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NOTES ON RELATED STRUCTURES OF A UNIVERSAL
ALGEBRA

WiLLIAM A. LAMPE

The related structures of a universal algebra U that are
studied here are the subalgebra lattice of %, the congruence
lattice of U, the automorphism group of A, and the endo-
morphism semigroup of %Y. Characterizations of these struc-
tures known, and E. T. Schmidt proved the independence of the
automorphism group and the subalgebra lattice. It has been
conjectured that the first three of the structures listed above
are independent, i.e., that the congruence lattice, subalgebra
lattice, and automorphism group are independent. One result
in this paper is a proof of a special case of this conjecture.
Various observations concerning the relationship between the
endomorphism semigroup and the congruence lattice are also
in this paper. In the last section a problem of G. Gritzer
is solved, namely that of characterizing the endomorphism
semigroups of simple unary algebras. (An algebra is simple
when the only congruences are the trivial ones.)

The characterizations of the various related structures are as
follows: the congruence lattice is an arbitrary algebraic lattice
the subalgebra lattice is an arbitrary algebraic lattice; the auto-
morphism group is an arbitrary group; the endomorphism semigroup
is an arbitrary semigroup with identity. The “independence of
the automorphism group and the subalgebra lattice” is more
precisely phrased as: for each pair <&, &>, where & is a group
and & is an algebraic lattice with more than one element, there is
an algebra A with & isomorphic to the automorphism group of A
and with £ isomorphic to the subalgebra lattice of the same algebra
. All statements about the independence of related structures will
be phrased in this way.

Mentioned above was a proof of a special case of the independence
of the triple consisting of the automorphism group, the subalgebra
lattice, and the congruence lattice. As a corollary one gets a proof
of a special case of the independence of the pair consisting of the auto-
morphism group and the congruence lattice. E. T. Schmidt published
what was supposed to be a proof of the independence of this pair of
structures. But, his proof [10] was incorrect. (See e.g. Exercise 31
of chapter 2 of [2]). The author has just completed a proof of the
independence of this pair [8].

The terminology essentially conforms to that in [2]. w(or w,)
will denote the equality relation on the set A, and ¢(or ¢,) will denote
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the total relation. ©(a,, a,) will represent the smallest congrucence
collapsing a, and a,. 8 = <L, A, V) will denote a lattice. €) =
<z @); &> will denote the congruence lattice of %. S®) = (¥ ); &>
will denote the subalgebra lattice of . & QL) = (G®); o> will denote
the automorphism group of 2. &) = (EN); o> will denote the endo-
morphism semigroup of .

An important algebra for dealing with endomorphism semigroup
and automorphism group problems is the algebra of left multiplications
&(S) of the semigroup &. The operations are all left multiplication
maps and the endomorphisms are all right multiplication maps. As
in Cayley’s Theorem, the semigroup of right multiplications of & is
isomorphic to &.

Many of the details of the proofs which are left out can be found
in the author’s dissertation [6]. The various characterizations men-
tioned above can be found in [1], [2], [3]. E. T. Schmidt’s result on
the independence of the automorphism group and subalgebra lattice
is found in [11].

1. The property restricting the representation of {®, &, &> as
(&), &), CA)).

Let % = (A; F) be an algebra. The lattice € is assumed to be
an algebraic lattice. Let ac L, and let (x;/i€l) be a family of
elements of L.

Essentially the property mentioned in the heading is: there exist
@, &, € A such that for any x # a, and for any congruence 0, if a, =
2(0), then a = a,(0). We will give a generalization of this property
and a property of the congruence lattice equivalent to the more
general property. Also, the class of algebraic lattices having the
equivalent property will be discussed.

Let a,, a,€ A with q, # a,.

(**) There exists a partition {A4,, A,} of A such that a;€ 4; and
for any {w, y) € A, x A,, O(a,, a,) < O(z, ¥).

(*) If a=<V (x;]iel), then a < x; for some <.

Notice that the originally stated condition is a special case of
(**) where A4, = {a,}. Obviously, if an element a¢ of £ has property
(*), then a is complete-join irreducible. Also, a has property (*) if
and only if a’s dual ideal is completely prime.

ProrosITION 1. If property (**) is satisfied for <{a,, a,y, then
O(a,, a,> satisfies property (*) in the congruence lattice of 2.
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REMARK. This statement was first observed by G. Gratzer.

Proof. Suppose that (@;|tel) is a family of congruences and
that O(a,, a;) S V (;]t€ ). There exists a sequence @, = 2y, »++, 2,
= a,, with 2;€ 4 such that z; = 2;,,(9;;) for some i;€1. Since a,€
Ay, a. €A, and {A,, A,} is a partition of A, there is a k such that z,¢
A, and z,.,€ A, So O(a, a) & O(2, 2411) & Ps,

PROPOSITION 2. If there is a congruence O different from @ having
property (*), then © = O(a,, a,) for some a, a, in A with a, # a, and
property (**) is satisfied for {a,, a.).

