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A DECOMPOSITION THEOREM FOR BIADDITIVE
PROCESSES

W N. HUDSON

This paper treats a class of stochastic processes called
biadditive processes and gives a proof of a decomposition of
their sample functions. Informally, a biadditive proces X(s, t)
is a process indexed by two time parameters whose " incre-
ments " over disjoint rectangles are independent. The incre-
ments of such a process are the second differences

X(s2, U) - X(8U U) - X(s2, U) + X(8U ti)

where s± < s2 and U < t2. The decomposition theorem states
that every centered biadditive process is the sum of four
independent biadditive processes: one with jumps in both
variables, two with jumps in one variable and continuous in
probability in the other, and a fourth process which is jointly
continuous in probability.

This decomposition is similar to one for processes with independent
increments and in the proofs of both results a major role is played
by the theory of centralized sums of independent random variables.

More formally, let P1 = {slf s2, , sn} and P2 = {tl9 t2, , tm) be
two partitions of [0, sn] and [0, tm] respectively. Define P x x P 2 to
be the corresponding partition of [0, sn] x [0, tm] into rectangles whose
vertices are the (si9 ί, )'s. Let ΔiS denote the increment

AiS = X(8i+1, tj+ι) - X(si9 tj+1) - X(8i+ί, t^ + X(8i9 ts)

over the rectangle with vertices (s ί+1, tj+ι), (sif ί i+1), (sί+1, tά) and (sif tj).
Then if the increments

{Δiά\i = 0, 1, , n - 1, j = 0, 1, , m - 1}

corresponding to any partition P1 x P2 are independent and if X(s, 0) =
0 = X(0, t) for all s and t not less than zero, X(s, t) is called biaddi-
tive.

It is easy to construct some examples of biadditive processes.
For instance, if {Yi3)Zό=o ̂ s a doubly infinite sequence of independent
random variables, then it is easy to see that the process

is biadditive. A nontrivial example of a biadditive process is obtained
when the space C2 of continuous functions of two variables on [0, °o) x
[0, oo) is given the Wiener-Yeh measure and the process X(s, t) is the
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coordinate process (see [3]). In [1] it was shown that the only biad-
ditive processes with versions having continuous sample surfaces are
Gaussian with continuous mean and variance functions, a result anal-
ogous to the one parameter case.

In order to facilitate the reading of this note, a short summary
without proofs of some results of the theory of centralized sums is
given in § 2. A very nice account with proofs is given in the lecture
notes by K. Itδ (see [2]).

2* Summary of the theory of centralized sums*

DEFINITION (J. L. Doob). If X is a random variable with pro-
bability distribution μ, the central value i(X) of X is defined to be
the unique real number 7 such that

arc tan (x — j)μ(dx) = 0 .

The dispersion δ(X) of X is denned to be

8(X) = - l o g Γ Γ exp {-\x- y\}μ(dx)μ(dy) .
J — oo J —oo

Basic Properties.
(2.1) If β is any number, y(±X+β) = ±y(X) + /3 and δ(±X+β) = δ(X).
(2.2) If c is any number and X = c a.s., then y(X) = c and δ(X) = 0.
(2.3) A sequence of random variables {Xn} converges in probability
to a random variable X if and only if 7(Xn) —> Ί{X) and δ(Xn — X) —•().
(2.4) If X and Fare independent random variables, then δ(X 4- Y) ^
δ{X). Furthermore, δ(X + Y) = δ(X) if and only if Y is constant
a.s.

Centralized Sums. Let {Xn} be a sequence of independent random
variables and let Sn = ΣΓ -3Γ*. Then the sequence of dispersions {δ(Sw)}
is a nondecreasing set of real numbers. There are two cases

(a) If limnδ(Sn) < oo, then {Sn — 7(Sn)} converges a.s.
(b) If lim% δ(Sn) = co, then for every choice of a sequence of

constants {cn}, {Sn — cn} diverges a.s.
Let {Xa}asA be Si countable family of independent random variables.

Let F be a finite subset of A and set SF = ^aeF Xa and S'F = SF —y(SF).
SF is called the partial sum over F and SF is called the centralized
partial sum over F. We write S'F = Σ«e^ Xa (Also we will use X + Y
for X + Y - 7(X + Y) and X - Γ for X - Γ - τ(X - Y). Let
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where F ranges over all finite subsets of A.

