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DETERMINANTAL IDEALS, IDENTITIES,
AND THE WRONSKIAN

D. G. MEAD

In this paper we examine the question raised by J. F.
Ritt in his Colloquium Publication, Differential Algebra con-
cerning the study of the differential ideals generated by the
Wronskian. A test for an element to be 2 member of a certain
(algebraic) ideal is presented and this result is applied to the
differential ideal generated by the Wronskian. All identities
of a certain type of determinant are also obtained.

This extends recent results concerning the Wronskian.

0. Introduction. Let y;,te N=1{1,2,.--,n},7¢e M =1{0,1,
2, +++} be indeterminates over a field F, and let <Z = Fly;;]. With
S={, -, 4%} Nand {a, ---, a,} © M, where 7; < 7;,, and a; < a;,,
for all j, we let (S;a, -+, a,) represent the &k x k determinant with
Yi,a, in the pth row and g¢th column. In this notation y;; = ({t};J).
We call w = 3, a; the weight of (S;a, -+, a,). If F is of charac-
teristic zero and y;; is the jth derivative of ¥;, then (N;0,1,---,
n—1) =Wy, -, 9., the Wronskian of v, ---,%,.. Using the
Wronskian as a model we consider ideals in &#

It = (Wo, Wl: Sy Wt)

where W, is any fixed linear combination with nonzero coefficients in
F, of all nth order determinants of weight (n(n — 1)/2) + 1. We
present a constructive procedure to determine whether any given
PezZ isinI=L,ULUILU---. A basis of .ZZ as a vector space
over F' is obtained such that the deletion of certain elements yields
a basis of .<Z/I; this, in a natural manner, leads to cannonical forms.
The proof provides all possible identities of determinants (each of the
type (S; a, ++-, a;)). We also encounter a combinatorial problem whose
solution appears to be difficult.

This work extends the results of [6] to = > 2 and those of [1]
to a general ring. It has some similarities to the work of Levi [3],
for the differential ideals [y*] and [uv] as well as [2], [4], [5], and [7].
Although the Wronskian is zero if and only if {y;)} is a linearly de-
pendent set (the y’s being analytic functions) [8, p. 34], by the Ritt-
Raudenbush Theorem of Zeros [8, p. 27] one cannot distinguish by
zeros, elements in {I} from those in I. Thus a test for membership
in I cannot be stated in terms of solutions.
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1. Gradings of 2. The set of all polynomials in & which are
homogeneous of degree d; in the y;;, where the d; are fixed nonnegative
integers, is a subspace of 2. <2 is the direct sum of the subspaces
which clearly provides a grading of <. If d is a fixed nonnegative
integer and {k, ---, k;} is a fixed set of nonnegative integers (with
possible repetitions), the set of polynomials in products of degree d,
Yin, *** Yigr, for any choice of the ¢;, is also a subspace of <Zand &
is the direct sum of these subspaces. (With d = 0, the subspace is
F.) The intersection of these two gradings is the one we use, and
we usually work in a subspace which is homogeneous with respect to
both gradings. It is clear that each component (homogeneous subspace)
is of finite dimensions. The combinatorial problem to which we referred
previously is to determine the dimension of these components. Although
the problem seems difficult to answer, one can obtain interesting
relations by constructing different bases of a component (and then
use the fact that the cardinality of all bases of the component are
the same).

2. Ordering. The proofs will use an ordering of the elements
in the components (of our grading). We first order subsets of N =
{1, - -+, m}, then determinants, and finally products of determinants.

DErFiNITION 1. Let S = {¢, <+, %}, 8" = {é1, -+, 7;} be subsets of
N with i, < %, and % < ¢},, for all « and g.
We say that S is lower than S'(S < §') if

(1) E>1
or
(2) k=1land 3t 34, =1 for j <t and 7, <1, .

We also write S< S"if k=1 and ¢; <4} for all 7 <1. (Note
that for any S, S € S although S « S.)

DEFINITION 2. Let P=(S;a, ---,a,) and P =(S";b, +--,b)
with S and S’ as above and a, < a,,, and b; < by, for all « and g.
We say that P is lower than P'(P < P’) if

(1) S< s
or
(2) S:S’ and Zaz<2bz

or
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(83) §S=8,3a,=>,b;and 3t 3 a;, =0b; for : < ¢ and a, < b, .

P is said to be s-lower than P’ if either S< S or S=S8" and
>0, < 20 b;.