Proof. Always 6 = VY (B(z, y)|x = y(0)). Since 6 has property (*),
O = O(z, y) for some xz,yc A. Fix a,, a, such that 6@ = 0(a,, a,). Set

B, = {z]0(z, a)) £ 6(a,, a,)} ,
B, = {y|6(y, a)) 2 6(a, @)} ,
Bz = {zi@(ao; Z) = @(al) Z)} M

Set A, = B, and 4, = B, U B,. It follows that A,N 4, = @. Clearly,
a, €A, and a,€ 4,. Also A = A, U A4,.

Let x2,¢ A, and 2, € A, and consider O(x,, x,). First suppose that
%, € B,. Thus, 6(x, a,) 2 0(a,, a,) and O(x,, a,) 2 O(a,, a,). Now, since
O(a,, a,) & O(x,, ay) V O(x,, ) V O(x, a,) and since G(a,, ;) has (¥), we
have that 6(a,, a,) = #(x,, x,). Now suppose that z, € B,. So g(a,, a,) &
Ola,, ) S O(a,, %) V O, ©,), and thus, O(a, a,) & 6%, x).

Combining these two propositions with the congruence lattice
characterization theorem, we get the following statement.

ProrosiTioN 3. If R is an algebraic lattice, the following are
equivalent:

(1) there exists a + 0, ac L, such that a has property (*);

(ii) there exists an algebra U = <{A; F) with CX), the con-
gruence lattice of A, isomorphic to &, and there are a, a, €A, a, +*
a,, such that (**) is satisfied for {a,, a,);

(iii) for any algebra W = {A; F) with €®) isomorphic to &,
there are a,, a,€ A, a, = a,, such that (**) is satisfied for {a,, a,).

Let .2 be the class of algebraic lattices having an @ = 0 with
property (*). Several simple observations can be made. The five
element modular non-distributive lattice is not in .27 since none of
the dual ideals generated by a nonzero element is prime. Every
distributive algebraic lattice with a complete-join irreducible element
isin .2¢". If & and &, are algebraic lattices, then ¥, + &, € .27 (where +
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denotes ordinal sum). (The zero of £, is a nonzero element in & 4+
€, having (*)). Every algebraic lattice ¥ is both a complete sublattice
of and a homomorphic image of a member of 7 since €, + %€ 5% .
(€, denotes the m-element chain.) Also, observe that for a family
(€;|ieI) of algebraic lattices, II(%;|1eI)e.2%” if and only if there
exists at least one jeI with 8¢ 5.

2. The construction for representing {&,%,,2,> as (&20),S),S20)>.
First we need some notation. Let U = {A4; F) be an algebra and
XES A. Set F(, X) = {®|® is an endomorphism of %, {x} = xp™*
for all ze X}, and set FA, X) = <F X, X); o». In other words, an
endomorphism @ is in FO, X) if (A — X)p S A — X and 29 = & for
zxe X. Clearly, @, X) is a nonempty semigroup with identity.

@) is the subalgebra system of 2. Recall that S@Ql) is the
subalgebra lattice, that €() is the congruence lattice, and that &)
is the endomorphism semigroup.

THEOREM 1. Suppose that A and B are algebras, that A is simple,
that there is a US A,|U| =2, US D for every De ), and that
there is an {a,, a,y € B* with a, # a, for which property (**) is satis-
fied. There exists an algebra W' such that:

(i) GSRU) is isomorphic to S(A);

(ii) €QU) is isomorphic to C(B);

(iii) GQl) is isomorphic to F (A, U).

Proof. Let A = <A; F) and B = {B; G) and U = {u,, u,} and let
{a,, &,y € B* have (**) and let a, # a,. Assume that A and B are
disjoint. For each e B U U define a nullary operation f, whose value
is z. Let {4,, A} be a partition of B for satisfying (**). Define four
unary operations as follows:

uo,xeAuA
u, TE A,

|
e
|

g.(x) =

9:() a otherw1se

a, x€A

?

9(®) = a,x€B

x,0€A—U
9.(%) = {Uo, x€ B U {u,}
o, & = Uy

For xcA’, set £ =2 if xcB and set £ =aqa, if v A. Let z;€A4’.
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Extend the operations of F' and G to A’ as follows: For feG set
Sag, oovy @uy) = f(@g, +++, y). For feF, if all a;€ 4, then keep
the value of f in U, and set f(ay, -+, @,—)) = %, otherwise. Set
F'=FUGU{f.lze BUU}U{g:|i=1,2,8,4}. Set &' =<4’ F').

For each De .&# (), set D= DUB. Foreach @c F (¥, U), define
@ by letting 2@ = 29 if x€ A and 2 =2 if xeB. For O ez )
define 6* by letting #* = w,, the equality relation on A, if @(a,, a,) & 6@
and 6* = ¢, U{Kz, b)|xe A, b= a(@)}U{{bx)|xec A, b= a, )} in case
O(a, a) =6. Now set & =6 U H*. To complete the proof one shows
that D— D, 9 — », and @ — 6 are isomorphisms. The lengthy, but
routine, calculations are left to the reader.

