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THE SPECTRUM OF CERTAIN LOWER TRIANGULAR

MATRICES AS OPERATORS ON THE lp SPACES

JAMES D. STAFNEY

In this paper we compute the spectrum of the lower tri-
angular matrices Aa = (cm,n), where cm,n = (n + l)al(m+ϊ)a+1,
m ^ n ^ 0, a is real and the corresponding operator on lp is
bounded (see 4.1). This result and other lemmas are used to
determine the spectrum of lower triangular matrices p(ri)lq(m),
m ^ n ^ 0 as operators on lp where p is a monic polynomial
of degree a, q is a monic polynomial of degree a + 1 and
q(m) Φ 0 for m = 0,1, . The spectrum is the diagonal to-
gether with the set Ca-P — l+i when a — p*1 + 1 > 0, where
Cb = {λ:\λ- (2b)-11 ^ (26)-1} (see 4.3).

Our initial interest in this problem stems from conversations with
Prof. Charles J. A. Halberg, Jr., who had conjectured and partially
proved the conclusions of Theorem 4.1 for an operator equivalent to
the special case a — 1.

1* Preliminaries* In this section we set down the general nota-
tion and prove some preliminary lemmas.

General notation 1.1. Let X be a complex normed linear
space. The norm is denoted || || or || ||Λ if it can be confused with
another norm. The normed algebra of bounded linear operators on
X is denoted O(X). For Te O(X), sp(T) or sp(Γ, X) denotes the
spectrum; that is, all complex numbers λ such that λ — T does not
have an inverse in 0{X). If Te O(X) and K is a subspace of X such
that TKczK, we let T\K denote the operator in 0{K) obtained by
restricting T to K.

For 1 ̂  p 5g co (p will always denote a number in this range) lp

is the usual normed linear space of complex p-summable sequences
x — (χQy χl9 •••). We will be concerned with complex matrices A =
(̂ m,J, 0 ̂  m> n < °° It is well known that there is a one-to-one
correspondence between O(lp) and a class of matrices and that this
correspondence is an algebra isomorphism. In this paper we will not
disinguish between an operator in O(lp) and its corresponding matrix;
in particular, we will speak of matrices as elements in O(lp). A lower
triangular matrix A = (αm,w) is a matrix such that amtn — 0 if m < n,
,Sfp will denote the lower triangular matrices in 0(1 p). The set
{an>n: n = 0,1, •••} is denoted d(A). A sequence Ak of matrices is
said to converge to A entrywise if the m, wth entry of Ak converges
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to the m, nth entry of A as k —• oo for each m, n. For m = 0, 1,
/ m will denote the sequences x in Zj, such that x(k) = 0 if k ^ m and
ifm will denote the sequences x in ^ such that x{k) = 0 if k < m. For
Te^fp, the final spectrum of Γ, denoted s p / T ) , is defined as the set
Π{sp(Γ|iΓw): m = 0, 1, •••}. Finally, for each complex number z, Az

will denote the lower triangular matrix with m, nth entry

(n + l)7(m + 1)'+1

for m ^ w (real for real z).
The following three lemmas are easily established.

LEMMA 1.2. A matrix A = (am>n) determines a bounded linear
operator on lι if and only i / s u p Λ . χ w | am>n\ < oo. J7^ matrix A deter-
mines a bounded linear operator on L if and only if supw Σ n | αm,Λ | <
oo. When one of these suprema is finite it is equal to the corre-
sponding operator norm.

LEMMA 1.3. If A = (αm,Λ) and B = (δw,n) are matrices, bm>n ^ 0,

BeO(lp) and \am,n\ ^ 5w,%/or 0 ^ m, w, then AeO{lp) and \\A\\ ^

LEMMA 1.4. Suppose that Sn is a bounded sequence of matrices
in O(lp), 1 ^ p ^ oo, such that Sn converges entrywise to the matrix S
as n—*oo. Then S is in O(lp) and \\S\\ 5j supw | | S J | .