If S8 and a; < b; for all j <1, we say the product PP’ is
monotonically increasing and we write P < P'.

The following fact will be critical in the proof of Theorem 3: If
P is s-lower than P’ and @ is lower than but not s-lower than P’
then P is lower than @ (in fact s-lower than Q).

DEFINITION 3. Let A= P,--- P, and B=Q, --- @, be products
of determinants with P, not in F, and P, < P,.,, Qs < Q;., for all «

and 8. We say that A is lower than B if

(1) r>s
or
(2) r=sand 3t3 P, =@Q; for 1<t and P, < Q, .

A is said to be s-lower than B if r > s, or if in (2), P; is s-lower
than Q,. If A is lower (s-lower) than B we say that A -1 is lower
(s-lower) than both B and B - 1.

It is clear that this is a partial ordering of <2 which is compatible
with the ring multiplication; i.e. if A < B then AC < BC for every
product C of determinants, C = 0.

DEFINITION 4. If the product A = P,--- P, = > a; B; with a; € F,
then A is said to be replaceable (s-replaceable) if for every ¢, B; is
lower (s-lower) than A.

3. Basis. We now consider certain products, called \-products,
the set of which form a basis of <# (as a vector space over F).

DEFINITION 5. The product A4, which can be written A = P,--- P,,
is called a »product if A=1 or »>0,P, ¢ F, and if ¢ < j then
P, L P;.

We first show the A-products span 2.

LEMMA 1. If a product A is mot a \-product, them A 1is s-
replaceable.

Proof. Let P = ({iy, <+, t}; @, oo, 0,) < P = ({ily o+, 0} by 000,
b,) but not P < P’. We consider two cases:

(1) i, <4 for j < t but 4, > i .
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(2) S8, a; <b; for <t but a, >0, .

Since P< P',k=1. Assume (1) is satisfied and consider the
(k+ 1) x (k + 1) matrix

B, C
H=
(D &)
where B, is the k& X k matrix of P, B; ist he | X [ matrix of P, C =

0if p <t
Yip, f D=1,
. . Yo if p <t

is the I x k matrix defined by d,, = {O Iifq p >t

Expand det (H) in two ways: by minors of the first £ columns,
and by minors of [ — 1 rows consisting of the first ¢ — 1 rows along
with the last I — ¢ rows. These two expansions give this same value
(det H); set them equal to each other and solve for P.P =
(det B,)(det B,), which appears in the first expansion. We claim that
all the other terms are s-lower that P . P’.

Clearly all the terms in the row-expansion are s-lower, since one
of the two determinants in each term is a (k + 1)st order determinant,
hence the term is s-lower than PP’.

In the column expansion we see the kth order determinant is of
the form ({¢,, « <+, %,_y, €5, ***, €,_ss1}; —) Where {e,, +++, ¢;,_,,,} TUNS OVer
all possible subsets of {i], ++-, 4}, %, -+, %;}. Since this latter subset
is monotonically increasing as written, we see that the highest kth
order determinant is obtained when {e,, ««-, e,_;1,} = {;, +- -, %}, that
is, when the determinant is P. Thus all the other terms in the column
expansion are lower, and clearly s-lower than PP’. This completes
the proof when (1) is satisfied.

The proof for the case in which (2) is satisfied is similar. With
the notation as above, consider the (k¥ + 1) x (k + I) matrix

(¢p,0) is the k x I matrix defined by ¢,,, = { and D =(d,,)

H— (Bl E) where ¢,, = {yi,,bq %f q=t and £ — 0 Tf qg<t
F B, 0 if g >t Yipa, if g =0 .

Expand det (H,) by minors of the first & rows, and by minors of
{ — 1 columns consisting of the first ¢ — 1 columns along with the
last I — t columns. The highest product in the two expansions is
PP, and all the other terms as s-lower.

The process indicated in Lemma 1, replacing a product which is
not a M-product, always takes place inside one of the (homogeneous)
components of our grading, and since the dimension of this subspace
is finite, the process must terminate. We have proved

THEOREM 1. The \-products span & (as a vector space over F').
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We next show that the set of \-products is linearly independent
over F. This will show we have obtained all of the determinantal
identities, for, by the independence of the A-products, the representa-
tion of any element of <Z as a linear combination of A-products must
be unique.

THEOREM 2. The set of N-products is linearly independent over
F.

Proof. We proceed by induction on » (the cardinality of the set
of the first subscripts on the »’s). The theorem is clearly true if
n =0 or 1.

