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CONTINUITY OF SAMPLE FUNCTIONS OF
BIADDITIVE PROCESSES

W. N. HupsoN

Let {X(s,t):0<s,t <1} be a stochastic process which has inde-
pendent increments (second differences). Necessary and suffi-
cient conditions are established to ensure the existence of a
version with the property that almost every sample function
is continuous. A corollary to these results is the existence of
a class of measures on Wiener-Yeh space. The conditions are
analogous to the usual case of additive processes Z(?) indexed
by one time parameter.

X(s, t) will be said to have independent “increments” (second differ-
ences) if whenever 0 <s,<s, < -+ <s,<land 0=Z¢t, <, <<, =1
the random variables X(s;, t;) — X(s;y, t;) — X(s;, t;_) + X(s;21, tim)
t=1,+--,m,5=1, ---, n are independent. If X(s, ¢) has independent
increments and X(0, t) = X(s, 0) = 0, then X(s, t) will be called biaddi-
tive. Let m(s, t) = E[X(s, t)] and v(s, t) = var [X(s, )]. The following
result is proved below:

There is a version of a biadditive process X(s, t) with the pro-
perty that almost every sample function is continuous if and only if
X(s, t) is Gaussian, m(s, t) and (s, t) are continuous, and v(s, t) is the
distribution function of a Lebesgue-Stieltjes measure on [0, 1] x [0, 1].

A special case of this result occurs when m(s, t) = 0 and (s, t) =
st. This process is realized when the space C, of continuous functions
of two variables on [0, 1] x [0, 1] is assigned the Wiener-Yeh measure
and X(s, t) is defined by X(s, t)(f) = f(s, t) where f e C,. Theorem 2
will imply the existence of a class of Wiener-Yeh measures on C, cor-
responding to the choices of a pair of continuous functions m(s, t) and
(s, t).

The conditions on m(s, t) and (s, t) are analogous to the well-
known conditions for the usual case of a stochastic process indexed
by one time parameter. The case for a process indexed by n-time
parameters is similar. The proof here is probabilistic in nature, unlike
the analytic proof given by Yeh in [2] for the special case above.

2. Statement of main results.

THEOREM 1. Let X(s, t) be a biadditive process having the pro-
perty that almost every sample function is continuous. Then X(s, t)
is Gausstan and the increments of X(s, t) are Gaussian. Furthermore
the functions m(s, t) = EX(s, t) and v(s, t) = var (X(s, t)) are continuous
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344 W. N. HUDSON
and determine the distribution of the process.
The following corollary is easy and its proof will be omitted.

COROLLARY. Let X(s, t) be as tn Theorem 1. If the increments
of X(s, t) are stationary, that is, if the distribution of X(s+ h,, t + h,) —
X(s,t + hy) — X(s + h, t) + X(s,t) depends only on h, and h, then
there are constants ¢, and c, such that

m(s, t) = EX(s, t) = ¢;st
v(x, t) = var (X(s, t)) = c.st .
THEOREM 2. Let m(s, t) and v(s,t) be continuous functions on

[0,1] x [0, 1] such that m(s, 0) = 0 = m(0, t) and wv(s, 0) = 0 = (0, %)
for 0 < s, t < 1. Suppose that v(s, t) satisfies the condition

(A) v(s”, ") — v(s”, t) — v, t) + (s, ) =0

whenever

’

0<s

A
IA

"<1 and 0= <t"<1.

Then there is a biadditive Gaussian process X(s, t),0 <s,t <1, such
that

(i) EX(s,t) = m(s, t) and var (X(s, t)) = v(s, t) and

(i) almost every sample fumction of X(s,t) is continuous on
[0, 1] x [0, 1].

The distribution of X(s, t) is determined by mf(s, t) and (s, ).
3. Proof of Theorem 1. We prove first that X(s, f) is Gaussian.

LemMMA 3.1. If almost every sample function of X(s,t) is con-
tinwous on [0, 1] x [0, 1], then X(s, t) and its increments are normally
distributed.