LEMMA 1.5. Let Te^fp. Suppose that X is a complex number
Φ 0, that the sequence Σ?=o (X~1T)n canverges entrywise to the matrix
U as m—> oo and that U is a bounded operator on lp. Then X~ιU is
the inverse of λ — T in the algebra of bounded linear operators on lp.

Proof. Let Um = λ"1 Σ - o {X~ιT)\ (λ -T)Um= ?7m(λ - Γ) = / -
(λ-χT)m + 1 and (χ-1T)m+1-+0 entrywise as m — o o . Also, Um-^X~ιU
entrywise as m —> c>o. From these observations and the fact that the
matrices involved are all lower triangular matrices, it is clear that
(λ - T)X~ιU= X~ιU{X - T) = I.

A decomposition 1.6. For a lower triangular matrix S and m —
0, 1, ••• we define the corresponding matrices Emj Nm and Bm by: Em

has the same j , kth entry as S if 0 ^ j , k < m and has all other
entries = 0; Nm has the same j , fcth entry as S if k < m, j ^ m and
has all other entries — 0; Bm — S — Em — Nm.

LEMMA 1.7. If Se^fp, m = 1, 2, and Em, Nm, Bm correspond
to S as in ί.6, then
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sp(S) = sp(#J/J U spOBJiQ ,

(Jm, Km defined in paragraph preceding 1.2).

Proof. For convenience, let E = Em, N = Nm, B = Bm. It is
obvious that sp (E + B) = sp (E\Jm) U ps (B\Km). Thus, we need only
show that

(1) sp (S) = sp (E + B) .

If λ — S has an inverse, then

\ - E - B = \-S+N=(I+N(\- S)-1)^ - S)

and, if λ — E — B has an inverse, then

X-S = X-E-B-N=(I-N(X-E- B)"1)^ - E - B) .

From these two observations it is clear that in order to establish (1)
we need only prove that NA is a nilpotent operator for each A e ̂ fp.
A simple computation shows that the matrix A(NA)m = (aj>k) has the
property that ajtk = 0, if j < k + m. Thus, (NA)m+1 = 0. This com-
pletes the proof.

LEMMA 1.8. Suppose that SeJίfp and let Sm denote the operator
in O(Km) obtained by restricting S to Km, m = 0, 1, . If λ — Sm

has an inverse in O(Km), then λ — Sk has an inverse in O(Kk) for k^m.

Proof. Let Tm be the inverse of λ — Sm and k ̂  m. If x e Jk,
then Tmx = u + v where u, v e Jm, u(j) = 0 for j ^ k and v(j) = 0 for
j < k. It is clear from Lemma 1.7 (since lp looks like Km) that λ Φ
ak>k for k ̂  m, where S = (αm>%). If ̂  =̂  0 and r is the smallest integer
such that u(r) Φ 0, then (λ — Sm)u(r) Φ 0. Thus, (λ — Sm)u£jk; and,
since (λ — Sm)veJk, it follows that x = (λ — Sm)Tmx£jk. This con-
tradiction shows that % = 0. Thus, Tm leaves Jk invariant; and, con-
sequently, λ — Sk has an inverse in O(Jk).

Recall that for a matrix A = (αm,w), d(A) denotes the set {an>n: n =
0,1,...}.

THEOREM 1.9. If Tej2fp, then

( i ) sp(Γ) =

Proof. It follows immediately from Lemma 1.7 and Lemma 1.8
that the left-hand set in (i) contains the right-hand set. If λe sp(Γ),
then again by Lemma 1.7 it follows that either λ e sp (Bm \ Km) for
m = 1, 2, or λ e sp (Em | Jm) for some m = 1, 2 . This completes
the proof.
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LEMMA 1.10. Suppose that S, Tejϊfp and let Sm, Tm denote the
elements of O(Km) obtained by restricting S, T to Km, respectively. If