THEOREM 2.1. Suppose that δ(A) < oo and that {Fn} is a non-
decreasing sequence of finite sets such that F1dF2c: —> A. Then
S'Fn converges a.s. and the limit SA is independent of the choice of the
sequence {Fn} of finite subsets. Furthermore

y(SA) = 0 and δ(SA) = δ(A) .

Centralized sums behave in a very nice way. More precisely,

THEOREM 2.2. Let {Xa}aeA be a countable family of independent
random variables such that δ(A) < oo.

(a) If A = uAn (disjoint), then SA = Σ'SAna.s.
(b) // An \ A, then SΆn -* SA a.s.
(c) If BczA and Bk \ B, where BkaA for all Jc, then S'Bk-+

S'B a.s.

3* The decomposition theorem*

DEFINITION. A centralized biadditive process X(s, t) is for each
s the sum of independent jumps occurring before time t if there exists
a countable family of independent random processes {Zt{s)} such that

X(8, t) = ΣTZy(8)

X(s9 t) is said to be the sum of independent jumps occurring before
time (s, t) if there exists a countable family of independent random
variables {T(x, y)} such that

THEOREM 3.1. Let {X(s, t):s,t^O} be a biadditive process. Then
X(s, t) can be written as the sum of a deterministic part f(s, t) and
four independent centralized biadditive processes X^s, t), X2(s, t), Xz(s, t),
and Xi(s, t) which have the following properties:

(a) Xi(s, t) is the sum of independent jumps occurring before
time (s, t).

(b) X2(s, t) is for each t ^ 0 continuous in probability in s and
for each s is the sum of independent jumps occurring before time t.

(c) XB(s, t) is for each s ^ 0 continuous in probability in t and
for each t is the sum of independent jumps occurring before time s.

(d) XJβ, t) is continuous in probability on [0, oo) x [0, oo).

4* Proof of the decomposition theorem* The first lemma fol-
lows immediately from the definition of biadditive processes.
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LEMMA 4.1. Let {Xa(s): 0 ̂  s}a be a finite set of independent ad-
ditive processes such that Xa(0) = 0 for all a. Then

= Σ
0<a<t

is biadditive.

DEFINITION. We write sn I s if s, > s2 > > sn > and
limn sn — s. Similarly sn \ s means sλ < s2 < < s and limΛ sn = s.

THEOREM 4.1. Lei X(s, ί) be a centralized biadditive process. Then
if sn \ s and tn \ t, P — l im^^ X(sn, tn) exists. Furthermore if {(s'n, t'n)}
is another sequence of points such that si f s and t'n j t, then P —
lim^o. X(s'n, tf

n) exists and is equal to P — lim^^ X(sn, tn).

Proof. We show that in fact the almost everywhere limits, exist,
the exceptional set depending on the particular sequence. Let sn ] s
and tn I t. Then

X(8n, tn) = X(819 t,) + Σ [ X ( β r , ίr + l) - X{*r, Q]
r — 1

n—l

Σ
r=l

Σ [X(8r+i, «r+i) -

Since each of the sums on the right are sums of independent random
variables and the dispersions of their partial sums are dominated by
δ[X(s, t,)] < oo, each sum when centralized converges a.s. It follows
that X(sn, tn) + kn converges a.s. for some sequence of constants {kn}.
Then

7(lim [X(sn, tn) + kn]) = lim {i(X(sn, Q) + kn] = lim kn
\n-*oo / n—yoo tι->κχ>

exists and hence X(sn, tn) = (X(sn, tn) + kn) — kn converges a.s.
To show that lim^^ X(s'n, fn) = l im^^ X(sn, ίΛ), form a new sequence

(sΛ, tn) converging monotonically to (s, t) by alternating points from
{(8n, tn)} and {«, ί;)}.

From now on let X(s, t) denote a centralized biadditive process.
The last theorem and its obvious counterparts justify the notation

X(8 + , ί + ) = p - limX(sn, tn) if 8 , 1 s and tn [ t
n-*co

X(s-, t+) = P- limX(sn, tn) if sn ] s and tn [ t

X(s + , t-) = P- lim JSΓ(sΛ, tn) if sn j s and tn | t
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X(s-, t-) = P- \imX(sn, tn) if sn \ s and ί. ί ί

X(0-, t) = X(s, 0 - ) = 0 (convention).

