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ON A GENERALIZATION OF 2-SPACES

AKIHIRO OKUYAMA

In order to simultaneously generalize the class of }M-spaces
and os-spaces, K. Nagami introduced Y-spaces. Subsequently,
E. Michael defined a class of X*spaces. In this paper we will
discuss the class of X*-spaces which lies between Y-spaces and
J%spaces and which contains all images of X-spaces under
closed continuous maps.

1. Introduction. Recently K. Nagami [6] has investigated a
new class of spaces, called 3-spaces, containing two different classes
of generalized metric spaces; i.e. the class of M-spaces (cf. [4]) as
well as the class of g-spaces (cf. [5], [7])-

If 27 is a cover of a space X, then a cover .o is called a (mod
2 )-network for X if, whenever K< U with K¢ .2+~ and U open in
X, then Kc Ac U for some Ac.o”. According to K. Nagami [6],
X is a Y-space if it has a o-locally finite closed (mod .27")-network
for some cover .77 of X by countably compact sets.

E. Michael [2] has pointed out that the image of a paracompact,
T, 2-space under a closed continuous map need not be a X-space and
also that replacing “o-locally finite” by “o-closure-preserving” in the
definition of a X-space leads to a strictly larger class of spaces, which
are called 2*-spaces.

We say that a space X is a Y*-space if it satisfies the definition
of a X-space with “o-locally finite” weakened to “o-hereditarily closure-
preserving”, where we say that a collection .o7 = {A;: A€ 4} is here-
ditarily closure-preserving if any collection {B;: x € 4} with B,C A4, is
closure-preserving (cf. [3]).

Clearly, every X-space is a Y*-space and every X*-space is a 2*-
space. Since the image of a locally finite closed cover of the domain
under a closed continuous onto map is a hereditarily closure-preserving
closed cover of the range, we can easily see that the image of a X-
space by a closed continuous map is always a XY*-space. As a matter
of fact, E. Michael [2] has pointed out that a paracompact, T, Z*-
space need not be a Y-space, in general. Hence this fact arouses our
interest in studying JY*-spaces comparing with ZX-spaces as well as
2%-gpaces.

In this paper we will investigate some relationship between above
spaces and obtain the following results:

(A) Any image of a X*-space under a closed continuous map is
a X*-space.

(B) Any inverse image of a X*space by a perfect map (i.e. a

485



486 AKIHIRO OKUYAMA

closed continuous map whose fibre at each point is compact) is a
Yé-gpace, while this is not true for a X*-space.

(C) Every Lindelof, T,, 3*-space is a Y-space, while this is not
true for a X*space.

(D) A X*-space X is a X-space if every open set of Xisan F,.

(E) For a paracompact, T, space X the following conditions are
equivalent:

(1) X is a X-space.

(2) X x Iis a Y-space, where I denotes the unit closed interval
with usual topology.

(3) X x I is a X*-space.

According to the first half of (B), the product of a X*space with
I is a X*sgpace. On the other hand, as noted above there exists a
paracompact, T, X*-, non X-space. Hence statement (E) shows that
the product of a paracompact, T,, 2Y*-, non Y-space X with I is a
2%, non Y*-space. Since the projection from X x I to I is perfect,
this is an example for the later half of (B). Also, this shows that
the class of Y*spaces is strictly larger than the class of Y*-spaces.

Concerning (D), it raises the following question:

Is (D) true for X*spaces?

§2 is concerned with hereditarily closure-preserving closed covers
of a countably compact, T, space, a Lindelof, T, space and a T, space
whose open sets are F,’s. As an immediate consequence of 2.1 and
2.3 we have the simple facts that every hereditarily closure-preserving
closed cover of a countably compact, T, space (resp. a Lindelof, T,
space) has a finite (resp. a countable) subcover. In §3 we will prove
main results.

We will use the following notations in §2 and §3:

For a cover & of a space X and a point  of X we put

Clx, #)=N{F:2ceclFecs},

and for a sequence {#,:n = 1,2, --+} of covers of X and a point
of X we put

Cw) = N O, 7) -

Throughout this paper we assume that all spaces are T, and all
maps are continuous.

