen that either Dk_xfΌt and Dk\Dk+1 or Dk-i\D* and Dk/*Dk+1.

(l) (l) d; (i)

REMARKS, (i) The author originally proved the theorem in a
much less general form. Professor B. Jόnsson suggested that he
consider the theorem in this form.

(ii) Theorem 3.1 minus the last sentence is actually Theorem 1.1
in [5]. Its proof will be a combination of the proofs of Theorem 1.1
and Lemma 2.1 in [5].

3.2. Normal and strongly normal sequence of transposes.
A sequence of transposes [ak, bk], 0 ^ k ^ n, is said to be normal

if for every 0 < k < n,

(1) either [ak^, bk^] ^ [ak, bk] \ * [ak+1, bk+1] and bk = bk^ + bk+1 .

( 2 ) or [α t-i, &/b-i] \ * [ak, bk] ^* [ak+1, bk+1] and ak = ak^1a

If in addition, for each such k, bk^bk+1 ^ ak in the first case and ak^ +
dk+i ^ ί>fc in the second case, then the sequence is said to be strongly
normal.

In a strongly normal sequence [aiy 6J, 0 ^ i ^ n, the sublattice
generated by the six endpoints of three successive intervals, say by
ai9 biy i = k — 1, k, k + 1, is in fact generated by three of these end-
points and is therefore finite. Moreover it is a homomorphic image of
the lattice in Fig. 3 in the first case, and of its dual in the second
case. Thus, it contains the diamond

[bk ^ δfc_i + ak+ί, ak, ak^ + bk+1 ^ ak^ + ak+ι]
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ak-i+h+i=zk

'k + l

FIGURE 3

in the first case, and

in the second case. We denote this diamond by

Dk = [uk ^ xk, yk, zk ^ vk] .

Observe that in the first case

\aki bk\
 = i lUki ^fcj> L̂ /c—1> Ok—ij ^^^ \Vki *̂ &J>

and in the second case

The sequence Dlf A, A, , -DΛ-i is called the associated sequence of
diamonds of the given strongly normal sequence of transposes. Note
that if an interval [ak, bk] is nontrivial then all associated diamonds
are nondegenerate

In [4, Proposition 3], Gratzer showed that any two protective
intervals can be connected by a normal sequence. In [8, Lemma 2]
Jόnsson proved a stronger version of this result, which in present
terminology can be stated as follows:

LEMMA 3.3. (B. Jόnsson). Suppose [a, b] and [c, d] are nontrivial
intervals in a modular lattice L, and assume that P([a, b], [c, d]) = n
where 2 < n < oo, then the following statements hold:

(i) Any normal n + 1-termed sequence of transposes that connects
[α, 6] and [c, d] is also strongly normal.
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(ii) There are nontrivial subintervals [α, b] of [a, b] and [c, d]
of [c, d] that can be connected by a strongly normal n + l-termed
sequence of transposes.

The reader is referred to [8] for the proof.

LEMMA 3 4. / / D = [u ^ x, y, z ^ v] and D' = [uf ^ x', y', zf ^ v'\

are diamonds in L with

u = u', x <^x',y <. y', z <Z z' ,

then D' = (D)m, = (D)w. = (D),.

Proof. By symmetry we need only show that D' = (D)e,. By 2.C

(D)β, = [u ̂  x + yz\ y + xz', z^xz' + yz'] .

We have

xz' + yz' = {xz' + y)z' — (xx'z' + y)z' = (xvf + y)z' — (xx'y' + y)z'

— (xy' + v)z' = (x + y)y'z' = uv' = v',

x + yz' = x + xz' + 2/2' = x + ?/ = a? + # y = (a? + j/')^' — ux' — ̂ ' »

and similarly y + xz' = y'. This completes the proof.

COROLLARY 3.5. Suppose

( 1 ) K-!, δ*-J \ , [ak, bk] ̂  [ak+1, bk+ί]

is a strongly normal 3-termed sequence of transposes with D as its
associated diamond. Suppose the points c{ in [aiy δ j , i = k — 1, k, k + 1,
are the images of each other under the given transpositions. Then the
following statements hold:

( i ) The sequence

( 2 ) [ck_ly bk^] \ * [Ck-iCk+if bk + Cfc-Λ+1] ^ [ck+1, bk+1] ,

is a strongly normal sequence and its associated diamond is (D)C]c.
(ii) If [αJUi, cJUi] αwd [^ί+i, cl+1] are intervals in L such that

and such that the sequence

( 3 ) [α*_i, e!U] \ * [ak, ok] ̂ s* [a'k+1, ck+1]

is strongly normal, then the associated diamond of (3) is (D)Ck.