In the proof above the operation g, guarantees that an endomorphism
o of ' has the property that Ao = A. The operations g¢,, g,, 9s
guarantee that o, =a, iff w,=u, iff ¢, =a, = u, =u,. That U is
simple guarantees that if z,yc€ 4 and 2 # y and © = y then ¢ = u, =
#,. Finally ¢, guarantees that if x€ A and ye€ B and « =y then
a = a,.

3. Representing (&, &, > as (&), SA), €QN)>.

LemmaA 1. If A = {A4; F') is an algebra, then there is an algebra
W = (A; F) such that:

(1) WA 4s simple;
(ii) D s a subalgebra of N if D is a subalgedbra of U';
(iii) EY) = {p|lpc EQ),» is 1 — 1 or @ is constant}.

REMARKS. Roughly (iii) says E(®U) is as big as is possible given
(i) and ().

Suppose & is a semigroup in which every element is right cancella-
tive or a right zero. Every endomorphism of £(&) is 1 — 1 or constant.
By applying this lemma to ¥(&) we get an easier proof that {&; €,>
is representable. (See [3].)

Proof. Add an additional operation g defined as follows:

u, if x#y
9(@, y, u, v) = .
v, if e =1y.

Suppose # = y and 6 is any congruence of &’ with z = y(@). Let
u,ve€A. Thus, v = g, ¥y, u,v) =9, y,u,v) =v0). So 6 =¢ and
(i) is established.

The rest is routine.
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The operation used in the above lemma was used in [5] in a
different context, but in each case the purpose of the operation is to
“fill out” subalgebras in a direct power. This 4-ary function is equi-
valent to the ternary discriminator function [12] [9] in that each can
be expressed as a polynomial in the other.

A modification of the above 4-ary function is used in Lemma 6.
It does not appear that the modified 4-ary function is equivlent to a
ternary function.

LeEMMA 2. If U is any algebra, then there is an algebra A =
CA; Fy and US A with |U| = 2 such that:

(i) ©S®) s isomorphic to S(W’);

(ii) UES D for all De ¥ W);

(iii) B, U) ts isomorphic to S(A).

Proof. Add two elements u,, u,. Let %, and u, each be the value
of a nullary operation. Extend every operation f of U by setting
Sy, oo, 2,_) = u, if ®; € U. The rest is obvious.

The next lemma is a theorem due to E. T. Schmidt [11]. Recall
that &) is the automorphism group of %U.

LEMMA 3. If ® is any group and £ is any algebraic lattice with
|L| > 1, then there is an algebra A with & isomorphic to GA) and
& isomorphic to S).

THEOREM 2. If ® is any group, if 8, and 8, are algebraic lattices
such that | L,| > 1, and if there is an a # 0, a € L,, with property (*),
then there is an algebra A such that:

(i) O is isomorphic to S2);

(ii) &, is isomorphic to S();

(iii) &, vs isomorphic to C(2).

REMARKS. A best possible representation theorem would, of course,
have the restriction that | L,| >1. Also, if | L,| =1, then it is necessary
that |G| = 1. Of course any triple of the form (1, €,, £) is represen-
table. (€, is the one element chain.)

Proof. Let B be the algebra given by Lemma 3 when applied
to ® and &,. Let B’ be the algebra given by Lemma 2 applied to B.
Let ®B” be the algebra given by Lemma 1. Let € be the algebra
constructed in the proof of the congruence lattice characterization
theorem [2], [4] or [7]. Let % be the algebra given by Theorem 1
when applied to B” and €. The rest is routine.
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COROLLARY 1. If & s any group and 2 is any algebraic lattice
with a = 0, a € L, having property (*), then there is an algebra A with
S isomorphic to S®) and L isomorphic to C().

COROLLARY 2. If &, is any algebraic lattice and L, is an algebraic
lattice with an a # 0(a € L,) such that a has property (*), then there is
an algebra A with SA) tsomorphic to &, and C&) isomorphic to L.

4, Necessary conditions for (&, %> to be representable as
(E®), €@QN>. Recall that if S is a semigroup, L(S) is the algebra
of left multiplications of &. A = (A4; F') is some universal algebra.
The basic thing established in this section is a relationship between
C(RE@Q))) and E@Q). If ® is an endomorphism, then set & = y(e,)
iff xp = yp. &, is a congruence.

Let & = (S;-> be a semigroup with identity, and let z,seS.
The right multiplication map for s is defined by zo, = ws.

Thus, if @€ E@®), then we have the congruence ¢, on 2 and the
mapping o, on E(). So we have the equivalence relation ¢,, on E(2).
Observe that since o, is an endomorphism of £(E(2)), ¢,, is a congruence
of L(&(2D).

The proof of the next lemma involves only routine calculations.

LEMMA 4. If ey = N(ey,li€ 1), then &,y = (g4, 1€ I).

COROLLARY. ¢, —¢,, 15 a mapping, and this mapping preserves
arbitrary existing meets. In particular, it s order preserving.

This mapping need not be 1 — 1.

LemmA 5. Ife,, = ¢ (P is a right zero), them ey S ¢, for every
endomorphism .

Proof. Trivial.