2. Some properties of a hereditarily closure-preserving closed
cover.

THEOREM 2.1. Let o+ = {F:\ed} be a hereditarily closure-
preserving closed cover of a space X and C a countably compact set
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of X. Then & 1is locally finite at almost all points of C; i.e. there
exist x, +++, 2, im C such that & s locally finite at any x€C —
{&), <+ -, 2}, and only finitely many members of F# meet C —{x,, -+, x,}.

Proof. On the contrary, suppose .&# 1is not locally finite at
infinitely many points of C. Since any closure-preserving, point-finite
collection of closed sets is locally finite, & is not point-finite at
infinitely many points of C. Then we can choose, step by step,
countably many points z,, #,--- in C and countably many M\, \,, «++ in
A such that x, ¢ F;, forn =1,2,---. Since & is hereditarily closure-
preserving, {x, x,, ---} must be discrete in X. On the other hand,
since C is countably compact, {x,, @, ---} must have a cluster point
in C. This is a contradiction. Hence & is locally finite at all points
of C but finitely many points z, ---, ©,.

To complete the proof of 2.1, assume that D=C — {z, ---, x,}
is infinite. If infinitely many members of .o meet D, then we can
again obtain a sequence {p,, p,, +-+} in D and a sequence {F}, F,, ---}
in & with p;e F;, for ¢ = 1,2, --- by noting that & is point-finite
at any point of D. Since & is hereditarily closure-preserving,
{p,, D., +++} must be discrete in X, therefore, in C, which is a contra-
diction. Hence only finitely many members of &% meet D. This
completes the proof.

As an immediate corollary of 2.1 we have:

COROLLARY 2.2. Ewery hereditarily closure-preserving closed cover
of a countably compact space contains a finite subcover.

REMARK. 2.2 does not necessarily hold for a closure-preserving
closed cover even if a space is compact and metrizable; for example,
let X={1/n:m=1,2 ---} U {0} be a subspace of real line and put
7 ={{0,1/n}:n =1,2 ---}. Then X is a compact, metric space and
Z is a closure-preserving closed cover of X, but we cannot choose
any finite subcover.

THEOREM 2.3. Let & = {F:xed} be a hereditarily closure-
preserving closed cover of a Lindeldf space X. Then the set

X, ={xeX: A(x) = {\e d: x e F}} is uncountable}
is countable, and the set
A= Ned: F,N (X — X,) # O}

1s countable 1f X — X, 1s uncountable.
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Proof. On the contrary, suppose X, is uncountable. Then X,
contains a subset {z. a < ®,}, where @, denotes the least uncountable
ordinal. For each a < w,, by transfinite induction we can obtain x,
in X; and a \, € 4(z,) with z, € F, and such that « # g implies », = x;
and )\, # \; because for each x e X, A(x) is uncountable. Since & is
hereditarily closure-preserving, {z.,.a < ®,} must be discrete in X.
This contradicts the assumption that X is Lindelof, and hence the
first half of 2.3 is proved.

To complete the proof, again suppose 4’ is uncountale. From the
definition of X, % must be point-countable at any e X — X,. If
X — X, is uncountable, by transfinite induction, we can choose an
uncountable set {z,: « < w,} in X — X, and a corresponding set {\,: & < @}
with z, e F, for each @ < w, and so that a # S implies x, # ¥, as
well as A, = ;. Since & is hereditarily closure-preserving, {z,: o < @}
must be an uncountable discrete set in X, which contradicts the
assumption that X is Lindelof. Therefore X — X, is countable, and
hence the proof is completed.

As an immediate consequence of 2.3 we have:

COROLLARY 2.4. Ewery hereditarily closure-preserving closed cover
of a Lindelof space contains a countable subcover.

REMARK. Example 3.4 in next section shows that 2.4 does not
necessarily hold for a closure-preserving closed cover.

LEMMA 2.5. Let & be a closure-preserving closed cover of a
space X. Then the set

X, ={xeX:C, &) = {=}}

18 discrete in X.

Proof. Let ye X be an arbitrary point and
U=X—- U{FeFs:yeF}.

-

Then U is an open neighborhood of y, because &
ing closed cover. If xe UN X,, then we have

is a closure-preserv-

6=xUNCE, 5)=(X—- U{Fez :yeF)N(N{FezF:xvecF}

and hence C(y, & ) C(z, & ). Since z¢ X, C(z, &) = {¢} and thus
we have y = #. This means that U contains at most one point of
X,, which completes the proof.

