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SESQUILINEAR FORMS IN INFINITE DIMENSIONS

ROBERT PIZIAK

This paper is concerned with sesquilinear forms defined
on vector spaces of arbitrary dimension. Motivation is
taken from classical Hubert space theory, as the ortho-
gonality relation induced by the form is used to replace the
topology. First, an algebraic version of the Frechet-Riesz
Representation Theorem is proved for linear functionals
having an orthogonally closed kernel. Next, the notion of
adjoint is formulated, following von Neumann, in the lan-
guage of linear relations. It is proved that the adjoint of
an arbitrary relation is a single valued linear relation pre-
cisely when the domain of that relation is orthogonally
dense. Finally, an algebraic version of a continuous linear
operator is introduced and the relationship with the notion
of adjoint and linear functional is studied. The main result
here is that an operator is orthogonally continuous precisely
when it has an everywhere defined adjoint. These general
results of pure algebra imply standard topological results in
the context of a Hubert space.

There are two directions in which to generalize away from the
concept of a Hubert space. One is the familiar topological generali-
zation via Banach spaces, linear topological spaces. The other direc-
tion is algebraic via inner product spaces, sesquilinear forms. The
finite dimensional theory of sesquilinear forms is well worked out.
However, the infinite dimensional case seems fraught with pathology.
Kaplansky and others have initiated a study of the infinite dimen-
sional case [6], [7], [8]. Gross and Fischer [4] have used topological
methods. In this paper, we propose an algebraic approach to infinite
dimensions motivated by the "happy accidents" in Hubert space
theory that correlate algebraic and topological conditions. In par-
ticular, we prove an algebraic version of the Frechet-Riesz Represen-
tation Theorem, von Neumann's theorem on the single valuedness of
the adjoint relation, and discuss continuity, all in the algebraic con-
text of a vector space over a division ring with no "natural" topology
present.

2* Quadratic spaces. We shall follow the terminology of
Bourbaki [2] on sesquilinear forms.

By a quadratic space we mean a triple (k, E, Φ) where E is a
left vector space over the division ring k and Φ is a nondegenerate
orthosymmetric ^-sesquilinear form on E with respect to the in-
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volutive anti-automorphism θ of k. Given vectors x and y in E, we
say x is orthogonal to y and write x JL y when 0(#, 2/) = 0. For any
subset M of E, we define the orthogonal of M by

M1 = {x in E\x _L m for all m in 1 } .

It is clear that M1 is always a subspace of E. A vector x of i? is
called isotropic iί x ± x and is anisotropic otherwise.

The two main differences between general quadratic spaces and
Hubert space is first in the general nature of the scalars and second,
in the possible existence of nonzero isotropic vectors. The role of
isotropic vectors is important in physical theories and indeed a good
example to hold in mind is the geometry of space-time with the
Minkowski metric. Here, of course, k — R, E — R\ and

Φ((al9 a2, α3, α 4), (βl9 β2, yS3, &)) = a& + a2β2 + aφz - α4/34 .

The first "happy accident" to note is that in Hubert space, a
subspace M is metrically closed precisely when M— M1L. Thus we
are led to consider the closure operator MΊ-^ikf11 on the lattice of
all subspaces of E, Lat (k, E), as an algebraic substitute for the
topology. Let PC(E, Φ) - {M in Lat (k, E)\M= MLL). The geometry
of PC(E, Φ), which is of interest in the study of the logical founda-
tions of quantum mechanics, has been considered in [9]

In a Hubert space H we have that each closed space M yields
an orthogonal direct sum decomposition H = M © M1. This is not
true for a general quadratic space. A subspace F of E is said to
be a splitting subspace provided E = F + F1. Let PS(E, Φ) be the
collection of all splitting subspaces of E. It is easy to see that each
splitting subspace is 1 -closed. We shall show later that the con-
verse need not hold.

It is well known that the lattice of closed subspaces of a Hubert
space is an orthomodular lattice. We have shown elsewhere [10]
that orthomodularity actually residues in PS(E, Φ) in general and
PS(E, Φ) is an orthomodular poset which need not be a lattice. Thus
the orthomodularity of the lattice of closed subspaces of Hubert space
arises from the "happy accident" that PS{H) = PC(H).