Proof. We show that the version of the central limit theorem in
reference [1] (Theorem 2, p. 197) applies. Let (s, t) be a fixed point
in [0, 1] x [0, 1] and define s; = s(i/n), t; = t(¢/n), and

dis(n) = X(s, t5) — X(s3, 1) — X(sim, £5) + X(simy, t50)

Let ¢ >0 be given and let A, = [max; ;_,....|4:;;(n)] = ¢]. Then
almost every sample function of X(s, t) is uniformly continuous on
[0, 1] x [0, 1], and consequently

P{limsup A4,} = 0.

7 — oo
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Hence lim sup,_.. P(4,) = 0.
Now X(s, t) is the sum of independent random variables, that is,

Zn‘ 4;5(n) .

17=1

X(s, t) =

n
f=

The 4;;(n) form an infinitesimal system because

max P[|4ym)| Z el £ P max |dy(n)] = <]

and since
lim sup P(4,) =0,

n— co

lim max P[|4;;(n)|=¢]=0.

noo 6y G=1,2,00

It follows that X(s, t) is normally distributed.
To show that the increments of X(s, t) are normally distributed,
let s, and ¢, be fixed and for s = s,, t = ¢, consider the process

Y(s, t) = X(s, t) — X(so, t) — X(s, &) + X(50, &) «

It is biadditive and has continuous sample functions a.s. The above
argument shows that Y(s, ¢) is Gaussian and hence the increments of
X(s, t) are Gaussian.

To complete the proof of Theorem 1 we need to check that mf(s, t)
and wv(s, t) are continuous and determine the distribution of the pro-
cess. Since X(s, t) is biadditive, we have for s’ < s and ¢’ < ¢”

var (X(s”, t")) = var (X(s", t"") — X(s', t") — X(s", §') + X(s', t"))
+var (X(s', t") — X(s', t")) + var (X(s", t)
—X(8, ¢) + var (X(s', 1))
var (X(s', t'") — X(s', t')) + var (X(s', t')) = var (X(s, t"))
var (X(s"”, t") — X(s', t')) + var (X(s', t')) = var (X(s”, t')) .
From these equations using w{s, t) = var (X(s, t)) we obtain
var (X(s”, t") — X(s", t') — X(s', t"") + X(s', t'))
= (", ") — v(s, t") — v(s", t') + v(s, t) .
Since a similar relation holds for m(s, t) = EX(s, t), the fact that the
increments are Gaussian and X(s, ?) is biadditive implies that the

distribution of X(s, t) is determined by m(s, t) and (s, t).
Since almost every sample function is continuous,

lim X(s + A, t + hy) = X(s, ?) .

hy kgm0
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Let @(h,, h,, ) denote the characteristic function of X(s + ki, ¢t + h,).
Then

D(hy, Ty, 1) = €XP {ium(s bbb+ By — %v(s +oh, b+ hz)}

and hence

v(s, t) = — 2log|®(0, 0, 1)|
= — 2 lim loglg)(hu h27 l)l

hyyhg—0
= lim v(s + h, t + hy)
By, kg0
so (s, t) is continuous. To show m(s, t) is continuous, we use
Chebychef’s inequality.
lim P[] X(s + h, t + hy) — X(s, t) — m(s + hy, t + b)) + m(s, t)| = ¢]

hyrhg—0

< lim v(s + by t + h) —v(s, 8) _

hyshp—0 &t

so that

X(5+ by t+ ) — X5, 8) — mls + Iy & + ) + m(s, ) —— 0.
Since X{s + h, t + hy) — X(s, t), it follows that m(s, ) is continuous.

4. Lemmas for Theorem 2. In §3, we have shown that any
biadditive stochastic process with almost all its sample functions con-
tinuous is Gaussian with continuous mean and variance functions.
The next task is to show that given a pair of continuous functions
m(s, t) and v(s, t) where o(s, t) is a normalized distribution function
for a Lebesgue-Stieltjes measure on [0, 1] x [0, 1], there is a biadditive
process X(s, t) such that EX(s, t) = m(s, t) and var (X(s, t)) = v(s, ©).
For this proof a few preparatory results are needed. In the following
Lemma, * denotes convolution.;

LEMMA 4.1. Suppose there is a system of probability distributions
{P(a, b, a5, 0) |00, <a, £1,0=0b, < b, <1} such that for any a > 0
and B >0

(1) @(au bn a, + Q, bz) = (D(ala b, a,, bz)*@(az, b, a, + «, bz)
(2) @(Clq, bu Qas, b2 -+ ,8) = @(au bu 2% bZ)*@(a/lv bz) Ay, bz + :8) .
Then there is a biadditive process X(s, t) such that the increment

X(am b2) - X(au b2) - X(sz, bl) + X(an bl)
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has the probability distribution @(a,, b, a, b)) for 0 = a, < a, =1 and
0=b<bh =1

Proof. The proof uses the Daniell-Kolmogorov extension theorem
in the usual manner and is therefore omitted. Conditions (1) and (2)

guarantee the consistency of the system.

