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THE EQUATION y'(t) = F(t, y(g{f)))

MURIL L. ROBERTSON

A functional differential equation, in general, is a rela-
tionship in which the rate of change of the state of the
system at time t depends on the state of the system at values
of time, perhaps other than the present.

In this paper, sufficient conditions are given for g so that
the initial value problem yf(t) = F(t, y(g(t))), y(p) = q, may be
solved uniquely; where F is both continuous into the Banach
space B, and is Lipschitzean in the second position.

l DEFINITIONS. If p is a real number and / = {Il912, •} is a
collection of intervals so that p e Ix and In g JΛ+1 for each positive
integer n, then I is said to be a nest of intervals about p. Let
Io = {P} and α0 = δ0 = P Also, let [an, bn] = In for each nonnegative
integer n. Let J* denote the union of all elements of I.

In general B denotes a Banach space; and if D is a real number
set, let C[D, B] denote the set of continuous functions from D into
B. Whenever D is an interval, C[D, B] is taken to be a Banach space
with supremum norm | |.

If g is a continuous function from J* into /* so that g(In) <Ξ In

for each positive integer n, then g is said to be an J-function. If g
is an /-function then for each positive integer n, define the following:

An = {x e [an, α%_ 1]: g(x) £ In^} ,

Bn = {x e [6n_!, δw]: g(x) ί In^}9 and

En{s) = [p, g(s)] Π (An U Bn), for each s e l n .

Let \ h(s)ds denote the Lebesgue integral of h over the subset

D of the domain of the Lebesgue integrable function h.
Let F denote a continuous function from I* x B into B so that

\\F{x, y) - F{x, 2)|| ^ M(x)-\\y - z\\ for all xel* and y,zeB, where
M is Lebesgue integrable on each In. Furthermore, if / is a con-
tinuous nonnegative valued function from /* to the reals, and m is

(M, f, g, m) denote
P

\XM(Sι) I p'ikffe) I . . . \\9tSm^M(sm)f(sm)dsm\ \ds2\dSι\ .
J P \ JP JP

If D is either An or Bn, let f (Λf, / , D, m) denote
J

\ M(Sl) \ M(s2) \ M(sm)f(sm)dsm ds2dSl .

If D is a subset of the domain of the function h, let h\D denote

483



484 MURIL L. ROBERTSON

the restriction of h to D. Also, let fog denote the composition of /
with g, whenever applicable; fog(x) = f(g(x)).

2. Main results*

THEOREM A. Suppose I is a nest of intervals about p, qe B, g
is an I-function, k is a sequence of positive integers, and for each

positive integer n, an = \(M, 1, An, k(n)) < 1 and βn = \(M, 1, Bn, k{n)) <
1. Then there is a unique function yeC[I*,B] so that y'{t) = F(t,
y(g(t))) and y(p) = q, for all tel*. [We say then that the initial
value problem (IVP) has unique solution.]

Proof. Since, Jo = {p}, then certainly y0 = {(p, q)} is the unique

function in C[I0, B] so that for all t e Io, yo(t) = q + \ F(s, yo(g(s)))ds.

Next, suppose n is a nonnegative integer so that there is a

unique function yn e C[In, B] so that, for each t e In, yn(t) = q + I F(s,
JP

yn{g(s)))ds. The following is the construction of yn+1. Let D = {/ e
C[In+1, B]: f \In = yn) and let m = k(n + 1). Then, if / e D and t e In+1,

let T be so that Tf(t) = g + ίV(s, f(g(s)))ds. Then, certainly Γ is

from D into D.

L E M M A 1. If f,heD and t e In+1J then

|| Tmf(t) - Tmh(t)\\ ^ [(M, \\fog - hog\\, g, m ) , for each positive
JP

integer m.

Proof of Lemma 1. (by induction on m) If m = 1,

|| Γ/(ί) - Γλ(t)|| - ||Γ[F(«, /(ίjrW)) - jP(β, Λ(flr(β)))]ώ11

V ( 8 , /(ff(8))) - F(8 > h(g(s)))\\ds

£ \tM(s) \\f(g(s)) - h(g(s))\\ds = \'(M, \\fog - hog\\, g, 1) .

Now, suppose the lemma holds for m = r. Then,

- Tr+1h(t)\\

) - F(s, Trh(g(s)))]ds\\

I!