€, can be ¢ and ¢, need not be ¢. ¢,, =¢ means @ is a right
zero in E(2), but ® need not be a constant map. But @ is a constant
map iff ¢, =¢. On the other hand, if ¢, = ¢, then ¢,, =¢ (i.e., if ®
is a constant map, then @ is a right zero). Also, there is a @ with
& = w and ¢,, = @ (the identity map).

To summarize we state the following theorem.

THEOREM 3. Suppose & = (S;-> is a semigroup with identity
and & =<L; V, \) is an algebraic lattice. Set %7 = {e, |seS}. If
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(&, &) is representable, then there is a subset H of L and there are
two mappings « from S onto H and B from H onto 2 such that
the following hold:

(i) (s)B = ¢, for all seS;

(ii) B preserves arbitrary existing meets;

(iii) <f e,, = ¢, then sa is the maximum element of H and
(8™ =1

(iv) 0e H (and 08 = w);

(v) if 1e H, then ce >/

COROLLARY. If (&, €, is representable and €, is the n-element
chain, then ¢ U{¢} is a chain of length < n.

5. More on the class of representable pairs. Throughout this
section, & = (S; -> will be a semigroup with identity and £ will be
an algebraic lattice. The ordinal sum of the lattices will be denoted
by +. €, is the n element chain. A = (4; F) is an algebra.

In the preceding section, a necessary condition for (&, &) to be
representable as (E(), €)> was given. Roughly the condition states
that & gives a lower bound on the cardinality of L, namely, | 27|,
and an upper bound on the meet struture of part of . This suggests
that one could take a representable pair and expand the lattice and
expect the result to be a representable pair. A few such expansions
are given here.

Sort of a multiplication formula for members of the class of all
representable pairs is given.

One could question whether or not there exist a semigroup with
identity and an algebraic lattice which are in some vague sense com-
pletely “incompatible.” Theorem 4 gives a negative answer.

First we will state the theorems, and then we will give sketches
of their proofs.

THEOREM 4. If & is any semigroup with identity and & is any
algebraic lattice, then there is an algebra W with & isomorphic to ()
and & tsomorphic to a sublattice of E(N).

This follows from Theorem 7.

THEOREM 5. If (&;8) is representable, then (&;8 + €, 1is
representable.

COROLLARY 1. If {&; €, 1is representable, then {S; €,) is repre-.
sentable for any n = k.

COROLLARY 2. If every member of & is right cancellative or is
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a right zero and n = 2, then (&, €,> is representable.
See [3], or see the remarks after Lemma 1.

THEOREM 6. If (&, &> is representable and 8, is any algebraic
lattice, then both {&,, &, + &, + € and (&, & + L + €> are repre-
sentable.

THEOREM 7. If (&, &> 1s representable and L, is any algebraic
lattice, then (S, (& x &) + € is representadle.

This is a special case of Theorem 8.

THEOREM 8. If (&, &> and (S, &> are representable, then
(&, X &, (% X &) + S,) 1s representable.

Note that each of the “+ €,”’s gives us a nonzero element in
the resulting lattice that has property (*). (See §1.)

In Theorem 6 one can easily do without the “+€,” in the first
pair (i.e., one can show (&, & + &) is representable) in case £
already had a non-zero element satisfying property (*). A similar
comment can be made for the other pair in Theorem 6 in case %,
already had a non-zero element satisfying (*). To do the same for
Theorem 7 or 8 would seem to require that both £, and 2, have such
an element.

Proof of Theorem 5. Let U represent (&; £>. Let U = {u, v} be
a two element set disjoint from A. Set A’ = AU U. Extend each
feF to A’ by setting f(x,, +++, ®,—) = « if there is an x,e U. Let
u, v each be the value of a nullary operation. Define a unary opera-
tion p and a binary operation g as follows:

z, if veA;
p{w) = {v, if 2 =u;
u, if ®=wv;
z, if x,yec A or if y=u;
g(@,y) = {y, if ¥ =u;
v, ifxory=wv.

Let U = (A4’ F U {p, g, u, v}>. For each ¢ e F(U) define @ on A’
by 2 =ap if x€A and 23 = if e U. For each 6 ¢ & (%) set
O = 6 U wy.

®— @ is an isomorphism from G(¥) onto GA). 6 —06 is an



198 WILLIAM A. LAMPE

embedding of €() into CA). ZF @) ={0|0ecz W} U{}. The
details are almost identical to the details in [3].

Proof of Theorem 8. Let A, = <A, Fyy and U, = (A; F) be
algebras with Q) isomorphic to &, and €(2;,) isomorphic to 2,
Assume A,NA, = @. Let A,= A, U A, U {u, v} where v # v and u,
ve A, UA,. Let u,.--,2,,€A4, and let feF;,, Extend f to
A, by setting f(®, «+-,®,_) = u if there exists ;¢ A;. Let a;¢
A; and define two unary operations g, and g, by g.(a) = g.(u) = u
and g.(a) = g,(v) = v and g,(a;) = a; and g, (u) = v and ¢,(v) = u.
Define a binary g, on A4, by setting g.(x, v) = g.(v, 2) = © and g.(z, ¥)
= % otherwise. Take each of w and v as the value of a nullary
operation. Let

?Iz = <A2; Fo U F1 U {gm 91,y 92y U, Q)}> = <A2; F2> .

