A DECOMPOSITION THEOREM FOR BIADDITIVE PROCESSES

W. N. Hudson

This paper treats a class of stochastic processes called biadditive processes and gives a proof of a decomposition of their sample functions. Informally, a biadditive proces $X(s, t)$ is a process indexed by two time parameters whose "increments" over disjoint rectangles are independent. The increments of such a process are the second differences

$$
X\left(s_{2}, t_{2}\right)-X\left(s_{1}, t_{2}\right)-X\left(s_{2}, t_{1}\right)+X\left(s_{1}, t_{1}\right)
$$

where $s_{1}<s_{2}$ and $t_{1}<t_{2}$. The decomposition theorem states that every centered biadditive process is the sum of four independent biadditive processes: one with jumps in both variables, two with jumps in one variable and continuous in probability in the other, and a fourth process which is jointly continuous in probability.

This decomposition is similar to one for processes with independent increments and in the proofs of both results a major role is played by the theory of centralized sums of independent random variables.

More formally, let $P_{1}=\left\{s_{1}, s_{2}, \cdots, s_{n}\right\}$ and $P_{2}=\left\{t_{1}, t_{2}, \cdots, t_{m}\right\}$ be two partitions of $\left[0, s_{n}\right]$ and $\left[0, t_{m}\right]$ respectively. Define $P_{1} \times P_{2}$ to be the corresponding partition of $\left[0, s_{n}\right] \times\left[0, t_{m}\right]$ into rectangles whose vertices are the $\left(s_{i}, t_{j}\right)$'s. Let $\Delta_{i j}$ denote the increment

$$
\Delta_{i j}=X\left(s_{i+1}, t_{j+1}\right)-X\left(s_{i}, t_{j+1}\right)-X\left(s_{i+1}, t_{j}\right)+X\left(s_{i}, t_{j}\right)
$$

over the rectangle with vertices $\left(s_{i+1}, t_{j+1}\right),\left(s_{i}, t_{j+1}\right),\left(s_{i+1}, t_{j}\right)$ and $\left(s_{i}, t_{j}\right)$. Then if the increments

$$
\left\{\Delta_{i j}: i=0,1, \cdots, n-1, j=0,1, \cdots, m-1\right\}
$$

corresponding to any partition $P_{1} \times P_{2}$ are independent and if $X(s, 0)=$ $0=X(0, t)$ for all s and t not less than zero, $X(s, t)$ is called biadditive.

It is easy to construct some examples of biadditive processes. For instance, if $\left\{Y_{i j}\right\}_{i, j=0}^{\infty}$ is a doubly infinite sequence of independent random variables, then it is easy to see that the process

$$
X(s, t)=\sum_{i<s} \sum_{j<t} Y_{i j}
$$

is biadditive. A nontrivial example of a biadditive process is obtained when the space C_{2} of continuous functions of two variables on $[0, \infty) \times$ $[0, \infty)$ is given the Wiener-Yeh measure and the process $X(s, t)$ is the
coordinate process (see [3]). In [1] it was shown that the only biadditive processes with versions having continuous sample surfaces are Gaussian with continuous mean and variance functions, a result analogous to the one parameter case.

In order to facilitate the reading of this note, a short summary without proofs of some results of the theory of centralized sums is given in §2. A very nice account with proofs is given in the lecture notes by K. Itô (see [2]).

2. Summary of the theory of centralized sums.

Definition (J. L. Doob). If X is a random variable with probability distribution μ, the central value $\gamma(X)$ of X is defined to be the unique real number γ such that

$$
\int_{-\infty}^{\infty} \arctan (x-\gamma) \mu(d x)=0
$$

The dispersion $\delta(X)$ of X is defined to be

$$
\delta(X)=-\log \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp \{-|x-y|\} \mu(d x) \mu(d y)
$$

Basic Properties.