)) - F(s, T'-h(g(s)))\\ds\
I

T'f{g{s)) - TΊι(g(s))\\ds\

, \\fog - ΛofirH, g, r)dSι\ ,

^ ! (
I JP
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b y t h e i n d u c t i o n h y p o t h e s i s , b u t t h i s e q u a l s ! (M, \\f°g — h<>g\\, g,r + 1 ) .
JP

LEMMA 2. If N is a bounded, measurable function from In+ί

to the reals so that N(s) = 0 whenever s is in In+1\(An+1 \J.Bn+ί), then

and

y (M, N, g, m) = j(ikf, N, An+ι, m) ,

\[n+l(M, N, g, m) = j(Λf, N, Bn+U m) .

S
an+l

(M, N, g,
P

1) = I f'"+1 M(s)N(s)ds = \ M(s)N(s)ds = \ (M, N, An+ί, 1), because

N is 0 at each point of [p, αΛ+1]\Aw+1. Suppose the lemma is true

for m = r. Then, \ ι (M, N, g, r + 1) = \ + 1 (Λf, J7, g, r), where
JP JP

U(s) = I ̂ S)M(t)N(t)dt j , for all s e In+1. If s e In+1\(An+1 U BΛ+1), g(s) e

In. Thus, iV is 0 on [p, g(s)], and so Z7(β) = 0. Whence, U satisfies

the conditions for N in the lemma. So, by the induction hypothesis,

£ " + 1 (M, U, g, r) - J (ikf, U, A n + U r) = j (M, N, A n + ί , r + 1), because

U(s) — \ M(t)N(t)dt. The proof of the second equality in the lemma
}En + 1(s)

is similar. Thus, Lemma 2 is proven.

Now, the two lemmas are applied. By Lemma 1, || Tmf(t) —

Tmh(t)\\ ^ J ' (ikf, \\fog - hog\\, g, m ) , for a l l telm,^ m a x {^n+1 (M,

II fog - hog ||, g9 m), \ w + 1 (M, \\ fog - hog ||, βf, m ) | which by Lemma

2 is - max{J(ikί, \\fog - hog\\, A n + 1 , m), j(AΓ, ||/oflr - hog\\, Bn+U m)},
because ||/(^(s)) - Λ(^(β))|| - 0 for all seIn+1\(An+1 U 5»+1). Thus,

I T V - Γ Λ | ^ m a x { j ( i l f , | | / o 0 - Λo^||, A n + 1 , m), J (Λf, ||/oflr - hog\\,

Bn+1,m)} £ max{j(M, 1, An+ί, m), J(ikf, 1, Bn+1, m)} |/ - λ|. Thus, Γ"
is a contraction map from the complete metric space D into D. Thus
Γm has a unique fixed point yn+1. It is a known result that this
implies that yn+1 is the unique fixed point of T. [(Tyn+1) = T(Tm(Tyn+1) =
Tm(Tyn+1), but only yn+1 is so that τ/w+1 - Tmyn+1. So Tτ/W+1 = yn+1,
and uniqueness is clear.]

Thus, yn+ί(t) = Tyu+1(t) = Q+ [F(s,yn+I(g(s)))ds, for all teln+1,
JP

and is the unique such function. Hence, by inductive definition,
for each positive integer i, there is a unique function yt e C[Ii9 B]
so that for all t e Iu y^t) = q + \ .F(s, yi(g(s)))ds. Now, define 2/ e
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C[I*, B] so that y(t) = yu(t), whenever teln. Since m <; n implies

Vn\in = 2/«, 2/ i s w e l l - d e f i n e d , a n d y(t) = 9 + 1 F(s, y(g(s)))ds, f o r a l l
rt ] v

tel*. Now, suppose z(t) = q + \ F(s, z(g(s)))ds, for all t e /*, and z e
JP

C[/*, B]. Then, if π is a positive integer, and teln, z\In(t) = q +

^ F(8, z\In(g(s)))d8. So, 2| / n = yn = y\In for each positive integer n.

Thus, z = y.

COROLLARY 1. Let M be the constant 1 function, and let k(n) =

2, for all n. Suppose for each n, \ min {| g(x) — an^\, | g(x) — 6W_! |}dα; <

1, and I min{|gr(ίc) — an^\,\g{x) — bn_λ\}dx < 1. Then, the IVP has

a unique solution. [See Figure 1. All the shaded area between each
pair of vertical dashed lines is less than one.]