Proof. It is easy to check that (2) is still strongly normal. The
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associated diamonds of (1) and (2) are

D = [bk_1bk+ί ^ α*-i6jfc+i, bk, bk^ak+l ^ ak]

D' = [δjk-A+i ^ c*-A+i, bk + c*

and they clearly satisfy the conditions of Lemma 3.4. Therefore

by (1) in 2.C and the fact that bk(bk^ck+ί) = δfccfc+1 = ck.
The proof of (ii) is even more trivial.

DEFINITION 3.6. For any diamond D — [u >̂ x, y, z ^ v] we denote
the diamond [u >̂ z, x, y ^ v] by D*.

The following lemma is crucial for the proof of Theorem 3.1.

LEMMA 3.7. Suppose [a0, b0] /* [a19 δj \ [a2, b2] f [α3, b3] is a strongly
normal sequence of transposes in L with P([α0, δ0], [^ b2]) = 3, and
consider the associated diamonds

A = [^i > a>i, l/ι, «i > vt] [b, > bQ + α2, α l f α0 +

Dx \ D2* or βisβ one of the following statements holds:
(1)

( i ) There exists c0 with a0 ^ c0 < δ0 s^c/i ί te ί i/ ci9 1 ^ i ^ 3, is
its image in [α, , b{] under the given transpositions then

[e0,
 &o] ^ [o19 d,] \ , [c^s, dc 8 + 62] ^ [c3, &3]

is a strongly normal sequence of transposes, its associated diamonds

being (A)Cl and (A)c2 with (A)C l \JD 2 ) C 2 .
(2)

(ii) There exists c0 with a < c0 ^ b such that if c i y l ^ i ^ 3, is

its image in [aίf b{] under the given transpositions then

K o0] ^ [c0 + c2], (c0 + c2)a,\ \ , [α2, c2] ^ ^ [α3, c3]

is α strongly normal sequence of transposes, its associated diamonds
being (A)Cl and {D2)Co with (S)Cl \ {D2)H.

(2)

Proof. Observing that

( 1 ) vx + y2 — z19 u2yι = α;2 and ^ ^ vt + u2 ^ t6x, v2 ^ w2i;1 ^ a;2 ,

we consider three cases.

Case 1. Vi + t62 = uι and ^ ^ = v2. Thus we have

(2) K, 2̂ 2] ^ ^ [vu u,] .
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Since vλ + y2 = %i and u2yί = x2, the transposition (2) maps u2, x2, y2, v2

into u19 yly zl9 vι respectively, and hence we have the diamond [uλ >
2̂ + vl9 y19 z1 > vJi with

( 3 ) [u, > z2 + v19 y19
[u2 > z2, x2, y2 > v2] .

If z2 + vι = x19 then Dι transposes down onto D2, i.e., D1\D*.
(1)

Suppose on the contrary that z2 + vx Φ xγ. We claim that this leads
to a contradiction to the hypothesis P([α0, δ0], [^ h]) — 3. Our reason-
ing is motivated by Fig. 4. Let x[ — z2 + vx First we observe that
x[ and α?lf having the same relative complement yγ in [vλ, wj, are
therefore incomparable to each other. It follows that [Xjx[9 xλ] and
[x[, x1 + x[] are nontrivial subintervals of [vly x^ and [x[, ux] respectively,
and

( 4 ) [x[9 x,

Since ufiΛ = u2 and [x[, u\ \ [z2, u2] / [α3, δ3], the dual of the Transposi-
tion Lemma applies, and we have

( 5 ) α3, x[ &3]

It follows from (4) and (5) that the nontrivial subinterval [box[, 60] of
[α0, δ0] transposes up onto a subinterval of [x[ + α3, x[ + δ3], which

FIGURE 4
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transposes down onto a subinterval of [α3, 63]. Thus P([a0, δ0], [α3, 63]) ^
2, and we have a contradiction. Therefore Dt\D* in this case.

(1)

Case 2. ^ + u2 < wlβ Our reasoning is motivated by Fig. 5. Let
w = ^ + u2 and ^ = yt + %γw, and for i = 0, 2, 3, let et be the
member of [aif δj corresponding to cL under the given transpositions.
The sequence of transposes

( 6 ) [c0, δ0] ^ [clf 6J \ , ]ctc3, b2 + CA]

is clearly normal, and since [clf &J is nontrivial

, h]

u2

(7)

FIGURE 5

3 ^ P([c0, 6J, [c8, 6J) ^ P([α0, δj, [α3, δ,]) = 3

It follows from Lemma 3.3 that (6) is strongly normal. By Corollary
3.5 and its dual, the two associated diamonds are

)*! = (A)« = fai > χι + ViW, clf w> χxw + y

= [u2 > c2 + x2, b2 + c^β, c2 + z2 > CA]

Following the ideas of Jonsson in [8, Lemma 3], we infer that

[xxw + VίW, w] " \ , [c2 + x2, u2] .

