A THEOREM ON BOUNDED ANALYTIC FUNCTIONS

Michael C. Mooney

The purpose of this paper is to prove the following Theorem: Let $\phi_{1}, \phi_{2}, \cdots$ be an infinite sequence of functions in $L^{1}([0,2 \pi])$ such that $L(f)=\lim _{n \rightarrow \infty} \int_{0}^{2 \pi} f\left(e^{i \theta}\right) \phi_{n}(\theta) d \theta$ exists for every $f \in H^{\infty}$. Then there is a $\phi \in L^{1}([0,2 \pi])$ such that $L(f)=\int_{0}^{2 \pi} f\left(e^{i \theta}\right) \phi(\theta) d \theta$ for all $f \in H^{\infty}$.

Throughout this paper we will use the following notation and conventions: D will denote the unit disc and T its boundary. In order to save time we will avoid making distinctions between T and [$0,2 \pi$] if no confusion results. Similarly, it will be convenient to treat elements of $H^{\infty}\left[=H^{\infty}(D)\right.$, the bounded analytic functions on $\left.D\right]$ as though they were the same as those functions on T with which they are naturally identified.

If $w \in D$, the symbol g_{w} will stand for the function $z \rightarrow g(w z)$. $C(T)$ will stand for the usual space of continuous functions on T. A will denote the subspace of $C(T)$ of functions analytically extendable to D. λ will denote ordinary Lebesgue measure divided by 2π and "WLOG" means "without loss of generality".

In their paper [4] Piranian, Shields, and Wells observed that the theorem stated above would imply their result, namely that if a_{0}, a_{1}, \ldots was a sequence of complex constants such that $\lim _{r \rightarrow 1} \sum_{n=0}^{\infty} a_{n} b_{n} r^{n}$ exists for all $f \in H^{\infty}$ [with Taylor coefficients b_{0}, b_{1}, \cdots], then the a_{n} 's are the the nonnegative Fourier coefficients of an $L^{1}([0,2 \pi])$ function. They also mentioned that our result here was a question raised in [1].

Kahane [3], using a somewhat different method than that in [4] showed that under the hypothesis of our main theorem, there was a $\phi \in$ $L^{1}([0,2 \pi])$ such that the conclusion held for all $f \in A$. He went further to show that the subset of H° for which the conclusion held was large in some sense. Our proof here makes use of Kahane's result.
2. Remarks and lemmas. First, given the hypothesis of the main theorem we may assume WLOG that the ϕ_{n} 's are uniformly bounded in L^{1} norm. To see why this is so we observe that for each $n, g \rightarrow L_{n}(g)=\int_{T} g \phi_{n}$ is a bounded linear functional on A. By the uniform boundedness principle, the norms of the L_{n} 's as elements of A^{*} are uniformly bounded, say by M. By the Hahn-Banach Theorem, each L_{n} may be extended to an element of $C(T)^{*}$ with norm less than
M. This extended functional corresponds in the usual way to a Borel measure μ_{n} on T having variation norm less than M. For each n, $\mu_{n}-\int \phi_{n}$ is also a finite Borel measure on T. Since this measure is orthogonal to A, it must be absolutely continuous [by the classical F. and M. Riesz Theorem] and, in turn, so must μ_{n}. Hence we may replace ϕ_{n} 's with $d \mu_{n}$'s if necessary. From here on we assume $\left\|\phi_{n}\right\|_{1} \leqq$ 1 , for all n.

Suppose now for purposes of contradiction that there is an $f \in$ H^{∞} such that $L(f) \neq \int_{T} f \phi$ where ϕ is the function referred to in Kahane's result. We may assume WLOG that $\phi \equiv 0$ [simply subtract $\dot{\phi}$ from ϕ_{n} 's beforehand and that $|f|_{\infty}=1$. We also assert WLOG:

Lemma 1. There exists a bounded, increasing function β on T such that

$$
\lim _{n \rightarrow \infty} \int_{E}\left|\phi_{n}\right|=\int_{E} d \beta
$$

whenever E is a finite union of closed subintervals of T.
Proof. Since all our previous assertions remain valid if the ϕ_{n} 's are replaced by an infinite subsequence, we will do this if necessary so that the functions $\int\left|\phi_{n}\right|$'s converge pointwise on T to a function which we call β. This construction and the conclusion of the lemma follow from the Helly's Theorem. [See Zygmund [5] IV-4.6-(p. 137).]