3. Linear functional The next "happy accident" we note is
that a linear functional on a Hubert space is continuous exactly when
it has a closed kernel. This motivates our next definition.

Let (E9 Φ) be a quadratic space. Let / be a linear functional
on E. Call f orthocontinuous if ker(/) = ker(/)1J-. Let Ef denote the
set of all orthocontinuous linear functionals on E and call it the
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orthodual of E. Let E* denote the algebraic dual space of E.

3.1. Frechet-Riesz Representation Theorem. Let (E, Φ) be a
quadratic space. Then the induced map d: E—>E* defined by

d(y)(x) = Φ(x, y)

is a ^-linear monomorphism and im(d) = E''. Moreover, the image
under d of all anisotropic vectors consists precisely of all those linear
functionals whose kernel is a splitting subspace of E.

Proof. For y in E we have ker d(y) = (ky)1 which is a closed
subspace of E. Thus im (d) S E\ Next let / be in E'. If / is the
zero functional then / = d(0) and / is in im(d). So assume / is not
identically zero. Then ker(/) is a hyperplane in E. Thus there is
line kw with E= ker(f)φkw. Now pick a nonzero vector z in ker(Z)1.
Then

(0) = JE-L = (ker(/) 0 kwY = ker(/)A Π ( M x

so that Φ(w, z) Φ 0. Let 7/ = {{Φ{w, z))"1/^))*"1;?. Note 7/ is in kz
which is contained in ker(jf)1. Thus Φ(w, y) = f{w)

Now let x be any vector in E. Then there is a unique x^ in
ker(/) and x2 in few such that x = ^ + cc2. Then /(#) = /(#2) ^nd
Φ(a?, 2/) = Φ(a?2,2/). But x2 = λ ;̂ so /(&) = /fe) = λ/(w) = XΦ(w, y) =
Φ(λw, ?/) = Φ(a?2,7/) = Φ(x, y). Thus / = d(y) and hence im(d) = Ef.

The fact that ί is a monomorphism follows from the non-
degeneracy of Φ.

If y is anisotropic, then y does not belong to kyL so ker d(y) =
and (/b?/)1 @ky = E. On the other hand if ker(/) 0 ker(Z)1 =

then ker(/) is closed so there is a y with f=d(y). Since
@ky — E, y is clearly anisotropic.

Note that the theorem above implies the usual Frechet-Riesz
Representation theorem for real, complex, and quaternionic Hubert
spaces.

The corollaries below follow readily.

COROLLARY 3.2. // Φ admits nonzero isotropic vectors, then
there are closed subspaces of E that are not splitting.

COROLLARY 3.3. The orthodual of E is a total subspace of E*.

COROLLARY 3.4. Let M be a closed subspace of E with x a vector
not in M. Then there is an orthocontinuous linear functional f
such that f(x) Φ 0, but M <Ξ ker(/).



478 ROBERT PIZIAK

4* Adjoint* Let (E, Φ) be a quadratic space. We shall imitate
the von Neumann formulation of the notion of adjoint. Let T be a
relation on E with graph G(T). We say T is a closed relation if
G(T) = G(T)11 where ± is taken relative to Φ®Φ EφE. Note a
closed relation is necessarily a linear relation i.e. T or G(T) if you
prefer, is a subspace of E®E. The closure Γ of the relation T is
defined by G(T) = G(T)L1. Clearly f extends Γ. We also note that
if T is a closed linear relation, then ker(Γ) is a closed linear sub-
space of E.

Now define U:Ex E-+Ex Eby U{x, y) = (-y, x). Then Uis an
everywhere defined linear Injection with U~ι{y, x) = (a?, — y). Also
note that Φ ζ& Φ(Uz, w) = Φ (B &(*, U~ιw) and for Λf £ E x #, we
have 17 (Λf1) = C/(M)J. For T any relation on E> define T* a rela-
tion on £ by G(Γ*) = U(G(T))j. Call T* the adjoint of Γ. Note
then that every linear operator has an adjoint. The question is
whether or not the adjoint is single valued.