In fact, from the observation that u2 ^ w ^ {xι + ^8)(ί/i + ^2) and α;2
y l f we have
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(xλw + y{w) + u2 = (xλ + u2)w + (^ + u2)w = w ,

= ^2 + Vl{XlW + 2/0 = X2 + &2̂ 1 = ^2 + 2̂

Thus (i) holds in this case.

Case 3. v2 < v ^ Applying the dual of Case 1 with a reversal
in the order of the intervals [aίy 6J, we see that (ii) holds in this case.

The three preceding cases cover all possibilities. The proof is
therefore complete.

LEMMA 3.8. Suppose Di = [% ^ xi9 yi9 z{ ^ vj, i = 1, 2 are
diamonds in L, and assume that one of the following conditions
holds

(1) Di^r D* ,

( 2 )
(1)

Lei Ci δe a member of [vly yλ] and c2 its image in [y2, u2] under the
transposition of [vί<f yλ] onto [y2, u2]. Then we have

( i ) ( A ) C l ί / ( A % if (1) holds

(ii) (A) C l !>(A) C 2 if (2) AoZds.

Proof. Assume that (2) holds. It is clear that the first lower
edge of (D2)C2 transposes down onto [x2c21 x2\, hence onto [u^c^ u j . There-
fore

( A ) . l β 2 ^* (D2)C2 .
(2)

Since cγ — c2yι — c2u{yγ, we infer from the formula (1) in 2.C that
(A)C1 - φ θ . l β 2 and therefore (A)Cl / {D2)H.

(2)

Suppose (1) holds. We similarly have (A)Cl = (A)Wlc2 Furthermore
the transposition of [vly uλ] onto [v2, u2] maps uxc2 into c2, hence
onto (A*)C2. Thus

(1)

and therefore (i) holds.

REMARK. In Lemma 3.8 if we replace the hypothesis A /* D* by

A — D*9 then clearly we have the conclusion that (A)Cl = (A*)C2
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3.9. Proof of Theorem 3.1. We prove the theorem by induction
on n. For n = 3, the theorem holds by Lemma 3.7 and its dual.
So assume that 3 < n = P([a, δ], [c, d\) < °o, and the theorem holds
with n replaced by n — 1. Then there are nontrivial subintervals [α*,
δ*] of [α, δ] and [c*, <£*] of [c, d] that are protective to each other in
n steps. By duality we may assume that [α*, δ*] transposes up onto
an interval [a\ 6'] that can be protective to [c*, d*] in w — 1 steps.
By the inductive hypothesis, we may assume furthermore that [α', 6']
and [c*, cί*] are connected by a strongly normal sequence of transposes

(1) [α', δ'] ^ [α2, δj ^ [α» δj [an, δ j = [c*, d*]

such that the associated sequence of diamonds, denoted by A = [ut >
%i, Viy %i> Vi], 2 ^ i ^ n — 1, satisfies the conclusion of the theorem.
Let [α0, 60] = [α*, 6*] and [αlf 6J = [a'(b* + 62), 6* + b2] We easily see
that the sequence

(2) [α*, 6*] - [α0, δ0] ^ * [α1? &J \ ^ [α2, δj ^ . K, δ j = [c*, d*J

is normal, and therefore strongly normal by Lemma 3.3. If Όγ is the
associated diamond of [α0, δ0] / " [αx, δj \ [2α, δj, then the diamonds
associated with (2) are Dlf D2, D3, , Dn^. As regards the second
diamond D2, this follows from Corollary 3.5 (ii), and for the other it
is obvious.

We now apply Lemma 3.7 to the first four intervals in (2).

If D1\D2 we claim that D2//D^ and the conclusions of the
(1) (2)

theorem therefore hold in this case. Otherwise Ό2/Dt and hence

(3) [zί9 ux] \ , [y2, u2] ^* [xB, uz] .
(1)

Then following the idea of Jόnsson in [8, Lemma 4] we infer that

(4) [α0, δ0] ̂  [vly xt] ^ [s l f u,] ^ \zγ + α?3, n, + x3] ^ \ ,

[x3, u3] \ , [v3, zs] \ * [α4, δ4] .

In fact, the first two and the last two transpositions are clearly true.
. Since uλuz = u2, we can apply the dual of the Transposition Lemma to the
sequence (3) to infer that the third and the fourth transpositions hold.
Thus (4) holds and consequently [α0, δ0] and [α4, δ4] can be connected
in two steps which clearly contradicts the hypothesis that P([α, δ],
[c, d\) = n.