LEMMA 4.2. Let 0 ^ s, f. 1/ S{X(s0 + , t0) - X(s0 - , ί0)} > 0 for some
ί0, i/*>ew <5{X(so + , £) — X(s0 —, £)} > 0 /or αW £ ̂  t0. Similarly if
3{X(s0, to+)-X(s0, t0-)}>0 for some s0, then d{X(s, ί o +) - X(s, ί0-)} > 0
for all s ^ so

Proof. Suppose t h a t for some ί0, δ{X(so + , ί0) - -3Γ(s0-, ί0)} > 0. If

X(so + , ί) - X ( s 0 - , t) - X(so + , «o) - -3Γ(βo-, to) + J

where

J = X(SO + , ί) - X(SO + , <o) - X(8o~, t) + X(SO-, t0)

is independent of X(so + , t0) — X(s0 — , t0). Hence

0 < δ{X(so + , to)-X(so-, to)} ̂  δ{X(so + , t) - X(s 0 -, t)} .

DEFINITION. The line s = s0 is a ίme o/ discontinuity for the
biadditive process X(s, ί) if for some t ^ 0, <5{X(so + , ί) — X(s0 —, t)} > 0.
Similarly ί = ί0 is a ime of discontinuity if for some s ^ 0, δ{X(s, fo + ) —
X(s, t0)} > 0. Let

A = {β ^ 0: 3ί ^ 0 such that δ[X(s + 9 t) - X ( s - , t)] > 0}

and

A = {* ^ 0: 3s ^ 0 such that δ[X(s, t+) - X(s} t-)] > 0} .

It is easy to see that A a n d A are countable sets. A is the union
over all positive integers n of the countable sets of fixed points of
discontinuity of the additive process Yn(s) = X(s, n). (This follows
from Lemma 4.2.)

From now on X(s, t) will denote a centralized biadditive process.
We define

= Σ Σ* {X(χ+, y+) - X&-, v+) - x(*+, v-) + x&-, v-)}

+ Σ {X(s, y+) - X{8-, y+) - X(s, y-) + X(s-, y-)}
O£y<t

4- Σ {X(v+, t) - X(χ-, t) - X(x+, t-) + x(x-, t-)}
0<tx<s

+ {X(s, t) - X(s-, t) - X(β, «-) + X(s-, ί-)} .

All sums above and from here on are really countable since for only
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x's in Dι and y's in D2 are the random variables in the sums nonzero.
Let

Y^s, t) = X(s, t) - Xfa t) .

PROPOSITION 4.1, yx(s, t) and X^s, t) as defined above are inde-
pendent bίadditive processes. Furthermore for all s and t ^ 0,

Yi(s + , ί+) - Y&-, ί+) - Yi(8 + , *-) + Y&-, ί-) = 0 .

Proof. By approximating Xx(s, ί) with finite sums JfΊ(%) (s, ί) and
writing Y™ = X - X1

(%) so that X/^ and Yln) are independent biad-
ditive processes, we see that Xt and Y1 are the limits of independent
biadditive processes. It follows that X1 and Y1 are independent biad-
ditive processes.

To prove that

Yλ(8-9 t + ) - ^(8 + , t-) + ^ ( 8 - , ί-) = 0

we note that if sn j s and ίn [ t,

P - lim Σ ' Wen, 2/+) - ^ ( ^ ~ , 2/ + ) - -3Γ(»n, 2/-) + X(sn-, y-)} = 0

P - lim Σ* {X(x + , Q - X(x-, Q - X{% + , ί.-) + X(»-, tn-)} = 0

P - lim {X(sM, ί.) - X(sn-, tn) - X(sn, tn-) + X(8.-,t,-)} = 0.
11—>co

The first equality is a consequence of (2.4). Since X is biadditive,

- X(sn-, y+)-X(sn, y-) + X(sn-, y-)}

and

o <Σ" {X(sn, y+) - X(Sn-, y+) - X(sn, y-) + X(sn-, y-)}

are independent. Hence,

Σ # {X(sn, y^r) - X(sn — 9 y+) - X(sn, y-) + X(sn —, ?/-)}

^ δ{JΓ(8Λ, ίθ - X(s + , ί j }} -> 0 as n -> - .