We extract an essential step in the induction proof as

Lemma 2. If 1) 3 a;L; = 0,1 € I with the L;’s distinct A-products
and o; € F, then there exists a nonempty subset J C I and a set of
distinct A-products L}, j € J such that

(*) Sa;L,=0,5¢J

with Y., appearing in L} only in wth order determinants (i.e. deter-
minants (N; _)).

Let us use Lemma 2 to complete the proof of Theorem 2, and
then return to prove the lemma. Since () is an identity in the y;;, we
may assume each L) is of the same degree, say k, in nth order deter-
minants. Then L has a factor (N; a,(4), -+, @, (7)) +++ (N; k,(9), *++,
k.(9)) with a,(J) <b,(J) < - -+ < k,(j). We order the sets T; = (a,()), - - -,
k.(9)) lexicographically, and let J' = {j € J|T; is highest}. Again,
since (x) is an identity, we must have >, a;L; = 0 for j € J'. In this
last equation, if (¢, «--, ¢;) is the highest T;, then the coefficient of
I Yo, is XL} = 0 for j € J', where L} is obtained from L; by
replacing each (N;a, --+,a,) by ({1, -, n—1};a, *+-, a,_,). We
note that the L} are distinct A-products free of y,; by the induction
hypothesis each a; = 0. This completes the proof of Theorem 2.

We return to the proof of Lemma 2, first making some observa-
tions concerning the behavior of A-products under a particular type
of substitution.

If L is a fixed A-product, then substitution of w.; + ty,; for w,;
will turn L into a polynomial in ¢ of degree, say, d. The coefficient
of t* is again a A-product L’ and the only %,; which remain in L’ are
those in determinants ({1,2, ---,}; ). Knowing d and L', we can
reconstruct L; i.e. the function from (IL,d) for certain L to L' is
one-one. An example will illustrate the procedure. If L = ({1, 2, 4};
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L, 8,45 )2, 3h; )2} ({8} ) thend =2 and L' = ({1, 2, 4} ;
UL, 8,4} )L, 3 )3} )3 ). (There is no change in the
second subscripts.) To construct L from L', we note that since
d =2, two of the 1’s in L’ need to be changed to 2’s. From the
definition of a A-product, it is clear that we change the 1’s to 2’s,
starting from the right (if the determinants in the \-product are
arranged so they are monotonically increasing). This procedure can
easily be generalized.

In Q) > a;L; = 0 with the L; distinet A-products we make the
substitution y,; + ty,; for wu,; and extract the coefficient of ¢* where
d = max (d;), L; having become a polynomial of degree d; in t. Since
(1) was an identity in the y,;, it follows that the coefficient of ¢* must
be zero. The function from (L, d) for certain L to L’ is one-one,
therefore

(2) SaL;=0forteI'=1,

where the L] are distinct A\-products and the only 2’s that appear as
a first subscript are in determinants of order two or higher of the
form ({1, 2, ---}; __).

Continue the process, substituting v.; = v,; + ty,; and again extract
the coefficient of the highest power of t. We find

(3) oL =0foriel" I,

where the L} are distinect A-products and the only 3’s that appear
as a first subscript are in determinants of order three on higher
({1,2,8,--+,}; ). The proof of the lemma is completed by induction.

Combining Theorems 1 and 2, we note that the \-terms form a
basis for <# as a vector spaces over F. In the next section we con-
sider a subset of the M-products which form a basis of /I, and this
will yield canonical forms and the test we seek for membership in I.

4. Canonical forms. With » > 1 and w = (»(r — 1))/2, let
Mr, w) = {a,, -+, a,} where w = >} a;
and either
(1) ;. = 1 + a; for all 7
or

(2) ;.= 1+ a; for © = ¢t for some ¢ and a,., = 2 + «, .

DEFINITION 6. Let P be a M\-product, P 1. Then P is called
a pB-product if P contains wmo subproduct (i.e. factor) of one of the
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following types:

(1) C=(N;e, ++-,¢,) and {c, -, ¢c,} = M(n, w) for some w .
(2) B-C=(N;b,+-+,b)N;e, +++,c,) where BLC,
b; = ¢; for ¢ >t and {c,, - -+, ¢,} = M(t, w) for some w .
(8) C+-D=(Nje,-++,¢)S;d, +++,d;) where CL D,
¢; =d; for i < rand{c,., -, ¢} = M(n — r, w) for some w .
(4) B-C-D=(N;b, +++,b)N;cy,++,e.)S;d, +++,d,) where
B«LC<LD,b;,=c¢; for ¢ >t,c; =d; for + < r, and
{rsry =+, ¢} = M(t — r, w) for some w .