So we can assume that either (i) or (ii) of Lemma 3.7 applies,
and we can choose c0 e [α0, δ0] accordingly. Let c19 c2, , cn be the
image of cQ under the given transpositions. Assume first that 3.7 (i)
applies. From the sequence
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(5) [c0, δ0] ^ [cx, δj \ * [c2, δ2] ^

We obtain a normal sequence of transposes

( 6 ) K b'Q] ^ [c[, b[] \ * K V2] ^

[an, bn].

by letting [c'k, b'k] = [ca-iCa+i, δΛ + cA;_1cA._1] for k even with 0 < k < w,
and [c ,̂ δ£] = [ck, bk] in other cases. The sequence (6) is strongly
normal by Lemma 3 3. Let Dk = [vfk > x'k, yk, z'k > v'k], k = 1, 2, 3, ,
n — 1 be the sequence of diamonds associated with (6) By Corollary
3.5 and its dual,

D'k - (Dk)c

if k is odd, and

in other cases.
Thus, the associated sequence of diamonds of (6), D[, D[, •••, D'n-ιy is
the following sequence

Since we assume that 3.7(i) holds, we have furthermore

FIGURE 6
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(8) (A)C1 \ (A)e2, i.e., D[^^D'2.
(2) (2)

Therefore if D2f A> then in view of (8), Lemma 3.8 and its dual,
(2)

we conclude that the sequence (7) associated with (6) satisfies the
conclusions of the theorem. It remains only to consider the case
D2/Di. Again by Lemma 3.8 we have A / Ά * - Our reasoning is

(1) # (1)

motivated by Fig. 6. Since u[u3 = u2 (from the definition of associated
diamonds), we apply the dual of the Transposition Lemma to the
diamond D[ and the sequence [v[, z[] \ [α£, u2] / [z[, u3] and we have
a diamond z3 + A with the lower edge [z3 + v[9 z3 + z[] transposing
down onto [z3, u3]. Using the strong normality of (6), one can check
that the sequence

(9) K b'Q] ^ [zi + y[, z3 + u[] ̂  K xί] ^ K y,\ \ ^ [d, &a

is strongly normal. The associated diamonds of (9) are z[ + D[, (Z>0*>
D'z. Observe that D 3 \ A, since D2/Df. Hence D'*\D[. Thus if

(2) (1) f (2)

we replace the second and the third terms in (6) by the corresponding
terms in (9) we obtain a strongly normal sequence that connects the
nontrivial subintervals [cj, δj] and « , b'n] with the associated sequence
of diamonds

z[ + A ' , ( D ' 3 y , D'3, D'4, . . . f J O U ,

which clearly satisfies the conclusion of the theorem.
The proof for the case when 3.7(ii) applies can be done in a

similar way. This completes the proof of Theorem 3.1.

4* Proof of the Main Lemma* The proof of the Main Lemma
is based upon a series of lemmas.

LEMMA 4.1. Let a strongly normal four-termed sequence of trans-
poses

K &o] ̂  K &i] N K b2] ̂  [α3, 63]

be given in L, with [α0, 60] nontrivial and b0 ^ α3. // Dι and D2 are
the associated diamonds, then it cannot happen that D1\D2, and the

(2)

condition D1

S\D2 implies that Dx = D*.
(1)

Proof. The associated diamonds Dlf D2 are

A = [^1 > <&i, 2/iι Si > ^1] = U>i > &o + α2 f α l f α 0 + 62 > α 0 + α2] ,

ί?2 = [̂ 2 > &2, 2/2, 2̂ > ^2] = [&1&3 > »1&3, K ^ A > ^2] .
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Suppose first Dι\D*. In this case, using the hypothesis that
(1)

δ0 <; α3 we have

ux = xι + zι = (δ0 + α2) + (α0 + δ2) ^ δ3 »

therefore t^ = î δg = u2, and this readily implies that Dι = A*> since

A\A*
Next assume Dι \ D2. We claim that this leads to a contradiction

(2)

and hence completes the proof. In this case, also using the hypothesis
that δ0 ^ α3 we have

u
2
 <£ u, = δ

0
 + £i = δ

0
 + Vj + 2

2

= δ
0
 + (α

0
 + α

2
) + z

2
 = b

0
 + 2;

2
 <£ α

3
 ,

therefore ^ 2 = ^ 2α 3 = 2;2 which clearly contradicts the hypothesis that
[α0, b0] is nontrivial. The lemma is proved.