Tm — Sm 11 —* 0 as m —> oo, then

Proof. Suppose λ is not in sp/(T). From the definition of sp/(Tf)
and Lemma 1.8 we conclude that there is an m0 such that for m^ m0

λ - sm = (λ - τm)(i + (λ - τmy\τm - sm))

in the algebra 0(Jm). Clearly, | | (λ— T^W is bounded for m ^ m0

since (λ — T™)"1 is just the restriction of (λ — Tm)~ι to Km, m ^ m0

(see proof of Lemma 1.8); and, by hypothesis, \\Tm — Sw||—>0 as m—>co.
Thus, for some m ̂ m 0 , X — Sm has an inverse in O(Jm). This shows
that λ is not in sp/(S). By interchanging S and T in this argument
we complete the proof.

LEMMA 1.11. // TeJίfpy then each isolated point in sp(T) is in
d(T).

Proof. Suppose λ is an isolated point of sp(T). Let J be the
image of lp under the projection that corresponds to the spectral set
{λ} (see [2, p. 573]). Then J is an invariant subspace of T and Tι =
λ + Q where ϊ\ = T\J and Q = (T - λ) | J. Furthermore, sp (Q) = {0}.
Let r be the smallest integer ^ 0 for which there corresponds an x
in J such that x{r) Φ 0. From the definition of r and the fact that
Te j:2?p it follows that Tx(r) = ar>rx(r) for each xe J where T = (am>n).
This together with the fact that 2\ = λ + Q yields

(2) Qα(r) = (ar>r — \)x(r), xeJ.

Since e a c h Qnx is in J, (2) yields

ζ)wa;(r) = (ar>r — λ)wα;(r), xeJ.

Choose xeJ such t h a t &(r) ^ 0. T h e n

\(π Λ \ » r u I < 11 Πn 11 11 r 11 ΎI — λ 9

and the fact that sp (Q) = {0} shows that ar>r = λ. This completes
the proof.

2 An Inequality. Let V be the vector space of all complex
matrices with the topology of entrywise convergence. It is clear that
O(lp), H j ) g oo, is continuously embedded in V. It is with respect
to this embedding that we define the interpolation spaces
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Qs = [O(L), O(k)]s , 0 ^ s ^ 1 ,

as in [1, p. 114]. Let Ns denote the norm of the space Qs.

LEMMA 2.1. If Te Qs, then TeO(lp) where p~ι = s and || T\\0{lp) ^

This lemma is an immediate consequence of [1, Sec. 10.2].
Recall that Az is defined in 1.1.

LEMMA 2.2. There is an absolute constant C such that if u > 0,
1 ίg p <̂  oo and Re z — p~ι + 1 = u, then Az e O(lp) and

(a) II Az llo(Zp) = Cu ι .

Proof. For Rez > —1 and 1 > r > 0 let i?r,z denote the matrix
obtained by multiplying the m, nth entry of Az by (n + l)~ r. Fix
u > 0 and for r > 0 and 0 ^ Re z ^ 1 let /(r, ξ) = Br,ξ-1+U. In order
to prove the lemma we must show that for each r > 0 the following
hold:

( 1 ) f(r, •) is a continuous function from 0 ^ Ref ^ 1 into O(L);

( 2 ) /(r, •) is an analytic function from 0 < Ref < 1 into O(L);

( 3 ) /(r, •) is continuous function from Ref = 1 into 0(1^;

( 4 ) there is an absolute constant C such that

ll/(r, ξ) | |0 ( I p ) ^ C ^ 1 if Re ί - i, p- 1 = i, i = 0, 1 .