(2.1) If β is any number, $\gamma(\pm X+\beta)= \pm \gamma(X)+\beta$ and $\delta(\pm X+\beta)=\delta(X)$.
(2.2) If c is any number and $X=c$ a.s., then $\gamma(X)=c$ and $\delta(X)=0$.
(2.3) A sequence of random variables $\left\{X_{n}\right\}$ converges in probability to a random variable X if and only if $\gamma\left(X_{n}\right) \rightarrow \gamma(X)$ and $\delta\left(X_{n}-X\right) \rightarrow 0$. (2.4) If X and Y are independent random variables, then $\delta(X+Y) \geqq$ $\delta(X)$. Furthermore, $\delta(X+Y)=\delta(X)$ if and only if Y is constant a.s.

Centralized Sums. Let $\left\{X_{n}\right\}$ be a sequence of independent random variables and let $S_{n}=\sum_{1}^{n} X_{k}$. Then the sequence of dispersions $\left\{\delta\left(S_{n}\right)\right\}$ is a nondecreasing set of real numbers. There are two cases
(a) If $\lim _{n} \delta\left(S_{n}\right)<\infty$, then $\left\{S_{n}-\gamma\left(S_{n}\right)\right\}$ converges a.s.
(b) If $\lim _{n} \delta\left(S_{n}\right)=\infty$, then for every choice of a sequence of constants $\left\{c_{n}\right\},\left\{S_{n}-c_{n}\right\}$ diverges a.s.

Let $\left\{X_{\alpha}\right\}_{\alpha_{\in A}}$ be a countable family of independent random variables. Let F be a finite subset of A and set $S_{F}=\sum_{\alpha \in F} X_{\alpha}$ and $S_{F}^{*}=S_{F}-\gamma\left(S_{F}\right)$. S_{F} is called the partial sum over F and S_{F}^{*} is called the centralized partial sum over F. We write $S_{F}^{\cdot}=\sum_{\alpha \in F}^{*} X_{\alpha}$. (Also we will use $X+Y$ for $X+Y-\gamma(X+Y)$ and $X-Y$ for $X-Y-\gamma(X-Y)$. Let

$$
\delta(A)=\sup _{F} \delta\left(S_{F}\right)
$$

where F ranges over all finite subsets of A.
Theorem 2.1. Suppose that $\delta(A)<\infty$ and that $\left\{F_{n}\right\}$ is a nondecreasing sequence of finite sets such that $F_{1} \subset F_{2} \subset \cdots \rightarrow A$. Then $S_{F_{n}}^{\cdot}$ converges a.s. and the limit S_{A}^{\cdot} is independent of the choice of the sequence $\left\{F_{n}\right\}$ of finite subsets. Furthermore

$$
\gamma\left(S_{A}^{\cdot}\right)=0 \quad \text { and } \quad \delta\left(S_{A}^{\cdot}\right)=\delta(A)
$$

Centralized sums behave in a very nice way. More precisely,
ThEOREM 2.2. Let $\left\{X_{\alpha}\right\}_{\alpha_{A}}$ be a countable family of independent random variables such that $\delta(A)<\infty$.
(a) If $A=\cup A_{n}$ (disjoint), then $S_{A}^{\cdot}=\Sigma \cdot S_{A_{n}}^{\cdot}$ a.s.
(b) If $A_{n} \uparrow A$, then $S_{A_{n}} \rightarrow S_{A}^{\cdot}$ a.s.
(c) If $B \subset A$ and $B_{k} \downarrow^{A_{n}} B$, where $B_{k} \subset A$ for all k, then $S_{B_{k}} \rightarrow$ S_{B}^{\bullet} a.s.

3. The decomposition theorem.

Definition. A centralized biadditive process $X(s, t)$ is for each s the sum of independent jumps occurring before time t if there exists a countable family of independent random processes $\left\{Z_{t}(s)\right\}$ such that

$$
X(s, t)=\sum_{y \leq t} \cdot Z_{y}(s)
$$

$X(s, t)$ is said to be the sum of independent jumps occurring before time (s, t) if there exists a countable family of independent random variables $\{T(x, y)\}$ such that