FIGURE 1
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Proof. an = \ M(Si) \ M(s2)ds2ds1 = \ \ ds2dsx. Now, sx e
jAn JEn(s{) JAnJEnlβi)

An implies

π \An n b , g(s1)]9 if flr(Sχ) e An, and

E^s,) = j

Thus, ^Λ(Si) £ [#(Si), α^.J if ^(sj e An, and in this case, \g(sj — αΛ_J ^
- 6Λ_1 . Also, -En(sx) £ [6n_!, flf(Si)] if βr(Si) e Bn, and in this case,

- bn_x ^ |̂ (Si) — (Ln-A Thus, En(Sy), which is certainly mea-

surable, must have measure g min {\g(sλ) — an_λ \, \g(Sj) — bn_γ \). Hence,

\ \ ds2dsί g \ m i n d ^ ^ ) — an_^1\,\g(s1) — δ%_1|}ds1, because \ ds2

is the measure of En(s^). Thus, an < 1, and similarly βn < 1, for each
positive integer n. Apply Theorem A.

and

COROLLARY 2. Suppose k(n) = 1 for each n. Then, if I M< 1

\ M< 1, /or eαc/& w, ίfce / F P feαs unique solution.

Proof. Immediate.

COROLLARY 3. Suppose M is the constant 1 function and k(n) —
1 for each n. Then if max {bn — b.Λ_u an_x — an) < 1, for each n, the
IVP has unique solution.

Proof. An s [an_u an] and Bn s [ 6 ^ , 6Λ] implies I 1 ̂  I Λ l l l =

α*-i — αw and I 1 ̂  * 1 = bn - bn_γ. Apply Corollary 2.

The following example illustrates the advantage of allowing k(n)
to assume integral values other than 1.

EXAMPLE. Let F be so that M= 1 in the IVP—y(p) = q, y'(t) =

*X*, 0(0(*)))ι where

ί2α? , if x e [0, p ] , and
g(x) = i

[Ap - 2x, iί xe [p, 2p] .

then it is straightforward to show that if J is a subinterval of [0, 2p]
and g(J) £ /, then J = [0, 2p]. Thus, if / is a nest of intervals about
any point of [0, 2p] and /* = [0, 2p], then In = [0, 2^] for each positive
integer n, if g is to be an J-function. Thus, in order to apply
Corollary 3, it seems necessary to require p < 1, in order to solve
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the IVP. However, if Theorem A is applied with k(n) — m for all n,
then Theorem B, which follows, shows that the condition p < 2(w~1)/m

gives the best apparent bound for the size of p in order to solve the
IVP. Now, since m is arbitrary, clearly, p may be any positive
number less than 2.

THEOREM B. // g is as in the above example, and for each posi-

tive integer n, Fn(x) = I (1, 1, g, n + 1), then
JP

(1) Fn is symmetric about p. That is, for each n, Fn(x) =
Fn(2p — x), for all x e [0, p]; and

(2) Fn(x) + Fn{p - x) = pn+1/2n, for each n, and for all xe
[0, P/2].

Proof, (induction on n) Suppose n = 1. Then, if xe[0, 2p],

= \[\g(s)-p\ds
I JP

, which is

(p2/2 - px + x2, if x e [0, p/2] ,

px - x\ if x e [p/2, p] ,

~ _ 2p2 + Zpx - x\ if a? e [p, 3p/2], and

,5p2/2 - 3px + α;2, if x e [3p/2, 2p] .

It is straightforward to show that Fx satisfies the conditions (1) and
(2) of the theorem. Now, suppose the theorem is true for the positive

integer k. Then, for each x e [0, 2p], Fk+1(x) = I \XFk(g(s))ds . If xe

[0, p], Fk+1(2p - x) = \\ Fk(g(s))ds . Thus, if x ^ s ^ p, g(s) = 2s =

Ap - 2(2p -s) = g(2p - s). So, Fk+1(x) = \XFk(g(s))ds = [* Fk(g(2p -
JP J2P-X

S 2p-x

Fk(g(2p — s))ds =

S 2p—x
Fk(g(s))ds = Fk+1(2p — x). Thus, Fk+1 is symmetric about p.

P

Now, suppose xe [0, p/2]. Then,

Fk+1(x) + Fk+1(p - a?)

= \PFk(g(s))ds + Γ Fk(g(s))ds
Jx JP—x

= \ FJ2s)d,8 + \ Fk(2s)ds, because r̂(s) = 2s
J a; J P—x

Fk(2s)ds + \ Fk(2p — 2s)ds, because g(z) = 5r(2p — 2)
α J P—x

S P f 0

Fk(2s)ds — \ (l/2)Fk(s)ds, by change of variable
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- [PFk(2s)ds + (1/2)[2XFk(s)ds
Jx Jo