THEOREM 2.6. Let X be a space each of whose open sets is an
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F,, and let F be a closure-preserving closed cover of X. Then the
set

X, ={xeX:|Cl, )| =n}

18 o-discrete in X for n =1, 2, -++, where we denote by |A| the cardi-
nality of A.

Proof. We shall prove 2.6 by induction on n. By 2.5 X, is dis-
crete in X. Assume that X, is o-discrete in X for any n < k. We
shall show that X,., is also o-discrete.

First note that X — U%., X, is open in X. Let y be any point
of X— Ui X,and let U=X— U{Fe s :y¢F}. Then U is an
open neighborhood of y. If e X belongs to U, we have C(y, &) C
C(x, & ). Since y does not belong to U:_, X,, C(y, & ) contains at
least k& + 1 points of X and thus C(x, # ) also contains at least k& + 1
points. In other words, z ¢ k-, X,. This shows that UN (U:., X,)=O
and hence X — k., X, is open in X.

According to hypothesis, X — ., X, isan F,;ie. X — Ut X, =
Uz, Y;, where each Y; is closed in X and Y;C Y;,, for i =1,2, ---.
Since X,., c U, Y, it suffices to show that Z;, = X, N Y; is discrete
in Xfori=1,2, ---.

Let y € X be an arbitrary point and 1 fixed. If y¢ Y;, then X — Y,
is clearly the desired neighborhood of %. If ye Y, put U= X —
U{Fes :y¢ F}. Then xe UN Z;, implies C(y, ¥ ) C(z, & ) and
|C(x, )] = k+ 1. Since y belongs to Y;, y does not belong to any
X, with e <k:ie.|C(y, & )] >k. Hence we have C(y, & ) = C(z, 7).
This means that  must be in C(y, &) which is finite. Consequently,
U contains at most & + 1 points of Z;. Since X is T,, we obtain the
desired neighborhood of y by deleting finitely many points from U.
Therefore Z; is discrete in X. This completes the proof.

3. Some relations. Let f be a closed map from a space X onto
a space Y and &% a hereditarily closure-preserving closed cover of
X. Then f(& ) is also a hereditarily closure-preserving closed cover
of Y. Since the image of any countably compact space by a map is
countably compact, we have the following:

THEOREM 3.1. Any image of a 3*-space under a closed map s
a 2*-space.

Let f be a perfect map from X onto Y and .o a (mod .5%)-
network for Y. Then we can easily see that f~'(.) is a (mod f(5¢"))-
network for X. Since the inverse image of any countably compact
space by a perfect map is countably compact, we have the following:
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THEOREM 3.2. Amny inverse image of a 2*-space by a perfect map
s a X*-space.

THEOREM 3.3. FEwery Lindelof X*-space is a X-space.

Proof. Let X be a Lindelof Y*-space having a o-hereditarily
closure-preserving closed (mod 9% )-network .&# for some cover .o
of X by countably compact sets. Without loss of generality, we can
denote & by Us;.,.#, such that each &, is a hereditarily closure-
preserving closed cover of X. Put &, = {Fy:ne4,} for n =1,2, ---.

By 2.3, for each n the set

X, = {rxe X: A(x) = {(L\e 4,: x € F}} is uncountable}

is countable. If X — X, is countable for some n, then X is countable.
Since X is T,, X is clearly a Y-space; more precisely, it is a cosmic
space (cf. [1]). If X — X, is uncountable for n = 1, 2, --., then again
by 2.3,

A, = {ned,: F,N (X — X,) # O}

is countable for n = 1,2, ---. Put 22, = {{z}: z € X,} U {F;: n e 4)} for
n =1,2 --.. Theneach 57, is countable and, therefore, o>~ = Uo7,
is still countable. Since each 27, covers X, 57 covers X and thus
Sz is a o-locally finite closed cover of X. Furthermore, if we put
27 ={{aheeUr, X, U{Ke o7 KN (X — X,) # @ for some n}, then
257" is a cover of X by countably compact sets. It is easy to see that
o7 is a (mod .7”')-network, and hence X is a Y-space.

ExAMPLE 3.4. We shall show that in general a Lindelof X*-space
need not be a Y-space.

Let X = {x.: € A} U {p} be an uncountable set with a special point
p. We define the topology for X as follows: each {z,} is open; V is
an open set containing p iff X — V is countable. Then we can easily
see that X is a regular, Lindelof (7,) space.