We will now establish (l)-(4). Fix r > 0 . For k = 1, 2, , let # f c f ί

denote the matrix that has the same m, nth entry as f(r, ξ) when
0 <, m, n < k and that has m, wth entry = 0 otherwise. It is obvious
that (1) and (2) hold if f(r, ξ) is replaced by Ektξ for any k = 1, 2, .
Furthermore, a simple computation using Lemma 1.2 shows that

where C is a constant which depends only on u. Thus, (1) and (2)
hold. Again using Lemma 1.2, we see that

( 6 ) | |/(r, 1 + it) - Ektl+it \\Oih) ^ u~ιk~r for k = 1, 2, . , t real .

(3) follows from (6) and the fact that Ekyl+it is a continuous function
of t with values in O(lL). (4) also follows from a simple computation
using Lemma 1.2. From (l)-(4) we see that we can apply [1, p. 114]
to /(?% ξ)e2{z~ξ)2 and deduce /(r, ξ) e Qs where Re £ = p"1 = s and
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( 7 ) N.(f(r, £)) ^ Cu~ι for 1 > r > 0; Re ξ = s 0 ^ s rg 1 .

If Re z — p" 1 + 1 = u and £ = z + 1 — w, then Re ζ = p~u, therefore
by Lemma 2.1, (7) and the fact that Br>z = f(rtξ), we see that

-1 if

From (8), the fact that B1Jn,g converges to Az entry wise as n
Lemma 1.4 we obtain the conclusion of the Lemma.

and

3. The transform* In Lemmas 3.1 and 3.3 we will establish
two properties of the series

which will be used to obtain a lower bound for the spectrum of opera-
tors Az on lp spaces. Recall that Az is defined in 1.5. We use Σ and
Σm to denote sums taken over all nonnegative integers.

LEMMA 3.1. To each real number α, 1 ^ p ^ co and K, a com-
pact subset ofRew>a — p~\ there corresponds a constant C depending
only on a, p and K such that

Σ

for each x e lp and ze K.

We need the following inequality for the proof of this lemma and
Lemma 3.3.

PROPOSITION 3.2. For n — 2, 3, and w a complex number,

n) ^ I win I (n + l ) ~ R e w exp (| w \ + | w |2)

where C is an absolute constant.

Proof.

G) e x P i -
w

2 Λ=I k2
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w
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+
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+
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+

Σ —

expj w\

\

exp{|w|

\og(n

+ \w2

+ 1) -fix

This proves 3.2.
We now prove Lemma 3.1. By using Holder's inequality and the

estimate in Proposition 3.2 we see that

where d depends on K and p" 1 + q~ι = 1. To obtain a constant C
we need only require that (a — 1 — Re w) < — 1/g, even in the case
q = oo; or, equivalently, Re w > a — p~\

LEMMA 3.3. If 1 ^ p ^ °°, Re w > a — p~\ a — p~ι + 1 > 0

(3.3.1)

series converging absolutely.

Proof. It follows from Lemma 2.2 and Lemma 3.1 that both sides
of (3.3.1) converge absolutely and determine continuous linear func-
tionals on lp.

In order to establish (3.3.1) we first assume that a = 0 and 1 <
p ^ oo. Consider a sequence x(m) = tm where 0 < t < 1. Then

(1) AQx(m) = (m + I)" 1 Σ ** = ί1 - ί)

From Proposition 3.1 and Taylor's theorem it follows that

( 2) Σ (-l)mf W)sm = (1 - s)w, - 1 < s < 1, « complex and the

series converges uniformly for s in a compact subset of
( — 1,1) and w in any compact set in the plane.

We also note that

( 3) (1 - ^ H V - s)wds - (1 + - t)w , Φ - 1 .
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From (1), (2) and (3) we see that

(4) Σ (-l)-(^)Ao»(m) - (1 + w)-\l - ty .

Again, from (2) we see that the right side of (4) is

This establishes (3.3.1) for the special sequences x(m) = tm, 0 < t < 1
and for any w. If ye lq, (p"1 + q~ι = 1) and y Φ 0, then Σ tmy{m)
must be ^ 0 for some t in (0, 1) since the series converges to an
analytic function of t. This shows that the linear span of the sequences
(tm), 0 < t < 1, is a dense subspace of lp, 1 < p g c>o. Since both sides
of (3.3.1) determine continuous linear functionals on lp, we conclude
that (3.3.1) holds for the case a = 0 and 1 < p ^ <>o.