$$
X(s, t)=\sum_{X \leq s} \cdot \sum_{y \leq t} \cdot T(x, y)
$$

Theorem 3.1. Let $\{X(s, t): s, t \geqq 0\}$ be a biadditive process. Then $X(s, t)$ can be written as the sum of a deterministic part $f(s, t)$ and four independent centralized biadditive processes $X_{1}(s, t), X_{2}(s, t), X_{3}(s, t)$, and $X_{4}(s, t)$ which have the following properties:
(a) $X_{1}(s, t)$ is the sum of independent jumps occurring before time (s, t).
(b) $X_{2}(s, t)$ is for each $t \geqq 0$ continuous in probability in s and for each s is the sum of independent jumps occurring before time t.
(c) $X_{3}(s, t)$ is for each $s \geqq 0$ continuous in probability in t and for each t is the sum of independent jumps occurring before time s.
(d) $X_{4}(s, t)$ is continuous in probability on $[0, \infty) \times[0, \infty)$.
4. Proof of the decomposition theorem. The first lemma follows immediately from the definition of biadditive processes.

Lemma 4.1. Let $\left\{X_{\alpha}(s): 0 \leqq s\right\}_{\alpha}$ be a finite set of independent additive processes such that $X_{\alpha}(0)=0$ for all α. Then

$$
Y(s, t)=\sum_{0<\alpha<t} X_{\alpha}(s)
$$

is biadditive.

DEFINITION. We write $s_{n} \downarrow s$ if $s_{1}>s_{2}>\cdots>s_{n}>\cdots$ and $\lim _{n} s_{n}=s$. Similarly $s_{n} \uparrow s$ means $s_{1}<s_{2}<\cdots<s$ and $\lim _{n} s_{n}=s$.

Theorem 4.1. Let $X(s, t)$ be a centralized biadditive process. Then if $s_{n} \uparrow s$ and $t_{n} \downarrow t, P-\lim _{n \rightarrow \infty} X\left(s_{n}, t_{n}\right)$ exists. Furthermore if $\left\{\left(s_{n}^{\prime}, t_{n}^{\prime}\right)\right\}$ is another sequence of points such that $s_{n}^{\prime} \uparrow s$ and $t_{n}^{\prime} \downarrow t$, then P $\lim _{n \rightarrow \infty} X\left(s_{n}^{\prime}, t_{n}^{\prime}\right)$ exists and is equal to $P-\lim _{n \rightarrow \infty} X\left(s_{n}, t_{n}\right)$.

Proof. We show that in fact the almost everywhere limits, exist, the exceptional set depending on the particular sequence. Let $s_{n} \uparrow s$ and $t_{n} \downarrow t$. Then

$$
\begin{aligned}
X\left(s_{n}, t_{n}\right)= & X\left(s_{1}, t_{1}\right)+\sum_{r=1}^{n-1}\left[X\left(s_{r}, t_{r+1}\right)-X\left(s_{r}, t_{r}\right)\right] \\
& +\sum_{r=1}^{n-1}\left[X\left(s_{r+1}, t_{r+1}\right)-X\left(s_{r}, t_{r+1}\right)\right]
\end{aligned}
$$

Since each of the sums on the right are sums of independent random variables and the dispersions of their partial sums are dominated by $\delta\left[X\left(s, t_{1}\right)\right]<\infty$, each sum when centralized converges a.s. It follows that $X\left(s_{n}, t_{n}\right)+k_{n}$ converges a.s. for some sequence of constants $\left\{k_{n}\right\}$. Then

$$
\gamma\left(\lim _{n \rightarrow \infty}\left[X\left(s_{n}, t_{n}\right)+k_{n}\right]\right)=\lim _{n \rightarrow \infty}\left\{\gamma\left(X\left(s_{n}, t_{n}\right)\right)+k_{n}\right\}=\lim _{n \rightarrow \infty} k_{n}
$$

exists and hence $X\left(s_{n}, t_{n}\right)=\left(X\left(s_{n}, t_{n}\right)+k_{n}\right)-k_{n}$ converges a.s.
To show that $\lim _{n \rightarrow \infty} X\left(s_{n}^{\prime}, t_{n}^{\prime}\right)=\lim _{n \rightarrow \infty} X\left(s_{n}, t_{n}\right)$, form a new sequence $\left(\bar{s}_{n}, \bar{t}_{n}\right)$ converging monotonically to (s, t) by alternating points from $\left\{\left(s_{n}, t_{n}\right)\right\}$ and $\left\{\left(s_{n}^{\prime}, t_{n}^{\prime}\right)\right\}$.