Now, put .&# = {{p, 2.}: € A}. Then & is a closure-preserving
closed cover of X, because any subset of X missing p is open. If we
put o7 = &, then .27 is a cover of X by countably compact sets
such that & is a (mod .>")-network for X; i.e. X is a Y*space.

Next, we shall show that X is not a Y-space. On the contrary,
suppose X is a Y-space. Then there exists a o-locally finite closed
cover o7 = Us., &7, of X which is a (mod .27 )-network for some
cover .27~ by countably compact sets. We can assume without loss
of generality that {oZ:n = 1,2, ---} is an increasing sequence of
locally finite closed covers of X and that each 57, is closed under
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finite intersections. Furthermore, in case of a X-space we can put
o = {C(x): v e X}, where C(x) = M-, C(x, 5#,) as noted in the intro-
duction. Since X is Lindelof, each 57, is countable. From the
definition of the topology for X any member of £7° missing p is a
countable set. Therefore X' = X — U {He 57 : p ¢ H} is an uncountable
closed subspace of X, which is a X-space having o7/X' ={HN X"
He 577} as a o-locally finite (mod .2 /X')-network. Consequently, we
could have assumed from the beginning that each 57, is finite and
each member of 57 contains p. For each x€ X and =, let H(x, n)
be the smallest (as a subset) member of 57, containing x. H(x, n)
exists because 57, is closed under finite intersections. Since the
compact sets of X are exactly the finite sets, C(z) = M-, H(x, ») must
be finite for each xe¢ X. Furthermore, for each 2z e X there is an =,
such that H(z, n,) is finite. To see this, suppose not. Then there is
an increasing sequence 7, < %, < --- with H(z, n;,,) & H(x, n;) for
t=1,2,---. Now pick a point z;e H(z, n;) — H(%, n;,,) which is
distinct from p and . Then F = {x;:7=1,2, --+} is a closed set in
X with FF'n C(x) = @ but F N H(x, n) # © for all n. This contradicts
the fact that 57 forms a network around C(x). Hence there exists
such an n,. We denote by n(x) the smallest n, for which H(x, n,) is
finite. Put

L,={zeX:nx) <n} for n=12 ---.

Then {L,:n =1,2, ---} is an increasing cover of X. Since X is un-
countable, there exists an =, such that L, is an uncountable set
containing p. Clearly L,, is closed in X and hence it is a X-space
having 52| L, as a (mod 2| L, )-network. But U, &#7 is finite and
for each x € L, there exists an H(x, n(z)) with n(x) < n,. This means
that L, must be finite, which is a contradiction. Thus X is not a
2-space.

LEmmA 3.5. If X 4s a Y*-space (resp. a X*space), then X has a
sequence {F,:n =1,2, «+-} of hereditarily closure-preserving (resp.
closure-preserving) closed covers of X such that any sequence {x,: n =
1,2, .-} with x,eC(x, #,) for some xc X has a cluster point. In
particular, X is a X-space iff X has a sequence {&,:n =1,2, «-+} of
locally finite closed covers of X such that any sequence {,:m = 1,2, ---}
with x, € C(x, 7,) for some x€ X has a cluster point.

Proof. Since all cases are proved similarly, we shall prove for a
Yt-space, only. Let X be a J*space having a o-closure-preserving
closed (mod.% )-network 57 = g, 57, for a cover .5 of X by
countably compact sets, where we can assume that each 57, is a
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closure-preserving closed cover of X. Put &7, = Ui, 57 for n =
1,2, ---. Now we shall show that {#,:n =1,2, ---} satisfies the
required condition. On the contrary, suppose not. Then there exists
a discrete sequence {z,: n =1, 2, ---} with z, € C(», .&,) for some x ¢ X.
Since .2 covers X, there is a Ke.2%" containing x. Since {z,:n =
1,2, --+} is discrete, there exists an n, such as {z,:n=n}N K = Q.
Then G = X — {z,: » = n,} is an open set containing K and thus, by
the assumption, there exists an Fe.#,, for some m with Kc FcG.
Hence we have ;e C(z, #;) Cc C(z, &,) C FC G for any ¢ with m < ¢
as well as n, < 7, which is a contradiction.