LEMMA 4.2. Suppose

and suppose [a, b] and [c, d] are nontrivial intervals in L such that
P([a, δ], [c, d]) = n < 00. T%βπ n ^ 5. Furthermore if b S c, then
there exist nontrivial subintervals [α, δj and [c, d] of [α, δ] and [c, d]
respectively, such that one of the four following conditions holds:

( i ) n — 3, and there is a diamond [u > x, y, z > ^] with

[a, b] ^* [v, x] and [x, u] ^* [c, d] .

(ii) n = 4, α^d ίΛerβ eα ίsί £wo diamonds Ό\ = ^ > α , τ/ , ^ > vj,
i = 1, 2, s^cA ίΛαί D' // JD2

[ά, δ] ^ * [v[, z[], [v2, z'2] ^ \ , [c, d] αwd c + v[ = v2 .

(iii) w = 4, and there exist two diamonds Ό\ — \u\ > x'if y[, z\ > t ],

i = 1, 2, sucΛ ίλαί D[ /* D2 and
()(2)

[a, b] ^ \ , [x[, itί], [%[, u2] ^ * [c, d] and bu'2 — uί .

(iv) n = 5, α^d ίAerβ eα ΐsί ίwo diamonds D[ = [u > α , ?/ , £• > v ],
ΐ = 1, 2, sMcft ί/̂ αί Do \ D[ and

(2)

[α, b] ^ K a?ί] , K 14] ^ ^ [cf d] .

Proof. We may assume that n > 2, and by Theorem we may
therefore assume that some nontrivial subintervals [α, δ] of [α, δ] and
[c, d] of [c, d] can be connected by a strongly normal w + 1-termed
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FIGURE 7

sequence of transposes such that the associated sequence of diamonds
satisfies the conclusion of that theorem. We prove the first part of
the theorem by showing that the assumption n = 6 leads to a contra-
diction. By duality we may assume that

[a, b] = [α0,

5, h] = [c, d]
3, δ3] \ * [α4, b4]

is the given sequence of transposes. The diamonds associated with
this sequence are

A = [% > #i, y» zι > v,] = [6i > δ0 + α2, au α0 + δ2 > α0 + α2]

D2 = K > a?2,2/2, 2̂ > v%] = [&i&3 > αA, δ2, δxα3 > α2]

A = [̂ 3 > «3, V* z* > vz\ = [δ8 > &2 + α4, α3, α2 + δ4 > α2 + α4]
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A = [̂4 > #4,2/
4
, 2

4
 > v

4
] = [6365 > α

3
&
5
, δ

4
, δ

3
α

5
 > a

4
]

A = [̂5 > »5ι 2/5, ̂ 5 > 5̂] = [δ
5
 > δ

4
 + α

6
, α

5
, α

4
 + δ

6
 > α

4
 + α

6
] .

Consider any three successive diamonds, say A, D2, and A If
D1\D2 and A/^A* then we have a contradiction. In fact, since

(2) (2)

uLu3 = %2 therefore in this case the set

is easily seen to be a sublattice of L with A2 as a homomorphic image,
in contradiction to the hypothesis that A2&HS(L). Therefore one of
the two following conditions must hold

(1) A N A*, A ^ A, A = A* and A ^ A
(1) (2) (2)

(2) Dί \ * A, A = A*, A \ * A and A = A*
(2) (2)

If (1) holds, then A U A U A is a sublattice of L which has AL as
a homomorphic image, contradicting the hypothesis of the theorem.
If (2) holds, we arrive at a contradiction in a similar manner by
considering the sublattice A U A U A Thus the assumption n ^ 6
always leads to a contradiction.

Now assume that b ^ c. Then b ^ c. Therefore the case n ^ 2
is clearly excluded, and we must have n = 3, 4, or 5.

Suppose w = 3. Then [α, 6] and [c, d] are connected by a strongly
normal four-termed sequence of transposes,

(3) [α, b] = [α0, δ0] ^ * fo, 6J \ , [a2, b2] ̂ * [α3, δ3] = [c, d] ,

with the associated diamonds A, A satisfying either A \ A* or
(1) _ __

A \ A (The dual form of (3) is excluded by the condition 6 ^ c.)
(2)

The sequence (3) clearly satisfies the hypothesis of Lemma 4.1, therefore
A = A* Thus (i) holds in this case by taking A as the required D.