Since P = P -1 we consider P to be a subproduct of itself.

Although all the conditions can be obtained as special cases of
(4), taking one or both of B and D to be 1, it seems worthwhile to
indicate the various cases explicitly.

An alternate characterization of B-products, contained in the next
lemma, is used in the proofs of the two following theorems.

LEMMA 3. Let P be a fived N-product and w a positive integer
no less than n(n — 1)/2. If E is an nth order determinant of weight
w, then for PE to be a N-product dbut not a B-product with K playing
the role of C, it s mecessary and sufficient that PE be the highest
N-product in the set {PX} where X runs over wnth order determinants
of weight w.

Proof. 1t is clear that we may consider only the last condition
of Definition 6 and assume PE = BDE with B< E < D. For the
necessity we assume BDE is not a g-product with E playing the role
of C, that there is an nth order F of weight w such that BDF is a
A-produet higher than BDE, and we obtain a contradiction. We know
that F = (N; f, ¢+, f.) is higher than £ = (N;e, -++, ¢,); of course
BLF<KD. Lete, =b;fori >t e; =d;fori < r,and {e,.,, +++, ¢} =
M(t — r, w") for some w’. Since E < F there is an s such that f; =e;
for i <s and f, >e,. Clearly s >r gince fi=d;, =¢; for 1 <r. If
r<s=tthen Xi ., fi >k, .e; (M(k, w) is the highest k-tuple of
weight w), hence f; < e¢; for some j > ¢t. But this is a contradiction
since f; = b; for all ¢+ and b, = ¢; for ¢+ > ¢. Similarly s cannot be
larger than ¢. Consequently there can be no s with f, > e, and this
completes the proof of the necessity.

The proof of the sufficiency is direct and we assume that BDE
is the highest M-product of the form BDX where X is an nth order
determinant of weight w. If E = D and we are done for E would
play the role of C in Condition 3. Assume E = D, let ¢ be such
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that e¢; =d; for 1< ¢ and ¢, <d, (¢ is the order of D if ¢; = d;
for every 4), and let s be the smallest 2= q such that e;., >
1+ e. Clearly 1+ ¢, <d,. If there is an ! > s + 1 such thate, , <
e,—1, let F=(N;f, +++,f,) where f;=¢; for i=s1,f,=1+e,
and f; = ¢, — 1. Then the weight of F is w and BDF, being higher
than BDE, is not a A-product; this implies that f; < b, = ¢;,. Conse-
quently, forany j =4 > s + 1 with ¢; > 1 + e;,_, we have ¢; = b;. (In
the same way, if e¢,,, — e, > 2 then ¢; = b; for j=s +1.) If ¢, =
2 + ¢, and [ is the smallest 7 > s + 1 such that ¢, > 1 + ¢;,_, then E
plays the role of C in Condition 4 with t=71—1and r=q — 1. If
e,1, > 2+ e, then E plays the role of the same C with ¢ = s and
r = q — 1. This completes the proof of the lemma.

THEOREM 3. If the M-product P is mot a pg-product, them P 1is
replaceable modulo I.

Proof. If P is not a B-product, then P contains a subproduct of
one of the four types described in the definition. Pick one of these
subproducts and let C denote the corresponding nth order determinant.
Since C is one of the terms in W,, where k= >\, ¢; — n(n — 1)/2,
we can solve (P/C)W, =0 (mod I) for P. By the necessity part of
Lemma 3, we see that every A-product in the expression we have
obtained for P is lower than P. If a product, R, in the expression
for P is not a A-product, we know R is s-replaceable (Lemma 1). If
P is lower than R it is not s-lower than R, hence every product in
the representation of R as a linear combination s-lower products is
lower than P (see the remark after definition 2). This completes the
proof of Theorem 3.

In this theorem the products are not contained in one component
of our grading. However, the total weight provides a grading and
if we consider the grading which is the intersection of the total weight
with the degree (d; in the y,;), then all of the products above will
be in one homogeneous component of this new grading. Since the
dimension of each of these components is finite, we may conclude
that every A-product is congruent modulo I to a sum of B-products.