For each + = {p,, #,> € E®,) x E,) define a mapping + on A4,
by ¢y =29, if t€A; and oy =2 if x =4 or x = v. For each @ =
0, 0>z Q) x () set D =60,U 0O, Uw,. Tocomplete the proof,
one would show that Z(@3L) = (0|0 e (%) X Z @)} U {es,}, that & —
@ is an embedding of €(2,) x €A, into €(,), and that 4 — ¥ is an
isomorphism of &%) x G, onto &@,). A few of the details follow.

Let ¢ be an endomorphism of 2. Note that xo =  for x = u or
x = v since u and v are the vaules of nullary operations. Let a;¢c 4,.
Now g.,(a,0) = g,(a,)0 = wo = u. Thus, a,0c A, or a,0 = u. Suppose
a0 = u. Then u = a,0 = g,(a,)0 = ¢,(a,0) = 9,(u) = v. Since u +# v,
it follows that a0 € A,. Similarly, a,o0e A,. Thus, 0 = (0|, 04).

Suppose a;€ 4; and a, = a,(¥) and suppose ¥ e = (). Then u =
v(¥) since u = go(ao), v = go(a)) and go(a,) = go(a)(¥). For e A, U 4, it
happens that & =u(y) iff x=v because g,(x) ==, 9,(w) =v and g,(v) =
u. So if xeA, U4, and ye{u,v} and x = y¥), then w = v¥). If
w=v{¥), then ¥ = ¢, because for any we A, v = u(¥). (This is
because u = g,(u, ) and x = g,(v, ¥)+) ¥, € € QA). Thus, if ¥ ~¢,,
then ¥ = @ for some @ € Z°(%,) x 2 (A,), namely, for & = F[,, T, >.

Proof (of Theorem 6). Let U, = {A;; F,), for i =0, 1, be algebras
with A, N A4, = @. We shall prove the theorem by showing that
CEQL), CQAA) + CAA) + €,) and <EQL), QL) + €L + €,) are repre-
sentable. First we consider the case with &(,).

Let w=v and uw,ve A, U A, and let 4, = 4, U A, U {w, v}, For
feF,; extend f to A, as in Theorem 8. Define the unary operations
90, 9. as in the proof of Theorem 8. Define the binary operation g,
by setting g.(a,, v) = g.(v, a,) = a, for a, € A, and g,(x, ¥) = u otherwise.
Let a,€ 4, and a,, b, € A,. Define the binary operation g, by g.(a,, b)) =
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v, if a, # b, and g,(x, ¥) = u otherwise. Define the binary operation
g:. by g.(a, y¥) = y and g,(x, y) = u otherwise. Take each member of
A, U {u, v} as the value of nullary operations. Set

Wy = Ay Fo UF, U{go, -+, 0 U{u, v} U A) = {4y Fu) .

For each e E(Q,) let® be defined by xp = zp if xe A, and
2p = if x¢ A, For each #cz (1) + & () define & by 6 =
QUL U, if 0e¢Z Q) and 6 = 0 U, .., if 627 (E).

To complete the proof for this pair, one would show that » — @
is an isomorphism of G(2,) onto G(2,), that ® — O is an embedding
of €l + €(2,) into €(2L,), and that (L) = {#|8 e Q) + ZA)}U
{cs,}. A few of the details follow.

As in the proof of Theorem 8, for oe EQl,), Ao & A, Clearly
xo = ¢ for x e A, — A, since every element is a nullary constant.

Let Oz (). For e A, x=u iff  =v as in the proof of
Theorem 8. Let a;, b;€ A;. If w=v(@), then a,= u because g,(u, a,) = u
and g,(v, a,) = a,. If @, b, and a, = b,(®), then u = v because g,(a,, b) = »
and g,(b, b) = v. Let xc A, — A, and let ze 4,. If a, = x(0), then
z = u(0) because g,(a,, 2) = z and g,(x, 2) = u.

We now turn to considering the case for (G(), €Q,) + C(L) +
€,>. We may now assume without loss of generality that (2, is
the one element group and that there are no nullary operations in
2. That this assumption can be made is verified in [6] and [7].

Let w,r,s¢ A,. Let A, = A, U {w, r,s}. For feF,or F,, change
the value of f(x, +-+,®,,) to w where in the above case it was w,
i.e., in the case when there is an x; not an element of the appropriate
A;. Extend the g; in the following way: g,(r) = g.,(s) = v; go(w) = w;
g.(w) = w; g,(r) = r; 9,(s) = s; still keep g.(a,, ¥) = v, but let g.(z, y) =
w otherwise; keep gs(a,, b) = v for a, # b, and g.(x, ¥) = u otherwise
except let g;(w, w) = w; g.(w, @) = gx(v, w) = go(w, w) = w and g,(x, y) =
u for any other new pair. Define three new operations as follows.
Let 2, ye Ay, 2€ A,U{u, v, w} and let a, € 4,. Set g;(w, w)=w, g;(w, )=
%, 95(Y, ¥) = v, 95(2,,2) = a, and gy(3,a) = 2. Set gy(r) = s, 96(8) =7
and gs(x) = © otherwise. For =, yc A4, set g,(r, 2) = g,(x,r) = r and
g%, 8) = g.(s, ) = =z, if x = r, and g,(x, y) = © otherwise. Take w, r, s
as values of nullary operations but don’t take A, U {u, v} as nullaries.
Set

Wy, = {Ag; FoU Fy U {go, +++, 02} U {w, 7, 8} .

