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DIFFERENTIABLE POWER-ASSOCIATIVE GROUPOIDS

JOHN P. HOLMES

Suppose H is a Banach space, D is an open set of H con-
taining 0, and V is a function from D x D to H satisfying
7(0, x) = V(x, 0) = x for each x in Zλ If w, is an integer
greater than 1, denote by xn the product of n — x'β associated
as follows whenever the product exists.

x * = V ( x , V ( x , ••• V ( x , x) • • • ) ) .

Define x° = 0 and sc1 = x. V is said to be power associative
if and only if V(xn

f xm) — xn+m whenever each of n and m is
a nonnegative integer and xn+m exists.

THEOREM A. If H and V are as above, V is power asso-
ciative and continuously differentiate in the sense of Frechet
o n D x D then there are positive numbers a and c such that
if x is in H and 11 x \ \ < a there is a unique continuous function
Tx from [0,1] to the ball of radius c centered at 0 satisfying
V(Tx(s), T*(0) = T,(8 -f t) whenever each of s, t, and s + t is
in [0, 1], Γ«(0) = 0, and TJX) = x.

Theorem A is similar to a result in [1] of Birkhoff. He showed
that if H and V are as above, V is associative, V is Frechet differen-
tiable on a neighborhood of (0, 0), and V is continuous at (0, 0) then
some neighborhood of 0 is covered by partial homomorphic images of
the additive group of real numbers.

To see that Theorem A is not a special case of this result of
Birkhoff, we offer the following example. Denote by E the 2-dimen-
sional Euclidean space and define V from E x E to E by V((x, y), (z,
w)) = (x + [1 + (xw ~ yz)]z, y + [1 + (xw — yz)]w). If S is a 1-dimen-
sional linear subspace of E and each of p and q is in S then V(p, q) —
p + q. Thus V is power associative and 0 is an identity for V.
V is not associative but V is continuously differentiate on E x E.

We will now prove Theorem A. Regard H x H as a Banach space
in the usual way, defining the norm of a member (x, y) of H x H by
\\(x9 y)\\ — max {| I $ 11, \\y\\\. If c is a positive number, denote by R{c)
the set to which x belongs if and only if x is in H and ||α?|| < c.
Finally, if B is a bounded linear transformation from H x H to H
or from H to ίΓ, denote the norm of B by | J5|.

Define / from J5 to iJ by /(#) = F(#, a?) — x2 for each # in D.
Note / is continuously differentiate on D and if x is in D, f'(x)(y) =
F'(#, a?)(2/, ?/) for each 2/ in iϊ. Moreover, F'(0, 0)(2, w) = z + w for each
pair (z, w) in i ϊ x H so /'(0) = 21 where / is the identity transfor-
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mation on H.
Employing the inverse function theorem (for instance [2] page

268) we see that there is a positive number b and an open set U of H
such that (/| U) is a homeomorphism of U onto R(b) and g = (/It/)" 1

is continuously differentiate on R(b) with g'{y) = [f'(g(y))]~ι for each
y in 12(6). Hence ^(0) = 1/2 I.

By continuity of gr and V there is a positive number d and a
number ikf such that if p is in J?(d) x R{d) and a? is in R(d) then
I V(j>) I < Λf and | ̂ (α?) | < 2/3.

Suppose each of x, y, z, and w is in R(d). Then || V(x, y) — V(z,

w)\\ = || [dt V((z, w) + t(x-z,y- w)){x - z, y - w)\\ < M\\ (x - z,
Jo

y — w)\\. As special cases of this inequality we obtain

1. \\V(x,v)\\<M\\(x,y)\\ and

2. \\V(x9y)-v\\<M\\x\\.

Similarly, if each of x and y is in R(d) we have \\g(x) — g(y)\\ = \\\
Jo

dt g'(y + t(x — ί/))(a? — y) \\ < 2/3 \\x — y\\. Hence g is Lipschitz on R(d)
and has Lipschitz norm less than 2/3. In particular, for each x in
R(d) and each positive integer m we have ||#m(a;)|| < (2/3)m||x|| where
gm is g composed with itself m times.

LEMMA 1. Let r — d/SM. If x is in R(r), m is a positive integer,
and n is an integer in [0,2m] then [gm(x)]n exists and has norm less
than Λf||aj| |ΣΓ(2/3)'.