Now consider the general case. Let x be an element in lp with
finite support, that is, for some nOy x(n) = 0 if n ^ n0. Let y(n) =
(n + l)ax(n), n = 1, 2, . Then by the case already established we
have

- Σ (~

Again, since both sides of (3.3.1) determine continuous linear func-
tionals on lp and since these linear functionals agree on a dense sub-
space of lp, the space of sequences with finite support, it follows that
(3.3.1) holds. This completes the proof.

4* The two theorems* We will now obtain the two main results
of the paper, Theorems 4.1 and 4.3. It is convenient to let Cb, 0 < 6,
denote the set of all complex numbers z such that | z — (26)-11 ^ (26) -1.
An easy computation shows that this set is equal to the set {λ: Re λ"1 >̂
b}.

THEOREM 4.1. // 1 ^ p ^ co and a - p~ι + 1 > 0, then Aa e O(lp)
and

(1) sp (Aβ, lp) = Cβ_p-i+1 U {(m + I)-1: m = 0,1, •} .

Proof. The fact that Aa e O(lp) follows from Lemma 2.2. We will
first show that the left-hand-set of (1) contains the right-hand-set.



THE SPECTRUM OF CERTAIN LOWER TRIANGULAR MATRICES 523

From Lemma 3.1, Lemma 3.3 and the fact Aa is a bounded linear
operator on lp it follows that Aax — (1 + w)~ιx is in the null space of
a nonzero continuous linear functional on lp for each x in lp, if Re w >
a — p~\ Since Re w > a — p~ι is equivalent to Re ((1 + w)~ι)~ι > a —
p~ι + 1, which is equivalent to (1 + w)"1 being in the interior of the
set Cα_p-i+1, we see that sp (Aa, lp) z> Ca-p-i+1. This, together with
Lemma 1.9, shows that the left-hand-set of (1) contains the right-
hand-set. In order to prove that the right-hand set of (1) contains
the left-hand set we need the following estimate.

PROPOSITION 4.1A. To each complex number λ Φ 0 and ε > 0
there corresponds an m such that if i ^ k ^ m, then

Π (l -1^ + i n I))- ' " 1 .

Proof. By using the power series for log (1 + t) one can show
that

log (1 + t) ̂  t - t for t ^ -3/5 .

Thus, if -2 |λ- 1 | ( i + I)"1 ^ -3/5, then

^ — log(l I)"1

^ -(j + l)-ιReλ"1 + h
Δ

I ) " 2

- 4(2[λΓ(i + I)"1 + |λΓ(i + I)"2)2 .
Δ

Consequently, if — 2 [ λ,"1 [ (A; + I)" 1 ̂  -3/5, then

Π (1 - λ-(i + I)"1) ^

^ expJReλ-^Σ ^-fl" + | - i λ l " 2 Σ 0' + I)"2

I i=* ̂  + 1 2 y=*

+

^ exp JRe λ"1 log

+ h
2

u +

Σ T
k+ι

k + 1

2
-1 + iλ|-3/c-2 + h

6

3A:^+
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The conclusion of 4.1 A now follows by choosing m such that

(m + l ) - 1 ^ -3/5

and the second factor in (*) is ^ (1 + ε) when k ^ m.
Now suppose that λ is not in the right-hand set of (1). In par-

ticular, Re λ"1 < a — p"1 + 1 or

(2) a - Re λ"1 - p'1 + 1 > 0 .