For @ € EQ) define & on A, as follows; xp = ap if x€ A, 2p =
x if . =w,r, or s, and for xc A, U {u, v, w} set ap = if pisl —1
and ¢@ = w if not. Let @ e & () + € (A). For & e & (A, set 6 =
O U @4,y u0,0,m,0, a0d for @€ 2 (W) set @ = 0 Uty jwowm U @ps- The
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outline of the rest of the proof is clear. Some details follow, par-
ticularly concerning endomorphisms.

Let & € 7(;). All the statements made about # in the previous
case still hold with one change. Here if a,€ 4, and ve€ A, — 4, and
x = a,, then for all ze 4;,2 = w (instead of u). Some more should
now be said. If xe A, and w = x(@), then u = v because g, (w, z) =
u and g,(x, ) = v. If u = v(0), then one gets w = u using ¢,. Similar
to the case with » and v, for any z€ A,, v = » iff © = r = s(use g,).
Using g, we have that if » = s{0) and z¢€ A,, then z = r{0).

Note that there can be no constant endomorphisms because there
are three nullary operations with different values. Let oe E().
Let xe A, U A, U{w}, and let ye 4, U 4, U {u, v, w}. Using g, 20 # u
or v, and using ¢, yo € {r,s}. Thus, (A4, U A4, U{who & A, UA, U{w}.
Let a,¢ A;. Now wo = w. If a0 = w, then we would have ¢ is a
constant endomorphism because the congruence relation induced by
o would be ¢,,. Soace A, U A,. Now, as before, 4,0 & A,. Similarly,
one gets (A,U{w}ho & A, U {w}. Using the congruence struc-
ture and the fact that wo = w, either 4,0 & A, or (4,U{u, v, w}o =
{w}. Clearly, if 40 & A,, then awo = a,. When A, & A, using the
congruence structure and g, one gets uo = % and vo = v. Finally,
the congruence structure requires that if ¢ is not 1 — 1 on A4,, then
o must be constant on A4, U {u, v, w}. And if ¢ is constant on A, U
{u, v, w}, then o would have the value w there.

6. Concerning (&, €,>. From §4 we know that a necessary
condition for the representability of (&, €,) is that |{¢, |s e S}U{c}| = 3.

A stronger condition is proved to be sufficient. The represen-
tability of (&, €,> has been characterized [3] (or see the remarks
after Lemma 1), and <{&, €,) is representable iff |{c, |se S} U {}| = 2.

The method for proving the next lemma is very similar to that
in Lemma 1. Recall the definition of e,.

LEvma 6. Let 9 = (A4; F') = be an algebra, and let 6 + w,0 ¢
& (). There is an algebra A = (A; F') so that:

(i) @) =57Q);

(ii) @) ={w, @, };

(iil) e BQ) iff pe BEQ, e, = 0, O, or ¢ ard fellowing conditions
are satisfied:

(@) if ¢, =0, then e =6 or ¢

(b)y tf ¢, = @ and  is any map Wwith ¢, = O, then coop = 6.

REMARK. Obviously, one could not improve upon condition (a),
but perhaps a proof could be given with (b) changed to read” ---,
then €.,y = @, ® or ¢.” Notice that all automorphisms are kept.
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Proof. Add one 4-ary operation g defined as follows:

u, if © = y(@), v = v() or
if # = y(@),u = v(®) and
TEY,UFEV
v, otherwise .

Set A’ = (A; FU{g}). Clearly, (i) holds.

Proving that & € & (¥') involves only routine calculation. So let
ez (W) with w #+ @. So there exist z, y with « # y and z = y(9).
Suppose = = y(®). We will show that ® =¢. Let u # v. First
assume u # v(@). Then u = g, ¥, u, v) = 9(y, ¥, u, v) = v(?). Now
assume u = v(P). Since x * y(@), there is a z¢{x, y} with z == u(0)
and z %= v(0). From above % = 2(®) and v = 2(9). Thus, u = v(®). So
® =¢. Now suppose for every u,v, with u = v(®) that u = v(9).
Thus, ® = 6. (We are still assuming @ +# w, that = = y, and that
z = y(®@).) We will show that in this case ® = 6. Let u = v(0)
with w = v. Then u = g(x, ¥, 4, v) = g(y, ¥, u, v) = v(®). S0 O = and
0 =90. Thus ) = {w, 0, ¢} and (ii) holds.