THEOREM 4. (Canonical forms). Ewvery element of 2 vs expressible
as a linear combination, with coefficients tn F, of a finite number of
distinct products

(*) PWaWb"' W,.

where P is a B-product or 1. The expression, which may be of degree
zero in the W’s, is unique.
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Proof. The fact that such a representation can be obtained follows
from Theorem 3, and we merely need to show uniqueness. For each
expression T of the form (x) we will obtain the highest A-product B
in the expression for T as a linear combination of A-products. The
correspondence 7 — B is one-to-one, hence no linear combination of
distinct expressions T of the form (x) can vanish since the highest
B cannot cancel.

If £ and F are nth order determinants of weight w, P is a -
product, PE is the highest \-product of the form P times an nth
order determinant of weight w, PF is not a A-product, and PF = >, Q;
where the @, are A-products, then, by the remark after Definition 2,
each Q; is s-lower than PF and therefore s-lower than PE. In view
of the above, we see that the desired correspondence is provided by
the sufficiency part of Lemma 3, and this completes the proof of the
theorem.

COROLLARY 1. The B-product form a basis of % mod I.

COROLLARY 2. A mecessary and sufficient condition for an element
of & to be in I is that mone of the terms (x) of its canonical form
be of degree zero im the W's.

One can obtain many facts similar to those obtained in [6], such
as the following

COROLLARY 3. Let P be a g-product of degree d im nth order
determinants and degree t im (m — 1)st order determinants

P = ﬁ(Nﬂlm ey ) fISi;byZ, ceny bai)

=1 i=

then

S50+ 5 Neez @+ (L1t

7=1 %=1 j=1 i=1

+t<(n—3)2(n—2)+n+d—2>.

Proof. The g-product of minimal weight with the proper degrees
is

(i:IdIl(N;O,l,---,n—3,%—3+'é,n+i)>

x(iI;Il(Si;O,l,---,n——3,n+d—2)>
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where the cardinality of each S; is n — 1.

We conclude with a combinatorial result. Let d, d, and d, be
three positive integers and S a fixed set of non-negative integers,
(possibly with repetitions) where |S| =d, + d, + d,. (We use |S] to
denote the cardinality of S.) Let K be the number of distinct ways
of writing S as the union of three subsets, A4, 4,, and A; where
|A;| = d;. We also consider S as the union of six special kinds of
subsets and show that the number of ways of doing this is also K.
Before describing these subsets, we define some terms relating to
subsets of integers.

A set A of ordered n-tuples is said to contain strict n-tuples if
U e A implies U = {u,, ++-, u,} where u; < %;,,.

A set A containing strict n-tuples is momnotonic if given two
elements of A, they can be labelled U = {&;} and V = {»;} so that
u; <v; for i =1, «--, m.

The pair A, B, with A containing strict »-tuples, and B containing
strict m-tuples (4 # B), is A— B monotonic if given U= {u;} € A
and V = {v;} € B then u; < v; for all 7 < min (m, n).

Let L be the number of ways that S can be written as a union
of six sets of subsets A4,, ---, A;, containing strict n;-tuples, respec-
tively ; each A; is monotonic and each pair A4;, A; is A;— A; monotonic
if 1<J; n.=38,m=m,=2 n,=mn, =1 and either n, = 2 and

d, = [Ai| + [Ao| + [ Asl, do = [Ai] + [As] + [A,] + A
and
dy = [As] + [As| + [A] + [As]
or n, =1 and
d, = |A,| + |A:| + |4s| + [AL, d; = | A + |A,] + |4,
and

ds = lex + IA3| =+ IA3{ .
THEOREM 5. K = L.

Proof. In &2 (with n = 3) we consider the (homogeneous) com-
ponent containing those products of degree d; in y;, ¢ =1, 2,3, for
which the set of the second subscripts is S. Since the y;; are linearly
independent, the dimensions of this subspace is K.

The set S can be considered that a set of \-products and for a
fixed A-product, A; is the collection of all determinants (S;; ) where
|S;| = n;. We have S, =1{1,2,8},S,=1{1,2}, S, =1{1,3},S; = {2}, and
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Se = {8}. In the first case (n, = 2)S, = {2, 3}, while in the other
(n, = 1)S, = {1}. By Theorems 1 and 2, the A-products form a basis
of the subspace and therefore the dimension of the subspace is L.
That is, K = L.

This result (and its generalization) was useful in ruling out various
candidates for the set of A-products. With |S| small one can deter-
mine K.

It would be interesting to know if there is any simple or even
iterative method for computing the number K. Of course one can
produce other sets of bases for the components, but none that we have
obtained has simplified the determination of K.
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