From now on let $X(s, t)$ denote a centralized biadditive process. The last theorem and its obvious counterparts justify the notation

$$
\begin{array}{lllllll}
X(s+, t+) & =P-\lim _{n \rightarrow \infty} X\left(s_{n}, t_{n}\right) & \text { if } & s_{n} \downarrow s & \text { and } & t_{n} \downarrow t \\
X(s-, t+)=P-\lim _{n \rightarrow \infty} X\left(s_{n}, t_{n}\right) & \text { if } & s_{n} \uparrow s & \text { and } & t_{n} \downarrow t \\
X(s+, t-) & =P-\lim _{n \rightarrow \infty} X\left(s_{n}, t_{n}\right) & \text { if } & s_{n} \downarrow s & \text { and } & t_{n} \uparrow t
\end{array}
$$

$$
\begin{aligned}
X(s-, t-) & =P-\lim _{n \rightarrow \infty} X\left(s_{n}, t_{n}\right) \quad \text { if } s_{n} \uparrow s \quad \text { and } t_{n} \uparrow t \\
X(0-, t) & =X(s, 0-)=0 \text { (convention) }
\end{aligned}
$$

Lemma 4.2. Let $0 \leqq s$, t. If $\delta\left\{X\left(s_{0}+, t_{0}\right)-X\left(s_{0}-, t_{0}\right)\right\}>0$ for some t_{0}, then $\delta\left\{X\left(s_{0}+, t\right)-X\left(s_{0}-, t\right)\right\}>0$ for all $t \geqq t_{0}$. Similarly if $\delta\left\{X\left(s_{0}, t_{0}+\right)-X\left(s_{0}, t_{0}-\right)\right\}>0$ for some s_{0}, then $\delta\left\{X\left(s, t_{0}+\right)-X\left(s, t_{0}-\right)\right\}>0$ for all $s \geqq s_{0}$.

Proof. Suppose that for some $t_{0}, \delta\left\{X\left(s_{0}+, t_{0}\right)-X\left(s_{0}-, t_{0}\right)\right\}>0$. If $t \geqq t_{0}$,

$$
X\left(s_{0}+, t\right)-X\left(s_{0}-, t\right)=X\left(s_{0}+, t_{0}\right)-X\left(s_{0}-, t_{0}\right)+\Delta
$$

where

$$
\Delta=X\left(s_{0}+, t\right)-X\left(s_{0}+, t_{0}\right)-X\left(s_{0}-, t\right)+X\left(s_{0}-, t_{0}\right)
$$

is independent of $X\left(s_{0}+, t_{0}\right)-X\left(s_{0}-, t_{0}\right)$. Hence

$$
0<\delta\left\{X\left(s_{0}+, t_{0}\right)-X\left(s_{0}-, t_{0}\right)\right\} \leqq \delta\left\{X\left(s_{0}+, t\right)-X\left(s_{0}-, t\right)\right\}
$$

Definition. The line $s=s_{0}$ is a line of discontinuity for the biadditive process $X(s, t)$ if for some $t \geqq 0, \delta\left\{X\left(s_{0}+, t\right)-X\left(s_{0}-, t\right)\right\}>0$. Similarly $t=t_{0}$ is a line of discontinuity if for some $s \geqq 0, \delta\left\{X\left(s, t_{0}+\right)-\right.$ $\left.X\left(s, t_{0}\right)\right\}>0$. Let

$$
D_{1}=\{s \geqq 0: \exists t \geqq 0 \text { such that } \delta[X(s+, t)-X(s-, t)]>0\}
$$

and

$$
D_{2}=\{t \geqq 0: \exists s \geqq 0 \text { such that } \delta[X(s, t+)-X(s, t-)]>0\}
$$

It is easy to see that D_{1} and D_{2} are countable sets. D_{1} is the union over all positive integers n of the countable sets of fixed points of discontinuity of the additive process $Y_{n}(s)=X(s, n)$. (This follows from Lemma 4.2.)