Obviously, if ¢ € E('), then e E() and e, €{p, @, ¢}. Suppose
g, = 0. Since p*e EQ’), then &, = O or ¢.

It is a routine calculation to show that if ¢, = ¢ and @ e E(¥)),
then @ e EQ).

Let ¢ ¢ E() with ¢, = ® and with ¢,, = @ or ¢. Consider g(z, ¥,
#, v). There are two possibly troublesome cases. One is if g(z, y, u, v)
=u and g{x®, yP, up, vp) = vp. The other is if g(x, y, u,v) = v
and g(x®, yp, up, vP) = up. The latter is the easiest to dispense
with. If g(xp, yp, up, vp) = u® and up +# vp, then 29 # yp. Thus,
2 # y(@) and w % v(@). So g(x,y,u,v) =u and g, y, u, V)P = UP.
So now assume g(x®, yP, uP, vP) = v and g, y, u, v) = w. Thus,
either z % y(0) and u % v(@) or z = y(@) and u = v(). Suppose x %y
and u %= v. Then 29 = y@ and u® = vp. Now 2@ = y@(0) iff up = ve(B).
Indeed, suppose that z@ = yp(@). Then ()P = (yP)P and e, == 6.
So by assumption &, =¢. Thus, (uwP)p = (vP)P, and up = vP(H).
Similarly if up = v®, then @ = yp. Thus, either @ = yp(@), up =
vP(0) or zp = yp@), up = vp(0), 3P #* yP, uP # vp. In any case,
g@P, yp, up, v@) = up = vp. So x = y(@) and w = v(#). In this case
u® = vp. Therefore, g(x,y, u, V)P = up = vP = gaP, YP, UP, vVP).
Thus, @ € E).

Suppose @ is 1 — 1 and @€ E@’). Let « be any map with ¢y =
0. Consider €,.,4. Suppose &,,4» = ®. Then, &y = ¢. So there exist
x,y such that » # y(@). Since 0 = w, there exist u,v with u = v
and % = v(0). Since u =+ v, it follows that (u@)y = (vp)y. Thus,
u® #= v(P). Similarly, since z # y, 2@ # y®(0). This implies that

9@, ¥, u, v) =
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g(zx, ¥, u, V)P = vP * uP = g(xP, yP, u®P, vP). But since ® is an
endomorphism, we have that ¢, # @. Suppose €,,4 = ¢. By a similar
argument we would get that €,., # ¢ unless @ = ¢. S0 &,0p = 6.
Let o e E®) with ¢, = w. Let « be any map with &y = 6.
Suppose €,.,4 = 6. Routine computation shows that @ e EQU).
The crucial point in these computations is that the assumption &,,y =
© implies @ presves both ® and not-®. Therefore (iii) holds.

Recall that if & = {S; .> is a semigroup with identity, then .2 =
{eo,] €S}, R(S) is the algebra of left multiplications. E(£(&)) =
{0.,]s € Sh

THEOREM 9. Let & = (S; -) be a semigroup with identity.

(A) If {S; €,) is representable, then | 27 U {¢}| < 3.

B) If |2 U{d] =3 and iof for right cancellative r and for m
that is neither right cancellative nor a right zero r-m 1is also neither
right cancellative nor a right zero, then {(&; €, is representable.

REMARK. If | 2% U{¢}| = 2, the rest of (B) holds trivially. So
the sufficient condition includes all those representable pairs derived
from Corollary 2 to Theorem 5.

Proof. For part (A) see the corollary to Theorem 3.

Suppose the hypotheses of (B) hold. If | 2¢ U{¢}| =2, then (&;E,)
is representable. By Theorem 5, {&; €,> is representable. Suppose
then that 2" U {¢} = {®, 0, ¢} and that @ = & = ¢. Suppose ¢, = 6.
Since

2 .
Clom) = Cops
it follows that
€, =0 or ¢.

Let ¢,, = ® and ¢, = €. Since r-m is neither right cancellative nor
a right zero, it follows that

sprOPm = eprm =6.

Now apply Lemma 6 to & and 2(&).

7. (&,€,) for unary algebras. In [3] G. Gratzer characterized
the endomorphism semigroups of simple algebras. He also showed
that not all such semigroups were isomorphic to endomorphism semi-
groups of simple unary algebras. Since previous representations
involving congruence lattices and endomorphism semigroups had needed
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only unary algebras, he raised the question, “What semigroups are
isomorphic to the endomorphism semigroups of simple unary algebras?”
The answer to that question is that there are hardly any such
semigroups.

Every endomorphism ¢ induces a congruence relation which we
have denoted by &,. The difference with unary algebras is that every
endomorphism also induces another congruence. Throughout ¥ = (4;
F» will denote a unary algebra. For o€ E®l) and xz,yc A set » =
y¥(@,) iff there exist natural numbers 7, 7 such that x@’ = ypi(xp® =
x). O, is the “extra” congruence. To prove that the substitution
property holds for 6,, one needs that each operation of 2 is unary
or nullary.

LemMmMA 7. If pis 1 —1 and €, = w or ¢, then ® is onto or A =
{ap™|n = 0,1...} for some ac A.