The usual definition of adjoint is given by demanding the ex-
istence of a linear operator T* for a given linear operator T, such
that the identity Φ(Tx, y) = Φ(x, T*y) holds for all x and y. It is
interesting to note this formal identity persists. For if T is a rela-
tion on E with (x, z) in G{T) and (y, w) in G(Γ*), then

Φ(z, y) = Φ(x, w) .

If we formally write z = Tx and w = T*y, we recover the previous
equation.

It was brought to our attention that the next theorem was pre-
viously obtained by R. Arens [1] p. 16, Prop. 3.32. The Hubert space
origin of the idea goes back to J. von Neumann [12].

THEOREM 4.1. Let T be a relation on E. Then T* is single
valued if and only if (dom(Γ))11 = E.

In view of [1], we omit the proof.

It is interesting to note that the single valuedness of Γ* depends
only on the nature of the domain of T and not whether T is single
valued or even linear.

COROLLARY 4.2. (1) Let T be a linear relation on E. Then T*
is single valued if and only if T has an orthogonally dense domain;

(2) ϊ7* has dense domain if and only if ϊ7** is single valued;
(3) The closure of a linear operator is single valued exactly

when its adjoint has a dense domain.

Following S. S. Holland Jr., (to whom we are indebted for several
ideas of this section), we shall use the term CDD operator to mean
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a closed domain dense linear operator.

COROLLARY 4.3. The adjoint T* of a CDD operator T is CDD
and T = T**.

THEOREM 4.4. Let T be a CDD operator. Then Γ* satisfies
Φ(Tx, y) = Φ(x, T*y) for all x in dom(Γ) and y in dom (Γ*). Also
any linear operator S satisfying Φ(Tx, y) = Φ(x, Sy) for all x in
dom(T) and y in dom(S) is such that SS T*. If dom(S) = dom(Γ*),
then S = Γ*.

Proof. Since T is domain dense, T* is single valued and

Φ(Tx, y) = Φ(x, T*y)

for all x in dom(Γ) and y in dom(T*). If Φ(Tx, y) = Φ(x, Sy) for all
x in dom(T) then Φ 0 Φ((y, Sy), ( - Tx, x)) =-Φ(y, Tx) + Φ(Sy, x) = 0
for all x in dom(Γ) so that (y, Sy) is in U{G{T))L = G(T*). Thus y
is in dom(T*) and T*y = Sy. Thus S i T*.

In Hubert space, a bounded linear has a topologically closed
graph and conversely. We can prove that if T is a domain dense
linear operator on E and T* is domain dense then T has a J_ -closed
graph. It would be more interesting to prove the following open
question: Algebraic Closed Graph Theorem if T is an everywhere
defined closed linear operator then T has an everywere defined ad-
joint. We conjecture this is not true in general but is true in the
case that every closed subspace of our quadratic space is splitting.

5. Orthocontinuity* In Hubert space, the continuous linear
operators are of great interest. We shall show how to approach
these algebraically.

Let (E, Φ) be a quadratic space with T: E —> E linear. We say
T is orthocontinuous if for all subspaces M of E we have

T(M±λ) S T(M)L[ .

PROPOSITION 5.1. Let T: E—+E be linear. Then the following
statements are equivalent

(1) M= MLL implies T~\M) = {T-\M))lL

(2) M closed implies T~\M) closed
(3) T(M1L) s T(M)11

(4) T-W) a (T-'iN))11

(5) T is orthocontinuous

The proof is easy and is omitted.
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LEMMA 5.2. Let T: E—+E be an everywhere defined linear oper-
ator. Suppose dom(T*) = E. Then for any M = MLL we have
T~ι{M) = (T*(ML)y. In particular then ker(T) = im(T*)L.

Proof. Let M= M[L. Then x is in T~\M) if and only if Tx
is in M = M1L if and only if Φ(Tx, y) = 0 for all y in ML if and
only if Φ(x, T*y) = 0 for all # in ML if and only if x is orthogonal
to T*(ML).