Since the sum is centralized, the first equality follows by (2.3). The
other two equalities follow from similar arguments. We have from
Theorem 2.2

- X(χ-, v+) - X(χ+, v-) + X(χ-, v-))= Σ
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Using the basic properties of centralized sums and dispersions in a
similar manner, we obtain

Σ
Organs

- X(χ+, v-) + *(&-, v-)}

- X(χ-, v+) - X(χ+, v-) + X(χ-, v-))

- X(x-, y+) - X(x+, y-) + X(x-, y-)} .

We obtain from these equations,

9 ί-) - ^ ( 8 - , ί-)
= X(8 + , t + ) - X(S-, ί + ) -- X(8 + , t-) ^ X(8-, t-) .

Since Yλ = X — X19 the proposition is proved.

Now define

X*(s, t) = Σ {Y1(x + 9 t) - Yi(α?-, t)} + {Yi(8, ί) - Γ^β-, ί)}

and

Γ2(8, ί) = Y^s, t) - X2(s, ί) .

PROPOSITION 4.2. X2(s, ί) and Y2(s, t) are independent biadditive
processes. Furthermore, for all s and t

= X2(s, t-)

and

, ί-) -̂  Γ2(s-, ί+) + Γ2(s-, ί-) = 0 .

Proof. The fact that X2 and Y2 are independent biadditive pro-
cesses is proved in the same way as the corresponding assertion in
Proposition 4.1. Using the techniques of the theory of centralized
sums, one may easily see that

X*(s, t+)= Σ

and

-X.(β, t-) - Σ {y"i(» + , «-) - Y&-, *-)} + {Yi(s, ί-) - ^ ( s - , ί-)} .
Ogx<s

Thus
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Xt(8, t + ) - Xt(8, <-)
= Σ {Yi(*+, t+) ^ Y&-, t+) - Yί(χ+, t-) + Y&-, t-))

0

Yd*, ί-) + r^-, ί-)} = o

by Proposition 4.1.

Since X2 is centralized, X2(s, ί+) — X2(s, ί—) follows. An almost
identical argument shows that X2(s + , ί+) = X2(s + , ί—) and

The last equality follows immediately from these equations, Proposi-
tion 4.1, and the definition of Y2.

We finally define

-Xβ(8, t) = Σ {Γ2(8, 2/+) - Γ2(s, ?/-) + {^(s, ί) - Γ2(s, ί-)}

and

X4(S, ί) = Γ2(8, ί) - Xz(8, t) .

PROPOSITION 4.3. Xz and X4 are independent biadditive processes.
Also for all s and t

,t) = X3(s-,t) .

Furthermore, X4 is continuous in probability since for all s and t

Proof. The fact that Xz and X4 are independent follows just as
similar previous assertions. Since

X*(s + , t) = Σ { 2̂(s + , y+) - Γ2(s + , y-)} + {F2(s + , t) - Y2(s + , t-)}

and

-Xβίs-, *) = Σ {Y»(β~, 1/+) - Γ2(s-, ?/-)} + {Γ2(8-, ί) - Y2(s-, ί-)} ,
0Sκ<ί

we have

, ί) - X s(s-, t)

, i/-) - Y2(s-, y+) + Yt(8-, y-)}

, t) - Y2(s + , t-) - Γ2(s-, ί) + Y2{s-, t-)} = 0

by Proposition 4.2.

Since X3 is centralized, X3(s + , ί) = Xd(s —, ί) .
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Similar computations yield

X 3(s+, t+) = Σ # {Yz(s+, y+) — Yzis+j y—)}

and

X(s— t—)= y\' {Y2(s— y+) — X2(s— y—)}

Thus

= Σ ' {^(5 + , 2/+) -̂  Γ2(s-, y+) - Γ2(s + , 7/-) + Y2(s-, y-)}

by Proposition 4.2. Prom the definition of X4 it follows that

-X*(s + , * + ) -1- -X*(β-, ί - ) = 0 •

Since X4 is centralized, the proposition is proved.

The decomposition theorem now follows immediately from Proposi-
tions 4.1, 4.2, and 4.3 and from the definitions of Xlf X2, Xz and X4.
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