From now on $X(s, t)$ will denote a centralized biadditive process. We define

$$
\begin{aligned}
& X_{1}(s, t) \\
& =\sum_{0 \leq x<s} \cdot \sum_{0 \leq y<t} \cdot\{X(x+, y+)-X(x-, y+)-X(x+, y-)+X(x-, y-)\} \\
& \quad+\sum_{0 \leq y<t}\{X(s, y+)-X(s-, y+)-X(s, y-)+X(s-, y-)\} \\
& \quad+\sum_{0 \leq x<s}\{X(x+, t)-X(x-, t)-X(x+, t-)+X(x-, t-)\} \\
& \quad+\{X(s, t)-X(s-, t)-X(s, t-)+X(s-, t-)\}
\end{aligned}
$$

All sums above and from here on are really countable since for only
x 's in D_{1} and y 's in D_{2} are the random variables in the sums nonzero. Let

$$
Y_{1}(s, t)=X(s, t) \doteq X_{1}(s, t) .
$$

Proposition 4.1. $\quad Y_{1}(s, t)$ and $X_{1}(s, t)$ as defined above are independent biadditive processes. Furthermore for all s and $t \geqq 0$,

$$
Y_{1}(s+, t+)-Y_{1}(s-, t+)-Y_{1}(s+, t-)+Y_{1}(s-, t-)=0
$$

Proof. By approximating $X_{1}(s, t)$ with finite sums $X_{1}^{(n)}(s, t)$ and writing $Y_{1}^{(n)}=X-X_{1}^{(n)}$ so that $X_{1}^{(n)}$ and $Y_{1}^{(n)}$ are independent biadditive processes, we see that X_{1} and Y_{1} are the limits of independent biadditive processes. It follows that X_{1} and Y_{1} are independent biadditive processes.

To prove that

$$
Y_{1}(s+, t+) \doteq Y_{1}(s-, t+) \doteq Y_{1}(s+, t-) \dot{+} Y_{1}(s-, t-)=0
$$

we note that if $s_{n} \downarrow s$ and $t_{n} \downarrow t$,
$P-\lim _{n \rightarrow \infty} \sum_{0 \leq y<t_{n}}\left\{X\left(s_{n}, y+\right)-X\left(s_{n}-, y+\right)-X\left(s_{n}, y-\right)+X\left(s_{n}-, y-\right)\right\}=0$
$P-\lim _{n \rightarrow \infty} \sum_{0 \leq x<s_{n}}\left\{X\left(x+, t_{n}\right)-X\left(x-, t_{n}\right)-X\left(x+, t_{n}-\right)+X\left(x-, t_{n}-\right)\right\}=0$
$P-\lim _{n \rightarrow \infty}\left\{X\left(s_{n}, t_{n}\right)-X\left(s_{n}-, t_{n}\right)-X\left(s_{n}, t_{n}-\right)+X\left(s_{n}-, t_{n}-\right)\right\}=0$.
The first equality is a consequence of (2.4). Since X is biadditive,

$$
\begin{aligned}
& {\left[X\left(s_{n}, t_{1}\right)-X\left(s+, t_{1}\right)\right]} \\
& \quad-\sum_{0 \leq y<t_{n}}\left\{X\left(s_{n}, y+\right)-X\left(s_{n}-, y+\right)-X\left(s_{n}, y-\right)+X\left(s_{n}-, y-\right)\right\}
\end{aligned}
$$

and

$$
\sum_{0 \leqq y<t_{n}}\left\{X\left(s_{n}, y+\right)-X\left(s_{n}-, y+\right)-X\left(s_{n}, y-\right)+X\left(s_{n}-, y-\right)\right\}
$$

are independent. Hence,

$$
\begin{aligned}
& \delta\left\{\sum_{0 \leqq y<t_{n}}^{\cdot}\left\{X\left(s_{n}, y+\right)-X\left(s_{n}-, y+\right)-X\left(s_{n}, y-\right)+X\left(s_{n}-, y-\right)\right\}\right. \\
& \left.\quad \leqq \hat{o}\left\{X\left(s_{n}, t_{1}\right)-X\left(s+, t_{1}\right)\right\}\right\} \rightarrow 0 \quad \text { as } n \rightarrow \infty .
\end{aligned}
$$