LemMmA 4.2. (Ottaviani’s Inequality). Let {X,, X, «-+, X,} be inde-

pendent random variables and let S, = Sk, X,. If for some e >0,
PlIS, — 8. >¢] < % for k=012 n,

where S, = 0, then
P[kEHaX ISkl > 28] § 2P[l Snl > 5] .

Proof. The proof may be found in reference [3]. It is very
similar to the following lemma which will be proved in full.

LEmMMA 4.3. (An extended version of Ottaviani’s Inequality). Let
S < 8 < sees,and ty<t, <t,<< .o <t, Define

Aii = X(Si: ti) - X(Si—u tj) - X(Si’ tj—l) + X(3i~—1, t]'—l)

where X(s, t) is a biadditive process on D = [0,1] x [0,1]. Let R, =
L 2 iy and Q= X 4y If for all k=1,2,---,m and

1=0,1,+-+,1m
Airi>E]s1- I
and
Pligul><]=1- 421,
then

P[kilﬁ).( [Sp| > 28] = 2P[|S,.| > €] .

1=1,2,:++,m

Proof. Let A,;; be defined for + = 1,2, «--,m,and 7=1,2, ---, n
by

A;;=[18Su1=£2 for I<j and k=m, |S,;|<2 for k<i,|S;|>2e]
A=[Sul > 2] .

Let T={(,7):1=1,2,+--,m and 7 =1,2, --+, n}. It is clear that
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[max [S;;] > 25]
(4,5)eT

and the A4;;’s are disjoint. Now let

Bu=[IRI< i@l < £].

Then,
AuN By C[ISnal > el

and so,

U U (4N B) © [[a] > ¢l -

=1 k=1

Since X(s, t) is biadditive, A4,, and B,, are independent events, and
R, and Q,, are independent random variables. It follows that

B = P[IR] < ] Pl@ul < L]z /1Y =1.

Hence,

%p[ max | Si;| > 26] =153 PAy) <33 P4, N By

LEMMA 4.4. Let X(s, t) be a biadditive process on a probability
space (2, B, P) with (s,t)e D = [0,1] x [0,1]. Let m(s, t) = EX(s, t)
and v(s, t) = var (X(s, t)) be continuous on D. Then for any point
(s t) € D and for any sequence of points {(s,, t,)} C D such that

lim (Sﬂ’ tn) - (80, to)

P[lim X(s,, t,) = X(s0 to)] ~1

n—co

Proof. Let ¢ > 0 be chosen arbitrarily except for the condition
e<1l—v1/2<1/2. Chebychef’s Inequality and the uniform conti-
nuity of m(s, t) and v(s, t) imply that there is a 6 > 0 such that for
(s, t") and (s, t)e[s, — 0, s, + 0] X [t, — 0, & + 9]
(1) PiX6 0 - X6, ) =z ] <<
Now let S be a countable dense set in D and let S, S,, S;, and S,



CONTINUITY OF SAMPLE FUNCTIONS OF BIADDITIVE PROCESSES 349

denote the sets
S, = SN ([0 8 + 0] X [t t, + 0])
S: = SN ([0 80 + 0] X [te — 0, &)
S; = SN ([sy — 0, 8] X [t & + 9])
S, =S8N (s — 0, 8] X [t, — 9, t)]) -
The first part of the proof will show that

(2) P| sup X6, 1) — X(su, t)] > 6| < 6c..
(s,t) eS8y

The same kind of argument can be used to show that for 7 = 2, 3,

and 4

(3) P| sup | X(s, ) — X(sn 9] > 62 < 6
(s,t)e Sy
and so only the case for S, will be done here.
Let the elements of S, be numbered in an arbitrary manner so
that S, = {(s; t;):2=1,2, ++-}. Then

P[ sup | X(s, t) — X(s, t)| > 65]
(s, 8y

(4)
—~ lim P[E‘nax | X(ss, t) — X(so, )| > 65] .

n—o0

Thus it suffices to show that

(5) P| max | X(s,, t) — X(sur t)] > 6] < 6

in order to prove (2). Now clearly

P[ max | X(s, ) — Xo., 1] > 6¢]

o F P[ max | X(s., t) — X t) = Xi t) + X t)] > 26
+ P[ max | X(s, t) — X(s )] > 2¢]
+ P[igl?fian(So: t;) — X(sos to)| > 25] .