Suppose n — 4. Then [a, b] and [c, eϋ] are connected by a strongly
normal five-termed sequence of transposes of one of the two following
forms
(4) [α, 6] = [α0, δ0] / [al9 δj \ [α2, δj / [α3, δj \ [α4, δj = [c, d]
(5) [α, δ] = [α0, δj \ K δj /• [α2, δj \ [α3, δj /* [α4, δj = [c, d]

with the associated diamonds satisfying the conclusion of Theorem
3.1. By duality we need only consider the case when (4) holds. Then
the associated diamonds satisfy one of the two following conditions:

(6) A \ * A* and A ^ A,
(1) (2)

(7) A \ * A and A = A*
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Since b0 ^ c ^ az, Lemma 4.1 can be applied to the first three trans-
positions in (4) to infer that D1 cannot translate down onto D29 thus
ruling out (7) and showing that (6) must hold. A second application
of Lemma 4.1 yields Dt = D*. Thus [α, ft]/71^, #J = [v2, z2]. Since
c + v2 — di + α2 = #3, it is clear that the conclusion (ii) of the theorem
holds in this case by taking D[ = D2 and D2 = Dz.

Finally suppose n = 5. Then [α, 6] and [c, d] are connected by
a strongly normal six-termed sequence

( 8 ) [a, b] = [a0, δj / [a,, δj \ [α2, b2] / [a3, b3] \ [a4, bt] / [α5, 6,] = [e, d] ,

with the associated diamonds satisfying the condition

(9) ANA*, Dι/*A,-D = A
(1) (2)

or dually,

(10) [α, 6] = [α0, δ0] \[a19 δj /*[α2, δj \ [α3, δj /"[α4, δj \ [α5, δβ] = [c, d]

with the associated diamonds satisfying the condition

(11) A ^ A*, J52 ̂ ^ A, A = A*
(1) (2)

(The alternative to (9),

A \ A, A = A*, A ^ n

(2)

FIGURE 8
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and the corresponding alternative to (11) can be ruled out by the same
argument that showed that (1) leads to a contradiction.) Actually (10)
and (11) cannot hold, for then b, ^ b ^ c ^ α4, so that Lemma 4.1 can
be applied to the three middle transpositions in (10), showing that the
middle formula in (11) fails. Thus we may assume that (8) and (9)
hold. Our reasoning is motivated by Fig. 8. Since uλu3 = u2, we apply
the dual of the Transposition Lemma to D3 and the sequence [v3i x3] \
[z2, u2] / [χ19 u,] to obtain a diamond x1 + D3. Define the diamond Dr

2 —
[u2 > χ'z, y[j K > v2] so that (D£* = xι + D3. Using the hypothesis that
α5 ^ δ0, u2 and hence a5 Ξ> b0 + u2 — u19 one can easily check that

(12) x3 !g z'2 ̂  α 5 , u3 <^ u2 ^ b5 .

Since [#3, ̂ 3] / " [̂ , 2̂] ami [α5, &5], it follows from (12) that [z'2, u2] /*
[α5, δ5]. The conclusion (iv) of the theorem clearly holds if we take
the above Όγ and D2 as the required D[ and D2 respectively.

This completes the proof of the Lemma.

LEMMA 4.3. Assume that Aλ§ HS(L) and D = [u > x, y, z > v]
is a diamond in L with [x, u] transposing down onto an interval [α, &].
Then either

( i ) a + v — x or else
(ii) there exists an element xf with x g x' <u and an element bf

ivith b ^ &' < u such that the nondegenerate diamond {D)x, has xf + bf

as its greatest element and b'x* as its smallest element.

Proof. Suppose (i) fails to hold, or equivalently a + v < x. We
claim that (ii) holds. In fact, if a + v = v then (ii) trivially holds by
taking xf — x and V — b + v. We can therefore assume that

(1) v < a + v < x .

Let V — b + v, and consider the diamonds (D)a+V and (D)a+υ. By (1),
they are nondegenerate. Suppose uι is the greatest element of (D)a+υ.
It follows from the definitions of (D)a+υ and (D)a+υ that [a + v, u±] is
one upper edge of (D)a+V (Fig. 9), and furthermore

(2) [a + v, u,] ^* [x, ux + x] .

Let t = b'(uί + x). Then by the transposition of [x, u] onto [α, b],
we have

(3) [a + v,t] ^ [x.u, + x] .

Consider the three elements x, ul9 and t. If the diamond ker (x, u,, t)
is nondegenerate, then one of its upper edges transposes up onto
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FIGURE 9

a nontrivial subinterval of [uu ut + x] and the adjacent edge down
onto a nontrivial subinterval of [a + v, wj (by an observation in 2.D).
Thus ker (x, ulf t) translates up and down onto two nondegenerate
diamonds by two adjacent edges (by 2.C). It therefore follows that
AxeHS(L), contradicting our hypothesis. Thus the sublattice gen-
erated by {x, uu t} must be distributive. By (2) and (3), ut and t have
the same relative complement x; hence ux — t. Then the elements bf

and xf = ux + x clearly satisfy the requirements in (ii). The lemma
is therefore proved.