By 4.1A we can choose an mί corresponding to λ and e — 1 such that

(3) Π (1-7,/λ) ^ 2((i + ΐ)f(k + I))***"1 if

Choose m ^ m1 so that [λ| > (m + 1) ι. Let Em and Bm correspond
to Aa as in 1.6. Since sp (Aa) U {0} = sp (EM) U sp {Bm) and λ $ sp (Em),
to show that λ£sp(Aα) it suffices to show that λ£sp(i?m) Because
of Lemma 1.5 in order to show that λ g sp (J5m) it suffices to show that

(4) £ λ " Λ K + 1

converges entry wise to a matrix which is a bounded operator on lp.
Recall that the i, jth entry of Bm, which we will denote by ai3 , is
acίjloLj where at = (i + I)""""1 and 7y = 0* + I)"1 for i ^ j ^ m and the
ΐ, ith entry is 0 otherwise. The i, fcth entry of Bl+1 is

Σ aihailh ajnk =

Thus, the i, fcth entry of Dm = Bm + Σ~=i λ-%β:+1 is

(5) α

if i ^ A; ̂  m. Since |λ[ > (m + I)"1 ^ 7j for j1 ^ m, it follows from
the general theory of power series that the series in (5) conveges and
that the value of (5) is

(6) ajk Π (1-7,/λ)- 1 .

Since k ^ m ^ mly it follows from (3) and the definition of Bm that
the modulus of the quantity in (6) is dominated by

2(fc + l ) β - R β ' - 1 ( i + i)-(α-Bβί-i)-i #

From this, Lemma 1.3, (2) and Lemma 2.2 (let z = a — Re λ"1) we con-
clude that the matrix Dm e O(lp). This shows that λ g sp(l?m). Hence,
we have shown that the right-hand set of (1) contains the left-hand
set. This completes the proof of the theorem.
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LEMMA 4.2. If 1 ^ p ^ oo and a - p"1 + 1 > 0, then

(i) sp, (Aβ, lp) = Cα_p-i+1.

Proof. From Theorem 4.1, Lemma 1.9 and the fact that the
final spectrum is always closed, it follows that the left-hand-side of
(i) contains the right-hand-side. Now let Bm correspond to Aa as in
1.6 where (m + I)" 1 e Cα_p-i+1. By Lemma 1.8

(7) s p ( # m ) 3 s p ( # J i Q ;

and, clearly,

(8) sp (Bm I Km) = sp (Aa I Km) z) s P / (Aa, l9) .

Also by Lemma 1.8,

(9) sp (Bm) c sp (Aa) U {0} - sp (Aa) .

By Lemma 1.11, the only isolated points in sp (Bm) are points on the
diagonal of Bm; from this, (9), Theorem 4.1 and the choice of m we
see that

(10) sp (Bm) c Cβ_p-i+1 .

From (10), (7) and (8) we deduce that the right-hand-side of (i) con-
tains the left-hand-side. This completes the proof.

THEOREM 4.3. Let p(x) be a monic polynomial of degree a and
q(x) a monic polynomial of degree a + 1 such that q(m) Φ 0, m = 0, l .
Let S be the lower triangular matrix with m, nth. entry p(n)/q(m), m ^
n. If a > 0 and l ^ p ^ o o , o r α = 0 and 1 < p ^ oo, then Se O(lp)
and

sp (S, lp) = Cα_p-i+1 U {p(m)/q(m); m = 0,1, •} .

Proof. Let Dm be the operator obtained by restricting S — Aa to
the subspace Km of lp and let Bm correspond to S — Aa as in 1.6.
Clearly

(11) \\Dm\\oiκm) ^ \ \ B m \ \ 0 { l p ) .

A simple computation using Lemma 1.3 shows that the right-hand-
side of (11) is O{m~ι) if p = 1 or p = oo. From this and the Riesz
convexity theorem we see that 11 Dm \ \ —* 0 as m —> co. From this and
Lemma 1.10 we conclude that spy (S) = sp7 (Aa). Consequently, by
Lemma 4.2, spy (S) = Ca^p-i+ί. From this and Lemma 1.9 we obtain
the conclusion of the theorem.
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