Consider the first n points (s, t), +++, (84, ,) in S,. Let o, -+, 0,

and 7, -+, T, be rearrangements of s,, ---, s, and ¢, ---, t, respectively

sothat s, <0, 0, =,+++, 20, <5, +0and {(, =7, =7, =, +++, ST, =
t, + 6. Since X(s, t) is biadditive,
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X(Gi’ Tj) - X(O',;, to) - X(So, Tj) + X(so: to)
= 3 S X (O T) — KOs T) — X0y T1m) + Xy T1s))

m=1 l=1

X(0 1) = X(sr 1) = 3 (X(0y ) — X(@u 1)

(s 1) = Xo 1) = 33 (X0 7) — X5y 7))

are sums of independent random variables. Now if (s, ¢') and (s”, t")
are any two points in [s, — d, s, + J] X [t + 0, &, + 0], then using (1)
we may verify that the hypotheses of the Ottaviani inequalities,
Lemmas 4.2 and 4.3, are satisfied. Thus

(7) P[lnax | X (05, t)) — X(s0, 1) | >2s] = 2P[| X(0,, t) — X(ss t,) | >¢]

(8) Pl max |X(s, ) — X(ss )] > 2| < 2P Xy ) — X(su )] >¢]

and

P['Enax [ X(0: 75) — X(50, T5) — X(03, &) + X(s0 E0) | > 25]
(9) T=1,00,m

F=1yvee,m

= 2P[| X(0,, Ta) — X (509 Ta) — X(0s &) + X(s0 o) [ > €] .

From the choice of 0 we see that the right sides of inequalities (7),
(8), and (9) are each not greater than 2¢. Since the o0,’s are s;,’s and
7,’s are t,’s, we have

(10) P[.max | X(s,, t) — X(so t)| > 25] < 2
(11) P[.max | X(s,, t5) — X(s0, 8)] > 28] <9
and

ey

(12) P[iglaxn[X(si, t) — X(soy t) — X(ss, 1) + X(soy )] > 25] <2¢.
Substituting (10), (11), and (12) into (6) we get (5), i.e.

P max | X(s,, t) — Xisi, 1] > ee] < 6.
Then

P[ sup | X(s, £) — X(s,, 1) > 68] < 6e .

(s,t) €8y

Since the proof of (2) is similar, it is omitted.
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Now let V=S, US,US;US,. Then

P[ sup | X(s, t) — X(s0, t)| > Ge]

(s,t) eV

(13) 4
< P[ sup | X(s, t) — X(so, )] > ee]
izt Le,oes;
and hence
(14) P[(sup | X(s, t) — X(s0, £,)| > 68] < 24 .
s,t) e

Taking limits as 6 | 0, we obtain

(15) P[lim sup | X(s, ) — X(s,, t)] > 65] < 24 .

alo

Now let ¢ | 0 and take complements to get
(16) P[lifn sup | X(s, t) — X(so, &) | = 0] 1.
3lo 14

If an arbitrary sequence (s, t,) with lim,_.. (s,, t.) = (s, &) is given,
we extend the point set {s,, t.} to a countable dense set S in D. Then

[lim X(s,, t.) = X(s,, to)] - [13?9 sup| X(s, ) — X(s,, t)| = o]

n—co

and by (16)
P[lim X(s,, t,) = X(s,, to)] —1

LEMMA 4.5. Let X(s,t) be a biadditive process on a probability
space (2,B, P) with (s,t)e D=]0, 1] x [0, 1]. Suppose that v(s, t) =
var (X(s, t)) ts continuous over D. Furthermore, suppose that for any

e>0,
22[ (%%> x(Eh 4) - x(£ )
(1) 11
\ n o on >!>E]ZO
0 K
and
@ S - x> ] o,

Then there is a process Y(s, t) equivalent to X(s, t) such that almost
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every sample function of Y(s, t) is continuous on D.