Since the sum is centralized, the first equality follows by (2.3). The other two equalities follow from similar arguments. We have from Theorem 2.2

$$
\begin{aligned}
& X_{1}(s+, t+) \\
& \quad=\sum_{0 \leq y \leqq t} \cdot \sum_{0 \leq x \leq s}\{X(x+, y+)-X(x-, y+)-X(x+, y-)+X(x-, y-)\} .
\end{aligned}
$$

Using the basic properties of centralized sums and dispersions in a similar manner, we obtain

$$
\begin{aligned}
& X_{1}(s-, t+) \\
& \quad=\sum_{0 \leq x<s} \cdot \sum_{0 \leq y \leq t}\{X(x+, y+)-X(x-, y+)-X(x+, y-)+X(x-, y-)\} \\
& X_{1}(s+, t-) \\
& \quad=\sum_{0 \leq x \leq s} \cdot \sum_{0 \leq y<t}\{X(x+, y+)-X(x-, y+)-X(x+, y-)+X(x-, y-)\} \\
& X_{1}(s-, t-) \\
& \quad=\sum_{0 \leq x<s} \cdot \sum_{0 \leq y<t}\{X(x+, y+)-X(x-, y+)-X(x+, y-)+X(x-, y-)\} .
\end{aligned}
$$

We obtain from these equations,

$$
\begin{aligned}
& X_{1}(s+, t+) \doteq X_{1}(s-, t+) \doteq X_{1}(s+, t-) \doteq X_{1}(s-, t-) \\
& \quad=X(s+, t+) \doteq X(s-, t+) \doteq X(s+, t-) \doteq X(s-, t-) .
\end{aligned}
$$

Since $Y_{1}=X \dot{-} X_{1}$, the proposition is proved.
Now define

$$
X_{2}(s, t)=\sum_{0 \leqq x<s} \cdot\left\{Y_{1}(x+, t)-Y_{1}(x-, t)\right\} \dot{+}\left\{Y_{1}(s, t)-Y_{1}(s-, t)\right\}
$$

and

$$
Y_{2}(s, t)=Y_{1}(s, t) \doteq X_{2}(s, t) .
$$

Proposition 4.2. $X_{2}(s, t)$ and $Y_{2}(s, t)$ are independent biadditive processes. Furthermore, for all s and t

$$
X_{2}(s, t+)=X_{2}(s, t-)
$$

and

$$
Y_{2}(s+, t+)-Y_{2}(s+, t-) \doteq Y_{2}(s-, t+)+Y_{2}(s-, t-)=0
$$

Proof. The fact that X_{2} and Y_{2} are independent biadditive processes is proved in the same way as the corresponding assertion in Proposition 4.1. Using the techniques of the theory of centralized sums, one may easily see that

$$
X_{2}(s, t+)=\sum_{0 \leq x<s} \cdot\left\{Y_{1}(x+, t+)-Y_{1}(x-, t+)\right\}+\left\{Y_{1}(s, t+)-Y_{1}(s-, t+)\right\}
$$

and
$X_{2}(s, t-)=\sum_{0 \leq x<s} \cdot\left\{Y_{1}(x+, t-)-Y_{1}(x-, t-)\right\} \dot{+}\left\{Y_{1}(s, t-)-Y_{1}(s-, t-)\right\}$.
Thus

$$
\begin{aligned}
& X_{2}(s, t+)-X_{2}(s, t-) \\
& =\sum_{0 \leq x<s} \cdot\left\{Y_{1}(x+, t+)-Y_{1}(x-, t+)-Y_{1}(x+, t-)+Y_{1}(x-, t-)\right\} \\
& \quad+\left\{Y_{1}(s, t+)+Y_{1}(s-, t+)-Y_{1}(s, t-)+Y_{1}(s-, t-)\right\}=0
\end{aligned}
$$

by Proposition 4.1.
Since X_{2} is centralized, $X_{2}(s, t+)=X_{2}(s, t-)$ follows. An almost identical argument shows that $X_{2}(s+, t+)=X_{2}(s+, t-)$ and

$$
X_{2}(s-, t+)=X_{2}(s-, t-)
$$

The last equality follows immediately from these equations, Proposition 4.1, and the definition of Y_{2}.