We now come to the proof of the Main Lemma.

4.4. Proof of the Main Lemma.
statement {A):

We first prove the following

(A) Let L be any modular subdirectly irreducible lattice with Aίy A2,
A3gHS(L). If L contains a sublattice M}n(n >̂ 1) whose greatest
element is less than an element d in L, then L contains a sub-
lattice Mtn+i with its greatest element less than or equal to the
element d.

Suppose the given M}n is formed by n diamonds Dt = [Ui > xiy yi9 zt >vt]
i = 1, 2, , n, with

(1)

(2)

[vi+1, zi+1] (1 ^ i ^ n - 1)

un < d .

It is well known that since L is a subdirectly irreducible modular
lattice there are some nontrivial subintervals [a, b] of [xn, un] and [c, d]
of [un, d] that are projective to each other. Therefore by Lemma 4.2
we can choose them so that one of the four conclusions (i) — (iv) of that
lemma holds. If (i) holds, then there exists a nondegenerate diamond
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such that one of its lower edges transposes down onto [a, b] and the ad-
jacent upper edge up onto [c, d]. We can therefore take the sublattice
formed by that diamond and (M^)^ as the required M3l+1. If (ii)
or (iv) holds, then [a, b] translates up onto the first stage of a sub-
lattice of the form Jlί3£ and this sublattice forms with (D„)&$•} a
sublattice having Aγ as a homomorphic image. We have a contradic-
tion. Therefore it remains to consider the case when (iii) holds.
Then we have two diamonds D\ — \u\ > x\y yl, z\> v%% = 1, 2, such
that ΰ l / ΰ ; and

(2)

(3) [α, 6] \ , [x[, ΰ[), [c, d] \ ^ K u'2] ,

(4) bu'2 = u [ .

By substituting (MJd&ft for M5i, we can assume that

(5) [a, b] \ , [xn, un] .

Then by substituting [{un + u[)a, un + u[\ for [α, 6], we can furthermore
assume that

(6) u[ + un = b.

We are in the situation as illustrated in Fig. 10.

Since many diamonds will be involved, therefore for the sake of
simplicity we tacitly assume that the vertices of a diamond written
D'i will be in symbols \u\ > a<, yl, z\ > v{] Suppose there exists an
element t such that either the sublattice generated by {t, un, a} or the
one generated by {£, u[, a) is not distributive. Then either ker (t, unf a)
or ker (£, u[, a) is nondegenerate. If ker (t, un, a) is nondegenerate, then
it translates up onto a subinterval a of [α, b] and down onto a subin-
terval β of [xni xn], and since β must be nontrivial we can take the
sublattice formed by this diamond and (M^)β as the required ikf3ί+1.
So assume that ker (t, u[, a) = D'3 is non-degenerate with u'z as its grea-
test element. Then it translates up onto a subinterval [m, m'] of [α, b]
and down onto a subinterval [slf s[] of [x[, u[]. Furthermore [s^ s[] is
the image of [m, m'] under the transposition [a, b] onto [χlf u[]. Then
using mainly the fact that bu'2 = u[, one can check that D^ generates
with (D[ U Dβ^sft a sublattice which has A2 as a homomorphic image
(see Fig. 11 for motivation), contradicting the hypothesis that A2&
HS(L).

We can therefore assume that the four lattices generated by {yn,
u[, a), {zn, u[, a}, {y[, un, a}, {z[, un9 a} respectively are distributive. We
infer that

(7) ayn + au[ = a(yn + u[) and azn + au[ = ά(zn + u[) ,
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V - i

FIGURE 11

( 8 ) ay[ + auH - a(y[ + un) and az[ + aun = α(^ + un)

By adding the two equalities in (7), we obtain

(9) vn + x[ = δ(y# + u[) + a(zn + n[) = δ(»Λ + uί + S(zn

[)) - a(yn + zn
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The last equality is due to (6). Similarly, by adding side by side the
two equalities in (8) we obtain

(10) v[ + xn = a .