Proof. Let S be the set of all rational numbers in [0, 1] and let
D"=8Sx S. Define 2 by 2 = {we Q: X(s, t) is uniformly continuous
on D'}, In the first part of the proof, we show that P(Q’) = 1.

Let Z, be defined on (2, B, P) by

Z, = sup{’X(s", ) — X(s', t’)l: (8", t"eD, (s, t)eD and
IS” — S’i < l’ 'tl’ . tll < ‘l_} R
n n

Then X(s, t) is uniformly continuous on D’ if and only if lim,_..Z, = 0.
Hence,

(4) P = P[lim 7, = o] )

Let S;=Sn[(—1/n,j/n] j=1, -+, n, and fix n. We number
the elements of S; in an arbitrary manner for each j =1, ---, n. Let
j and %k be now fixed and let s, ++-,s,_, and ¢, ---, ¢,_, denote the
first m — 1 elements of S; and S, respectively. Let o, -+, 0,_, and
Ty, ***y Tm_, be the arrangements of {s,, «+-, s,.,} and {¢,, - -+, ¢,_.} respec-
tively in ascending order so that ¢, <0, < +++ <0, and 7, < T, < + =+ <
Tp_» Choose 0, = (j — 1)/n, 0,, = j/n, T, = (k — 1)/n, and 7,, = k/n, and
define S;, = {to, T, =+, Tm}. We will use the notation:

A(s, t, ', t)y = X(s', t') — X(s, t') — X(s', t) + X(s, 1) .

Since X(s, t) is biadditive, the three collections of random variables
below are systems of independent random variables:

{4(Cpuesy Tysy Oy Tty ¥ = 1, « oo, m}

{A(j— 1, r,_l,i,17>:7: 1,«ce,m and j =1, ,n}
n n

{/1(0,,“1, ke — 1, o, ﬁ) p=1 -+ m and k=1, ..., n} .

n n
Let ¢ > 0 be chosen arbitrarily. Since (s, ) and m(s, t) are continuous
on D, they are uniformly continuous and if % is sufficiently large and

if0<s”" —s <1/mor 0<t”— 1t <1l/n, then from Chebychef’s in-
equality it follows that

(5) P[M(s’, £, 8" 1] > %] <1- J% :

Let Y, ;,x = SuDs.xs, | X(s, ) — X(( — 1)/n, (k — 1)/n))|. Then from the
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triangle inequality we get

Y,= max Y, ;.
Fik=1,-++,m

< max sup A(j_l,k_l, s, t>}

Fokslyeessm SiXSp n n
6 _ - 1
(6) 4+ max sup X(s, k 1) — X(J 1, k—l)l
Jrk=1,e-,m s€8; n n n
+ max sup X(j—_——l, t>—X<i"—1,k—l>‘ .
Gik=1,+-+,n te Sy n n n
Consequently,
PlY, > 6¢]
= P[. max sup A(g, k — 1, s, t>] > 28]
Fsk=1,-+,m S XSk n n
(7) [max sup (,k—1>—X<]—:——1,k_l>}>25]
isk=1 % sesS; n n n -
-I—P[ max sup <‘7;1, )—X(j_l,li_—1>%>2e].
Jik=1,-++,m teSy n n m

For (o,,7,) € S;, X Sim, We see that

A<j - 1) k — 17 O-Fs TT) Z ( p—1y TQ—D 01’) Tq)

n n

a sum of independent random variables. Now (5) implies that the
hypotheses of the extended Ottaviani’s Inequality (Lemma 4.3) are
satisfied and consequently

(i1, )

P[ max
n

=1, ,m

sl L 4 B,
n ’l’L n

Letting m — <o, it follows that

Plsw [a(ZL B s o) > 0] < 2pf [a(E1 E2L 5 K ]
S;x8p n n n n n n
and hence
P[ max sup A(j — 1, k — 1, s, t)\ > 25]
(9 ) Jok=1,---,m S ;XS n n
S5 S AL L )]
prge| n m non

Now if o,¢€ S;,, since X(o,, 0) = X(0, (k — 1)/n) = 0, we have

x(on ) - (B ) = £ Bl D)




354 W. N. HUDSON

as before, a sum of independent random variables. Again, (5) allows
us to use the extended Ottaviani’s Inequality to obtain
P[ max max

max max | X(s, £2) - X(Z04 E)] > 2]

X(40)- x(153,9)]>].