Proof. x = axp™(@,) for any natural number » (by using the
numbers 7, 0). In particular z = x9(@,). Thus, if 6, = w, then & =
2@, and therefore, @ is the identity map. Therefore, we can assume
0, = ¢, and this implies z = y(®,) for any z, y€ A. Thus, for some %,
J,xpt = ypi. If 1 <4, then since @ is 1 — 1, we have that © = ypi—.
If j <7, then y = 29", Thus, ze{yp"[n =0,1, ...} or ye{xp"|n =
0,1, .--}. Suppose ® is not onto. Then there is an a such that a =
xp for all xe A(x = a). Thus, a¢{z@|n = 0,1, ...} for any x € A(x #
a). Now since zef{ap"|n =0,1, ...} or ac{xp"|n=0,1, ...} for all
xe A, we have ze{ap"|n =0,1, ...} for all z¢c A.

LEMMA 8. If O, =w or ¢ and O is 1 — 1 but mot onto, then A
78 mot stmple.

Proof. By Lemma 7, A = {ap"|n =0, 1-..} for some a € A. For
n>1, ap® = (ap"")®. Since @ is not onto a % xp for any x¢€ A.
Suppose a®® = a®’ and 1%j. We may assume 7 < j. Since @ is 1 —
1, a = ap’, Since j — 1 =1,a = (ap’~")@. Thus, ap’ = ap’ if 1 #
j. Now set E = {ap"|n=0,2,4,.--} and D = {ap"|n =1,3,5, ---}.
By the above, DNE = @. Clearly, DUFE = A. Let @ be the
equivalence relation whose only two classes are D and E. @ is a
congruence. Since @ # @ = ¢, A is not simple.

For a simple algebra 2 any right zero of () is necessarily a
constant mapping (unless () is the one element group). See §4.

COROLLARY. If U is a simple unary algebra, then E(Y) consists
of automorphisms and constant mappings.
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G. Gratzer [3] characterized the automorphism group of a simple
unary algebra as a cyclic group of order » where p =1 or p is a
prime number. He also showed that if p = 1, then A = {aa|a e G}
for any ac A. ‘

LEeMMA 9. If U is simple, |GE)| # 1, and there exists a right
zero in G, then |A| = 2 and G®) = (44; o).

Proof. Let {a} = A®p. Let f be an operation. Then a = (f(a))p =
flap) = f(a). If xc€ A, then x = aa for some a € G®l). Thus, f(z) =
flaa) = f(a)a = ae = 2. Therefore, E(¥) = A4 and all equivalence rela-
tions are congruence relations. |G()| = 2 implies |A| = 2. If |A| >
2, then there are more than two equivalence relations on A. Thus
[A| = 2.

LEMMA 10. If U is simple and |G)| = 1, then |EQ)| < 2.

Proof. Suppose there exist two constant endomorphisms @,, @,.
Let {a,} = A®, and {a,} = A®p,. As in the proof of Lemma 3, f(a,) =
a, and f(a,) = a, for any operation f. If |A| were two, then every
operation would be the identity function and |G()| = 2. Thus, |A| >
2. Set v =y(@) iff x = y or x, ye{a, a,}). Since every operation re-
stricted to {a,, a,} is the identity function, @ is a congruence. Since
|A] > 2,0 #¢. Since @ = w, N is not simple.

THEOREM 10. Let & =<8S; > be a semigroup with identity. &
is isomorphic to the endomorphism semigroup of a simple unary
algebra (i.e., (&, C,> is representable by a unary algebra) if and only
if & is one of the semigroups listed below:

(i) the group of order »,p =1 or p is a pPrime;

(ii) the two element semi-lattice;

(iii) a four element semigroup isomorphic to {A*; o> where | A|=2.
Moreover, if (&, €, is representable by a unary algebra and |S| =
1, then (B,C,> is representable using a wunary algebra with one
operation.

Proof. It follows from the corollary to Lemma 8 and Lemmas 9
and 10 that the endomorphism semigroup of a simple unary algebra
is one of those listed in (i) — (iii).

To complete the proof, we will represent (&, €,> for each & listed
in (i) — (iii).

In case & is the one element group, let A be a two element set.
Set A = (4; A*). Clearly, %A has the required properties.

In case & is (A% o) where |A| = 2, Let A = (A; F') where f is
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the identity map. Obviously, U has the required properties.

In case & is the two element semi-lattice, let A = {a, b} with a =
b. Set f(a) = f(b) =b, and set U = {A4; f>. Since |A| =2, is
simple. The endomorphisms are exactly the identity map o and
where = f. Since goyr = 400 = + = 4roqr, the endomorphism semi-
group is the two element semi-lattice.

In case © is the group of order p» where p is a prime, set 4 =
{0, ..., p—1}. Let f(z) =2+ 1(mod p), and set A ={A4;f>. Since p
is a prime it is easy to check that ¥ is simple. For x e A define the
mapping @, by y®, = ¥y + x. Clearly, £ — @, is an isomorphism from
the cyclic group of order p onto &(20).
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