S P Γx

Fk(2s)ds + \ Fk(2s)ds, by change of variable
x Jo

- \PFk(2s)ds
Jo

S 2J>

Fk(s)ds, by change of variable
0

S P

Fk(s)ds, because Fk is symmetric about p
o

S JJ/2 rp

Fk(s)ds + Fk(s)ds
0 Jί>/2

S p/2 rp/2

Fk(s)ds — I ^ ( p — s) ( — l)ds, by change of variable
o Jo

= \Pβ{Fk(s) + Fk(p - s)}ds
Jo

S ί>/2

{pk+ί/2k}ds, by the induction hypothesis
0

= pk+2/2k+ι.
By Theorem B, Fn(0) + Fn(p - 0) = pw + 1/2\ But, jPw(p) = 0, by

definition of Fn, and thus Fn(0) = pn+1/2n. Also, Fn(2p) = Fn(2p - 0) =
2^(0) = r + 1 /2 % . Thus, if ^ + 1 /2 % < 1, then an+1 ^ Fn(0) = pn+ιj2n < 1,
and βn+ι ^ jPn(2p) = pn+1/2n < 1. Apply Theorem A.

3* Applications* The following is a generalization of a theorem
by Anderson [1].

Let F be a continuous real-valued function with domain D of
the plane R x R so that the partial derivative F2 is continuous on D
and (0, δ) e D . Let /*/ and fc be so that if \x\-£h! and |# — 61 ̂  k,
then (α?, τ/)eZ). Let K = sup{|F(^, y)\:\x\ ^ h' and \y - b\ ̂  k}, h =
minjfc', k/K], and M= sup{|F2(α;, y)\:\x\ ^h and \y - b\ ̂  k}.

THEOREM C. Suppose there are intervals It g J2 g s /m =
[ — Λ, /̂ ] so ίΛαί mαα; {δ% — 6w_lf αM_! — an}-M < 1 /or eαc& integer in
[1, m], cmcί so ίAαί 0G/ l t Let I3 = Im for each j ^ m. Then, if g
is an I-function> there is a unique function y so that y(0) = b and

y\t) = F(t, y(g(t)))9 for all te[- h, h].

Proof. Let E = {{x, y): \x\ ^h,\y - b\ ^ k}, and let G be an

extension of F\E so that

(F(x, b — k), if y ^ δ — k, and
(α?' W ) = (F(x9 b + k), if y ^ δ + k .



490 MURIL L. ROBERTSON

By continuity of F2 and the mean value theorem, it follows that F
is Lipschitzean in the second position with constant M. It follows,
also, that G has the same Lipschitz constant M. Then, by Corollary
2, there is a unique function ye C[/*, B] = C[[— h, h], R] so that
y\t) = G(t, y(g(t)))9 y(ϋ) = b, for all t e [- h, h]. Equivalent^, yit) =
b + ΓG(s, y{g{s)))ds, for all | ί | ^h. Thus, \y(t) - b\ = ΓG(S, y(g(s)))ds

Jo Jo
^ A«sup{|(?(s, 2/(flr(s)))|: | s | ^ h}, and since t h e range of G is a subset
of t h e range of F\E, we have t h a t this is ^ h 8πp{\F(x, v)\: \x\ ^
h, \v — b\ ^L k) = h K S k, by definition of h. Thus, (?(#, i/(flr(a;))) =
F(x, y(g(x)))> for all \x\ £h. So, i/'(ί) = F( i , y(g(t))), y(0) = 6, for all
te[- h, h].

The following is a generalization of a theorem by Kuller [3].

THEOREM D. Suppose only that g is a continuous function with
connected, real domain E so that g is not the identity, but gog is
the identity. Then, if M — 1 and q e By there is a segment Q about
the unique fixed point pr of g so that if peQ f) E, the IVP has unique
solution.

Proof. Kuller proves that g has a unique fixed point pf and that
g is strictly decreasing. Let 0 < k < 1/2. Let β0 = p and let β be
a nondecreasing sequence of reals so that βi — β^ < k, for each
positive integer i, and so that β converges to the right boundary
of E, which may be + ©o. Then, for each positive integer i, let
{aiu ai2, , ain.} be so that g{β%) = ain. ^ . ^ aί2 ^ an = g(βi^) and
also so that ai5 — ai>3 +1 < k, for all j . Then, {[aijy g{ai3)\\ i ^ 1 and
1 S 3 ^ ^i} is a monotonic collection of intervals, each containing p. Let
Λ = [#ii, #(#n)] Suppose Jm has been defined to be [aih g(aid)]. Then,
let g{ai3)

_ \[aitj+ί, g((Xi,j+d]> if 3<ni, and

I
Relabel J% to be [αw, δw]. Then, max {an_x — an, bn — fr^} < 1, for each
positive integer n. Let Q = (au 6J. Then apply Corollary 3.

Kuller required differentiability of g in order to solve yf = yog,
y{pr) = q, where pf is the unique fixed point of g.
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