Letting m — «, we get

[ x(s 220 - x(I R ) > 2]
J

P[,max sup
< 27| |x(L,1) - x(2=1 1)) > €]

< ZP[

and
Pl max sup (s £5) - (0 50 > ]
a = P{O[ max sup | x(s Eo2) - x(To4 B D) s e

[I/\

2% UX (£,1) - X<j;1,1>l>e].
Similarly for z,€ Sy,

X<j;1,fr> X(]—l k—l) sz 7‘141( nl,fq_l,%,fq),

n n p=1g=

a sum of independent random variables, and so by (5) we may again
apply the extended Ottaviani’s Inequality and take limits as m — oo,
We get

P[ max sup X<j;1, )— X(u, k—_——1>‘ >28]
Frk=1,+-,n te Sy n \ n n

u k E—1 l ]
< xy
ZZIEP[lX(l, n) x(1, . )| >el-
Inserting (9), (10), and (11) into (7) and letting n — =, we see

from the hypotheses (1), (2), and (3) that
(12) lim P[Y, > 6¢] =0.

n—oo

(11)

The inequality Z, < 4Y, can be checked by succesive applications
of the triangle inequality. (If | — s"| <1/m and |t' — ¢"| < 1/n,
(s, ) e (4 — D/n, j/n] x [(k — 1)/n, k/n] implies that (s”, t") € [(j — 2)/n,
(J + D/n] x [(k — 2)/n,.(k + 1)n] and it suffices to check each possi-
bility.) It follows that
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P[Z, > 24¢] < P[Y, > 6¢] .

Since 0 < Z, and Z,,, < Z, for all =,
lim P[Z, > 24¢] — P[lim Z, > 245] ~0
by {12). Letting ¢ ] 0, we obtain

P[lim Z, > 0] —0,

n—oo

and since Z, = 0, we get

P(@) = P[lirgl Z, = 0] ~1,
which finishes the first part of the proof.

Now if w(s, t) is any real-valued function uniformly continuous on
a set D, it has a unique continuous extension to the closure of D.
Let Y(s, t, w) be defined for w € 2’ by Y(s, t, w) = X(s, t, w) if (s, t)e D'.

If (s, t) ¢ D', choose a sequence of points (s,, t,) in D’ such that
lim, .. (s,, t,) = (s, t) and define Y(s, {, w) = lim,_.. Y(s,, t,, w) for we
2'. Since for we Q' Y(s, t, w) is uniformly continuous on D’ which
is dense in D, Y(s, t, w) is well-defined for we 2. If we2, let
Y(s, t, ) = 0. Then for (s, t)e D’,

P[Y(s, t) = X(s, )] = P() =1
and if (s,t)e D but (s, t) ¢ D',

P[ ¥(s, 1) = lim X(s,, tn)] > P@) =1

for some sequence {(s,, t,)} in D' such that lim,_.. (s,, ¢,) = (s, {). But
by Lemma 2.6,

P[X(s, t) = lim X(s,, tn)] -1

n—ro0

and hence for any (s, t) e D,
PlY(s, t) = X(s,0)] = 1.

That is, Y(s, t) is a process which is equivalent to X(s, t). It follows
from the definition of Y(s, t), that its sample functions are continuous
on 2, a set of probability one.

5. Proof of Theorem 2,

Proof. Let @(a, b, ¢, d) denote the normal probability distribution
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with mean zero and variance v(c, d) — v(a, d) — v(c, b) + v(a, b) where
0a<ce=<1land 0<b<d=<1. Then since the convolution of normal
distributions is a normal distribution whose mean and variance are
the respective sums of the means and variances of the original distri-
butions, for any a > 0 we have

O, b, ¢+ a,d) = 9,bd, ¢, d)=D(c, b, ¢ + a, d)
&(a, b, c,d + a) = O, b, ¢, ))«D(a, d, c, d + a)

where “x” denotes the operation of convolution.