We finally define

$$
X_{3}(s, t)=\sum_{0 \leq y<t} \cdot\left\{Y_{2}(s, y+)-Y_{2}(s, y-)+\left\{Y_{2}(s, t)-Y_{2}(s, t-)\right\}\right.
$$

and

$$
X_{4}(s, t)=Y_{2}(s, t)-X_{3}(s, t)
$$

Proposition 4.3. X_{3} and X_{4} are independent biadditive processes. Also for all s and t

$$
X_{3}(s+, t)=X_{3}(s-, t)
$$

Furthermore, X_{4} is continuous in probability since for all s and t

$$
X_{4}(s+, t+)=X_{4}(s-, t-)
$$

Proof. The fact that X_{3} and X_{4} are independent follows just as similar previous assertions. Since
$X_{3}(s+, t)=\sum_{0 \leqq y<t} \cdot\left\{Y_{2}(s+, y+)-Y_{2}(s+, y-)\right\}+\left\{Y_{2}(s+, t)-Y_{2}(s+, t-)\right\}$
and
$X_{3}(s-, t)=\sum_{0 \leq y<t} \cdot\left\{Y_{2}(s-, y+)-Y_{2}(s-, y-)\right\}+\left\{Y_{2}(s-, t)-Y_{2}(s-, t-)\right\}$,
we have

$$
\begin{aligned}
& X_{3}(s+, t) \doteq X_{3}(s-, t) \\
& \quad=\sum_{0 \leq y<t} \cdot\left\{Y_{2}(s+, y+) \doteq Y_{2}(s+, y-)-Y_{2}(s-, y+)+Y_{2}(s-, y-)\right\} \\
& \quad+\left\{Y_{2}(s+, t)-Y_{2}(s+, t-) \doteq Y_{2}(s-, t)+Y_{2}(s-, t-)\right\}=0
\end{aligned}
$$

by Proposition 4.2.
Since X_{3} is centralized, $X_{3}(s+, t)=X_{3}(s-, t)$.

Similar computations yield

$$
X_{3}(s+, t+)=\sum_{0 \leq y \leq t} \cdot\left\{Y_{2}(s+, y+)-Y_{2}(s+, y-)\right\}
$$

and

$$
X_{3}(s-, t-)=\sum_{0 \leq y<t} \cdot\left\{Y_{2}(s-, y+)-X_{2}(s-, y-)\right\}
$$

Thus

$$
\begin{aligned}
& X_{3}(s+, t+) \doteq X_{3}(s-, t-) \\
& =\sum_{0 \leq y<t} \cdot\left\{Y_{2}(s+, y+) \doteq Y_{2}(s-, y+)-Y_{2}(s+, y-)+Y_{2}(s-, y-)\right\} \\
& \quad+\left\{Y_{2}(s+, t+) \doteq Y_{2}(s+, t-)\right\} \\
& =Y_{2}(s+, t+)-Y_{2}(s+, t-)
\end{aligned}
$$

by Proposition 4.2. From the definition of X_{4} it follows that

$$
X_{4}(s+, t+) \doteq X_{4}(s-, t-)=0
$$

Since X_{4} is centralized, the proposition is proved.
The decomposition theorem now follows immediately from Propositions 4.1, 4.2, and 4.3 and from the definitions of X_{1}, X_{2}, X_{3} and X_{4}.

References

1. W. N. Hudson, Continuity of sample functions of biadditive processes, Pacific J. Math., 42 (1972), 345-360.
2. K. Itô, Stochastic Processes (Lecture Notes), Matematisk Institut, Aarhus Universitat 1969.
3. J. Yeh, Wiener measure in the space of function of two variables, Trans. Amer. Math. Soc., 95 (1960), 433-450.

Received March 10, 1972. The author wishes to thank Professor Howard Tucker for suggesting this problem.

University of California
Santa Barbara, California