The ¢if’ part in the later half is easily seen noting that any
C(x, &,) could have been a member of .&#,.

THEOREM 3.6. Let X be a X*-space for which every open set 1s
an F,. Then X is a X-space.

Proof. Let & = U, &, be a o-hereditarily closure-preserving
closed (mod .2")-network for a cover .2 by countably compact sets.
We can assume that each &, covers X and that &, c &, for n =
1,2 ---. Put

X' ={xe X:|C(z, &,)| is finite for some =} .

Then X’ is o-discrete in X by 2.6. Denote X’ by Uy, P,, where each
P, is discrete in X and we can assume P,C P,., for n =1, 2, «--.
We shall show that each &, is locally finite at any ze¢ X — X'.
On the contrary, suppose some ., is not locally finite at some v € X —
X'. Since #,C #,., and since each &, is closure-preserving, /4, =
{ve d,: x € F;} must be infinite for all » = n,. Since ¢ X’, C(x, .#,)
is infinite for all » = n,. We can choose a point z, € C(z, &7,) and a
N, €4, with »,eF, for each n = m, and such that » # m implies
xz, # %, as well as \, #A\,. By 3.5 {x,:n=mn,n +1,---} has a
cluster point. On the other hand, it must be discrete, because each
{v,}C F, € #,, and 7, is hereditarily closure-preserving. This con-
tradiction shows that each &, is locally finite at any ¢ X — X".
Next, put

Y, = {xe X: &, is locally finite at «}, n=12 .

Then each Y, is open in X and therefore an F,. Denote Y, by
Ug-. Qum» where each Q,, is closed in X and Q.. C Quu+: for m, n =
1,2, ---. Further, as was seen above, we have X — X' Y, for
n=12 -

Finally, put
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Fam = {F2N Quuine A} U{X} for n,m=1,2 -+,
, ={{zhxeP}U{X} for n=1,2 .

Then each #,, as well as 5%, is locally finite closed cover of X. In
order that X Dbe a JY-space, it suffices to show that the sequence
{(Fomin,m=1,2 - }U{SZ:n=12 ---}={Z;1i=1, 2, ---} satisfies
the condition in 3.5. Let x€ X be any point and {x;:7=1,2, --:} a
sequence with #; € C(z, &,). If xe X', then x € P, for some k, and since
{P,:n=1,2 ...} is increasing, we have C(x, 57,) = {z} € &7, for all
n = k. Hence {x;:7 = 1,2, ---} has a cluster point z. If x¢ X’, then
xeY, for n =1,2 --. and hence, for each n, there exists a %k, with
% € Q,,- Thus, for any » we have C(x, 7, ) < C(x, #,). On the other
hand, by 3.5 any sequence {p,:n = 1,2, -+-+} with p,eC(x, &#,) has
a cluster point. Hence {v;:¢ = 1,2, ---} must have a cluster point.
This shows by 3.5 that X is a X-space.

THEOREM 3.7. Let X be a paracompact space. Then the following
conditions are equivalent.

(1) X is a X-space.

(2) X x I isa X-space.

(3) X x I is a 3*-space.

Proof. Since the property of being a paracompact 2X-space is
countably productive (cf. [6]), we have (1) = (2). From the definition
clearly (2) = (3).

3)=(1). Let & = Uy, . be a o-hereditarily closure-preserv-
ing (mod .2¢")-network for some cover %" of X x I by countably
compact sets. We assume that &, #,,, forn=1,2, «--.

At first we shall construct by induction on % a collection
Vi, -+, a,):a, €4, -+, a,eA,;n=1,2 +--} of open sets of X and
a corresponding collection

{Hay, -, a,):a,€¢A, -~-,a,€A,;n=1 2 -}

of subsets of I satisfying the following conditions:

(i) (V(ay, +++, ,): ;e Ay, +-, ¢, A,} is a locally finite open
cover of X forn =1,2, ---.

(il) Ve, +--, a,, a,2) < V(a, -+, ,) for a,ed,---, a,€A4,,
A €A,5m =1,2 -,

(i) If Wa,, ---, ,) is nonempty, then I(a, +--, «,) is a closed
interval.

(iv) Iay,-++,a,,,.)C (@, -, for ;e A, --+,a,€A,,a,. ., €
A, sn=12 +--,

(v) W(ay, ---, a,) X I{ay, +++, a,) meets only finitely many mem-
bers of &, for e A, +-+, a,cA;m =12, «+-.