By Lemma 4.1, there is a biadditive process Y({s, f) such that for
< s and t' < ¢, Y(s”, t") — Y(s, t") — Y{(s", ¥) + Y(¢, t') is normally
distributed with mean zero and variance v(s”, t”") — v(s’, ") — v(s”, ')+
v(s’, ¥'). If Y(s, t) satisfies conditions (1), (2), and (3) of Lemma 4.5
there is a process Y (s, t) equivalent to Y{s, ¢) such that almost every
sample function of Y,(s, t) is continuous over D. Define X(s, t) =
Yy (s, t) + m(s, t). Then X(s, t) satisfies (i) and (ii) and is biadditive
since Yy(s, t) is. Furthermore almost every sample function of X(s, ?)
is continuous over D.

Let 4;, denote the random variable

=) - V(D) S RS

where n is a positive integer. Conditions (1), (2), and (3) of Lemma
4.5 are

(1) lim 3 3% P[l 4] > ] = 0
® g ) xa )
@ g - () e

where ¢ > 0 is chosen in an arbitrary manner. We will use the fol-
lowing inequality which is valid for x > 0.

Sme—tmdt = lSmte"‘z""dt = Lwe
2 N Ja A
For ¢ > 0 since 4;, is normally distributed,

Pl 4] > ] =

2 gw —(t2/2v4 )
e Bt
Vorv;,

2 S _t2/2dt
Ver
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or

Pllds] > el =

2 { V} 2 [ { g }
— €X — > = — A/ 2L ex —
W P17 g \/271: P 20,

where

R

and A = e(v;,)"“?. Since v(s, t) is uniformly continuous over D, we
can choose N independently of j and & such that » = N implies v;,/¢* <
1/M? where M, is determined as follows. Since (1/x)exp{—(2%/2)} =
o(x™®) as x — oo, we have for every positive integer ¢, a number M,
such that © > M, implies = exp {— (¢*/2)} < 1/0, that is, for » > M,

lexp{ }<—1-
X ox?

RS

Now w;,/e* < 1/M} entails ¢/ v;, > M, and with x = ¢/1/v;, we get

Then for n = N

Pl 4;,] >e] = _T/E’;—gzﬁ .
But »(1, 1) — »(1, 0) — »(0, 1) + »(0, 0) = »(1, 1) = >\r_, >\*, v,;, and so
1
Z Z Plld;l <e] = 1/2 —523’0(1, 1.

N

Since we may take 0 arbitrarily large, choosing N sufficiently large
for each o,

hmz Z Pli4;,] >¢] =0

n—oo j=1 k=1

and (1) holds for Y{s, ). A similar argument proves (2) and (3).
Since Y(s, 0) = Y(0,¢t) = 0 for all (s, t) in D, Y(1, k/n) — Y(1, (k — 1)/n)
is normally distributed with mean zero and variance v(1, k/n) —
v(1, (k — 1)/n), and Y(j/n,1) — Y(( — 1)/n, 1) is normally distributed
with mean 0 and variance v(j/n, 1) — v((7 — 1)/n, 1). Thus

PU Y(l, %) — Y<1, k - 1)} > e] - 1/22@ kr exp {— /20,

< exp {—¢*/2v;}
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and

P[] Y(% 1— Y(J_;l 1)| > s] _ 1/2275—»5” exp {— &2/20)dt

< 217___[2:);5 exp {—&/2v;}

where v; =v(j/n, 1 —v((j — 1)/n, 1) and v, = v(1, k/n) — v, (k — 1)/n).
Again we may choose 0, M;, N’, and N” so that when n = N’ or n =
N, the respective inequalities

v; 1 v,, 1
’ — or < —
< M,s M6

hold. Since »(1,1) = 3% v, = S\ vs
S A[3(18) - x5S ]2 2t

n 2moe®

and

¥ ) J—1 4] ]

<L 1) - X(=—,1 < 1,1
=P[IX\n’ ( n >‘>s 1/277:55 Vamse oL D
when n > N’ or n > N’ respectively. Thus there is a process Y(s, t)
equivalent to Y(s, t) such that almost every sample function of Y, is
continuous over D. Setting X(s, t) = Yy(s, ) + m(s, t) we obtain a
biadditive process satisfying (i), (ii), and (iii).
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