Proof. Note \V'(0, 0) | = 2 so M > 3/2. If x is in R(r), it is clear,
using inequality 1, that gι{xY exists for each i = 0, 1, or 2 and has
norm less than AT ||a?||(2/3).

Suppose m is an integer greater than 1 and assume that for each
integer k in [1, m) that gk(x)s exists for each integer s in [0, 2k] and
has norm less than M\\x\\ Σ f (2/3)*.

As has been observed before, gm{x) exists and || gm(xy\\ = 0. Suppose
n is an integer in (0, 2W] and assume for each integer c in [0, n) that
gm(x)c exists and has norm less than M\\x || ΣΓ(2/3)\

Then g^ixy-1 exists and HflT^)*"1!! < -MΊI^II Σ Γ (2/3)' < 2ΛΓ | |α?| |<
2Mr = 2Md/SM<d. Thus ^(a?)*-1 is in D and #m(tf)% = V(gm(x), gm(x)n^)
exists.

If n is even, we may use power associativity and the equality
gm{xf = gm~ι{x) to obtain gm(x)n = g"-l(x)n/\ Hence, by the first induc-
tive hypothesis, \\gm(x)n\\ < M\\x\\ ΣΓ(2|3)< β

If n is odd then gm(x)n = Ftow(ct;), ̂ ( w - 1 } (^) u - 1 ) / 2 ). Using the triangle
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inequality, inequality 2, and the first inductive hypothesis we
obtain \\gm{%Y\\ ^ \\V(gm(x), gm~ι{xYn~ι)l2) - gm~\xY*-l)\\ + \\g™-ι{x){"-1)ί2\\<

Thus we have Lemma 1.
Suppose x is in R(r). Denote by E the set of dyadic rational

numbers in [0, 1] and define T from E to H by T(^/2m) = gm(x)n. T
exists by Lemma 1 and is well defined by power associativity. More-
over, by power associativity, V(T(h), T(k)) — T(h + k) whenever each
of h, k, and h + k is in E. Lemma 2 will show that T has a continuous
extension to all of [0, 1].

LEMMA 2. // x and T are as above, each of h and k is in E, and
\h — k\ < l/2m for some positive integer m then || T(h) — T{k)\\ <
9M\\x\\(2/3)m+ί.

Proof. Suppose h = s/2m+n for some nonnegative integers s and
n, and u is an integer with each of u/2m and (u + l)/2m in E so
that h is in [u/2m, (u + l)/2m]. There is a sequence a19 •••, an such
that h = u/2m + aJ2m+1 + . . . + aJ2m+n and each a{ is in the set
{0, 1}. Thus T(h) = V(T(u/2% V(T(aJ2m+i), . . .

Let w be defined from {0, 1, -- ,w} by ^ = î /2m + Σ ί ^ / 2 m + i .
Then ^i = ^ _ ! + aJ2m+i for each i in {1, •••, n). Now, using the
triangle inequality, we have || T(h) - Γ(^/2W)|| ^ Σ Π I T(w{) - T(Wi^)\\.
But, using inequality 2 we obtain || T(Wi) - Tiw^W ^ M\\ T(a{/2m+i) | |<
Λf || a? || (2/3)w+ί. Hence || T(h) - Γ(^/2W) \\<M\\x\\ ΣΓ(2/3)w + i <

There is an integer u such that each of (u — l)/2m and (u + l)/2m

is in E and each of h and fc is in [{u — 1)/2W, (u + l)/2m]. Hence, by
using the triangle inequality and the inequality just proved, we obtain
Lemma 2.

From Lemma 2 it is clear that T has a continuous extension to
all of [0, 1] If each of s, ί, and s + ί is in [0, 1], choose sequences
{αw}Γ and {6JΓ in i? converging to s and £ respectively so that
for each positive integer n, dn = an + bn is in ,&. By continuity of
V and T7, we have 7(Γ(«), Γ(ί)) - limΛ V{T{an), T(bJ) - limw T(dn) -
T(s + t).

Choose c positive and less than r so that R(c) is contained in
g{R(d)). Let a = c/3Λf. If a? is in iZ(α) then, by Lemma 1, Tx maps into
R{c). Suppose F satisfies the conclusion of theorem A for x in R(a).
F(l/2) is in R(c) and hence in g(R(d)). F(l/2)2 = x and x is in i?(d)
so g(x) = F(l/2). Similarly gm(x) = F(l/2m) for each positive integer
m, and hence F agrees with Tx on E. Since each of F and Tx is
continuous, the proof is complete.
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