By (3), (5) and (9), the Transposition Lemma applies to Dn, yielding
a diamond D'β = u[Dn with

(11) [x[, u[] \ > K <] and Dn^D'6.
(1)

Furthermore, by (10) we have

(12) v[ + x'6 = v[ + n[xn = ^ί(^ί + &•) = ^ία = «I

By (11) and (12) the Transposition Lemma applies to D[, yielding a
diamond D7 with D7 = ^ D ί and

(13) K, u7] = K ^ ] and D[ ^ D ; .
(1)

If V7 + ^ = #6> then the Transposition Lemma applies to D'β, yielding
a sublattice D[ = ^7D6 with [t;7, ^7] as one of its upper edges. Then
the sublattice formed by D'2, D'7, D'8 has Aγ as a homomorphic image,
contradicting the hypothesis that Aλ 0 HS(L). Therefore the conclusion
(ii) of Lemma 4.3 applied to the diamond D'6 and the interval [v7, z7]
must hold. We have therefore an element e and an element x[ with

(14) x'6 <£ a?J < u'6 and a;7 ^ e < u'Q,

such that if Dr, = (DJ)^, then

(15) e + a?ί = u'9 = < and eαjj = 9̂ (Fig. 12) .

The diamond D'g and the element e are thus elements of the interval
[̂ 6, u'β]. By the transposition of [v'6, u,'6] onto [vn, un], x[ and e are
mapped respectively into x[0 = vn + x[ and / = vn + e, so that xn fg
x[0 < ^;0 and if D[o = φ.)«;0, then

(16) u ; ^ ^ D;0 ,
(1)

(17) [e, <] = [e, «i] ^ ^ [/, ίtί,] = \f, u.]

(18) / + x'w = Mi, and /»;0 = vlo.

We have used here (15) and the fact that (£>;)„; = D'e. Let

(19) flr = e + 4 and D^ = {D[)β « = < ) ,

then [e, %£] transposes up onto [v'n, a?ύ]. With (17) and

(20) t φ t . = u[{bun) = u[un = i t i ,
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FIGURE 12

the dual of Transposition Lemma applies to D[19 yielding a diamond
D[2 = / + D'n so that [/, un] transposes up onto [v[2, x[2] and

(21) Un U2 ^ d ^

We now consider the configuration formed by / , D[o, D[2 and U S A
If the sublattice generated by {/, x[0, z[0} is distributive, then z[0 and
/ are equal, since by (18) they have the same relative complement
x[0 in this lattice. Thus we have

Furthermore, [v'1Of z[0] transposes down onto a subinterval of [vn, zn],
hence onto a subinterval of [xn-ly α?»_J if n >̂ 2. Therefore [v'10, z[0]
translates down onto a nontrivial homothetic image of Dn^ if n ^ 2.
Using (22), we have either a contradiction to the hypothesis that
Aι^HS(L) {\in ^ 2) or else the conclusion of (Δ) holds (when n — 1).
So we can assume that the sublattice generated by {/, x[Q, z[0} is non-
distributive. Then ker (/, x'1Of z[0) is nondegenerate diamond which
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translates up onto a subinterval of [/, un] and down onto a subinterval
of [v[Of z[0] by two opposite edges. Therefore, ker (/, x[09 z[0) translates
up onto a subinterval 7 of [v[2, x[2] and down onto a subinterval δ of
[#„_!, un^] by two opposite edges, and the two intervals Ύ and 3 are
nontrivial. Using the fact that u[2 ^ d in (21), we can therefore take
the sublattice formed by ker (/, x'i0, z'10), (D[2)r and ( U S ' A)* as the
required Λfi +i. This completes the proof of the statement (Δ).

We will complete the proof of the lemma by showing that if the
lattice L given in the lemma is infinite dimensional, then L contains
a sublattice M}k for every positive integer k, and if L is of dimension
k + 1(^ 2), then L contains a sublattice M3k. Observe that in either
case there exists a nondegenerate diamond D = [u > x, y, z > v] in L.

Case (i). L is infinite dimensional. Then for every k, there exists
a sequence dί < d2 < < d -̂i in L with either u <dx or c ^ < v,
or a? < dt < d2 < eZjb-i < w. In the first two cases we can apply
the statement (Δ) (or its dual) k — 1 successive times with d replaced
successively by dlf d2, , dk^ (or d ^ , dk-2, , dt) in order to construct
the required Λβ*. In the last case, by replacing D by (D)dl we go
back to the first.

Case (ii). L is finite dimensional. Then we can assume that the
edges of D are prime quotients and the term v of D is a minimal
element of all smallest elements of nondegenerate diamonds in L. By
the dual of the statement (Δ), v must be the smallest element of L.
Then since dim (L) = k + 1, we can choose a sequence ^ < d2 < <
ώfc-i with ώi > %lβ As in Case (i), we now apply the statement (Δ)
k — 1 successive times with d replaced successively by dlf d2i , dk^
in order to construct a sublattice JlfJ* which is the required sublattice
MJc since dim (L) = k + 1.

This completes the proof of the lemma.

Added in proof. Using different techniques, K. Baker independ-
ently announced without proof that the variety M? is finitely based
in [2].
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