Assume that such collections are constructed for all n < %k and
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consider n = k + 1.

Fix a,€ A, +++, a,€ A, with V(a, «++, @) # @. For any point
xe V(a, ++-, a,), since {x} X I(a,, +++, ;) is compact and &, is
hereditarily closure-preserving, by 2.1 .., is locally finite at all but
finitely many points of {x} x I(ay, ++-, ). Let {p, +--, p,} be those
points of {x} x I(a,, ---, ;) at which .7,., is not locally finite. Let
I, be a closed subinterval of I(a,, ---, &) missing p,, <+, D,. Since
{x} x I, is compact, there exists an open neighborhood U, (in V(a,, - --a,))
of x such that

U, xI,cXxI— U{Fes,.:Fn({x} xI,)=0}.

Since V(a,, ---, a;) is paracompact, there is a locally finite open cover
{(Viine A(ay, + - -, )} of Ve, - -+, ;) which refines {U,: x € V(a, -+ - -, )}
Let

P A(aly %y ak) - V(al; R ak)CX

be a function which satisfies V,c U, for ne A(ay, - -+, ).
Now varying a, € 4, ---, a,€ A,, put

Ak+1 = U {A(au ccy, ak): € Ala e, Q€ Ak}
and

V(aly o0y (g, ak+1)
_ V(aly M) a,k) m Va

Je+1 lf V(au ct ak) * and Ay € A(au ) ak)l
% otherwise ) -

Furthermore, if V(a, ---, a;, &;.,) + @, then from the definition we
have V(ay, ++-, ;) + @ and «,., € A(«,, +++, @,). By inductive hypo-
thesis I(a,, ---, a;) is not empty. Hence we put I(«, -+, a,, &) =
I, ), which is not empty. Otherwise we put I(«, -+, a;, a;) = ©.
Then we can easily see that {V(a, -+, ap.):a,€ Ay, <o+, ap € Ay}
and {I(a,, «++, ), € A, -+, . € Ay} satisfy all required condi-
tions (i)—(v).

Consequently, for each # we can construct {V(a, ---, @,): @, €
A, -, a,cAand (e, ---, a,): € A, -+ -, € A,} satisfying (1)—(v).

Next, put

Yn = U {V(alv cty an) X I(aly A an):aleAU ) aneAn}

and

s

Y = Y, .

n

1

Since {V(ay, +--, a,): € A, +++, a,€ A,} is locally finite in X, Y, is
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closed in X X I and thus Y is closed in X x I. Also by (v) the
collection

= T Y ={FNY:Fe.7)

is a locally finite closed cover of Y for n =1, 2, «--.

Now we show that Y is a Y-space. For this purpose it suffices
to show that {S£:n =1,2, ---} satisfies the condition in 3.5. Let
y € Y be any point and {y,: » = 1,2, - - -} any sequence with y, € C(y, 57,).
Since C(y, 57,) < C(y, #,) for each n and since X x I is a Y*-space,
by 8.5 {y,:m, =1,2, ---} has a cluster point in X x I. Since Y is
closed in X x I, {y,:n =1,2, ---} must have a cluster point in Y,
which shows by 3.5 that Y is a Y-space.

Finally, let 7 be the restriction to Y of the projection from X x I
onto Y. Since the projection is perfect and since Y is closed in X x I,
7 is perfect. It remains to show that = is onto, because a JX-space
is preserved by a perfect map (cf. [6]). Let = be any point of X.
Since {V(a, +++, a,):a,€ 4, --+, a,€ A,} covers X for n=1,2, .-,
by (ii) we can choose a point (a, @, +++) in A, X A, X --+ with
ze Vi, ¢+, ;) for n =1,2, ---. Since each V(a, +--, @,) is non-
empty, by (iv) {I(a,, ---, @,):m =1, 2, ---}is a decreasing sequence of
nonempty closed intervals. Hence N3, I(a, -+, @,) + @. Pick a
point ¢ in this intersection. Then (x, ¢) belongs to V(a, ---, ,) X
Ia, ++-,a)c Y, for n =1,2,, --- and thus belongs to Y. Clearly
n((x, ¢)) = x. This shows that 7 is onto and hence X is a Y-space,
which completes the proof.
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