Next we make a connection between the domain of the adjoint
and the orthodual.

THEOREM 5.3. If T is an everywhere defined linear operator on
E, then dom(T*) comprises exactly those y in E for which the linear
functional fy{x) = Φ(Tx, y) is orthocontinuous.

Proof. Since T is domain dense, T* is single valued and

Φ(Tx, y) = Φ(x, T*y)

for all x in E and all y in dom(Γ*). First let y be in dom(Γ*). Then
x is in ker(/y) if and only if fy(x) = 0 if and only if Φ(Tx, y) = 0 if
and only if Φ(x, T*y) = 0 if and only if x is in (JcT*y)L. Thus

ker(Λ) - (kT*yy

is closed.
Conversely, let y be a vector such that /tf is an orthocontinuous

linear functional. Then by Frechet-Riesz, there is a unique vector
2/* such that /„(&) = Φ(α;, T/*) for all x in £7. That is, Φ(Tx, y) =
Φ(α?, i/*) for all α? in E. Thus

Φ Θ Φ((v, ?/*), (- ^ ,»)) = -Φ(Vf Tx) + Φd/*, x) = o

for all x in £? so that (T/, ?/*) is in U{G{T))L = G(Γ*). This means #
is in dom(Γ*).

We are now in a position to relate orthocontinuity to the adjoint.
We first state a lemma whose proof will be omitted.

LEMMA 5.4. Let T be an everywhere defined linear operator on
E. Define the linear functional fy by fy{x) = Φ(Tx, y) for all x in E.
Then ker(Λ) - T

THEOREM 5.5. Let T be an everywhere defined linear operator
on E. Then T is orthocontinuous if and only if T* is everywhere
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defined.

Proof. Let T be orthocontinuous. Then T~ι((ky)λ) is closed for
all y in E. Thus by (5.3) and (5.4), y is in dom(T*).

Conversely if dom(T*) = E, then for

M= M11, T-\M) = (T*(Mλ))L

by (5.2) and this is closed so T is orthocontinuous.

COROLLARY 5.6. T is orthocontinuous if and only if T~\(ky)L) is
closed for all y in E.

We close by remarking that the algebra of bounded operators
on Hubert space is a well studied object. The algebraic analogue
for a quadratic space is the adjoint algebra, Ad(E, Φ), of all linear
operators on E that have everywhere defined ad joints.

REFERENCES

1. R. Arens, Operationals calculus of linear relations, Pacific J. Math., 11 (1961), 9-
23.
2. N. Bourbaki, XXIV Elements De Mathematique I, Les Structure Fundamentales
De L'Analyse, Livre II, Algebre, Chapitre IX Forme Sesquilineaire et Formes Quad-
ratique, Hermann Paris, (1959).
3. G. V. Dropkin, Dot Modules, Honors Thesis, Amherst College, May 1967, (un-
published)
4. H. R. Fisscher and H. Gross, Quadratic forms and linear topologies, I, Math.
Annalen, 157, (1964), 296-325.
5. S. S. Holland, Jr., Lecture notes on Hilbert space, Univ. of Mass., 1968-69.
6. I. Kaplansky, Forms in infinite dimensional spaces, Anais da Academia Brasieiia
De Ciencias, 22 (1950), 1-17.
7. , Orthogonal similarity in infinite-dimensional spaces, Proc. Amer. Math.
Soc, 3 (1952), 16-25.
8. , Quadratic forms, J. Math. Soc. Japan 6 (1953), 200-207.
9. R. Piziak, Mackey closure operators, J. London Math. Soc, (2) 4 (1971), 33-38.
10. , Orthomodular Posets from Sesquilinear Forms, (to appear in J. Australian
Math. Soc).
11. •, An Algebraic Generalization of Hilbert Space Geometry, Ph. D. Thesis,
Univ. of Mass. (1969).
12. Von Nemann, J., Tiber adjungierte Funktional-operatoren, Ann. Math., 33(1932),
294-310.

Received June 24, 1971.

UNIVERSITY OF FLORIDA