We consider the fact that:

$$
\lim _{r \rightarrow 1-} \lim _{n \rightarrow \infty} \int_{T} f_{r} \phi_{n}=0 \neq \lim _{n \rightarrow \infty} \lim _{r \rightarrow 1-} \int_{T} f_{r} \phi_{n}=L(f)
$$

despite the fact that f_{r} 's are uniformly bounded and converge to f in measure. It is reasonable to subspect that in some useful sense of the word that the support of $\int f \phi_{n}$ tends to become concentrated on smaller and smaller sets as $n \rightarrow \infty$.

To be more specific, our plan at this point is to produce a sequence of pairwise disjoint "nice" closed sets E_{1}, E_{2}, \cdots such that $\int_{E_{n}} f \phi_{n}$ tends approximately to $L(f)$ while $\int_{T-E_{n}}\left|f \phi_{n}\right|$ remains uniformly $\underset{E_{n}}{<} \varepsilon \ll$ ${ }_{\mid} L(f) \mid$. [We will find that it is expedient to replace f with $f-f_{r}$ for some r in order to do this.]

Ultimately we will construct $g \in H^{\infty}$ so that g is approximately $(-1)^{n}$ on E_{n}. The function $g f$ [actually we will look at $g \times\left(f-f_{r}\right)$] will give us a counterexample to the condition that $L(h)$ exists for all $h \in H^{\infty}$, and hence we will have a contradiction to the assumption
$L(f) \neq 0$.
Let $\varepsilon_{0}=(1 / 10)|L(f)|$. In order to prove Lemma 2, it will be desirable to keep the singular part of β small, say less than $\varepsilon_{0} / 2$. To be sure of this we can choose a closed subset E of the support of the singular part of β such that outside of E, the singular part of β has variation norm less than $\varepsilon_{0} / 2$.

Let g denote a Rudin-Carleson type function such that $g \in A, g$ is zero on E, and g is close to 1 outside some neighborhood of E. Such functions were used in both [3] and [4], and a proof of their existence is available in Hoffman [2] p. 80, 81. [See also [2], Notes on p. 95.] If the original ϕ_{n} 's are replaced by $g \phi_{n}$'s, we may proceed as before with our new set of $\phi_{n}{ }^{\prime}$ s, ϕ, β, etc. The new $d \beta=|g|$ times the old $d \beta$, and hence the singular part of the new β will have variation norm less than $\varepsilon_{0} / 2$. This process gives us a new value for $L(f)$, however, and we must be sure that the new value is close enough to the old that our assertion is still valid when the new value of $L(f)$ is used in the expression for ε_{0}. To do this we observe that the functions $f \phi_{n}$ also satisfy the hypothesis of our Theorem [in place of the ϕ_{n} 's] and that by Kahane's Theorem, there is a $\dot{\psi} \in L^{1}([0,2 \pi])$ such that

$$
\lim _{n \rightarrow \infty} \int_{T} h f \phi_{n}=\int_{T} h \psi \text { for all } h \in A
$$

In particular this is true when $h=g$. Since ψ is absolutely continuous and since we can make g uniformly as close to 1 as we like outside neighborhoods of E taken as small as we like, the new $L(f)=$ $\int_{T} g_{\psi}$ can be taken as close to the old $L(f)=\int_{T} \psi$ as we like. Hence WLOG we may assume that the singular part of β has variation norm less than $\varepsilon_{0} / 2$. Let us now choose $\delta>0$ such that

$$
\lambda(E)<\delta \Rightarrow \int_{E} d \beta_{a}<\varepsilon_{0} / 2-\int_{T} d \beta_{S}
$$

where β_{a} and β_{s} are the absolutely continuous and singular parts of β respectively. We note that if J is a finite union of closed intervals, and $\lambda(J)<\delta$, then for n sufficiently large $\int_{J}\left|\phi_{n}\right|<\varepsilon_{0} / 2$.

Choose $r \in(0,1)$ such that $\lambda(F)<\delta$ where

$$
F=\left\{\theta\left|\theta \in[0,2 \pi],\left|f\left(e^{i \theta}\right)\right|-f_{r}\left(e^{i \theta}\right)\right| \geqq \varepsilon_{0}\right\}
$$

Let G be an open subset of T such that $F \subset G$ and $\lambda(G)<\delta$.
Since

$$
L\left(f_{r}\right)=0, L(f)=L\left(f-f_{r}\right)=\lim _{n \rightarrow \infty} \int_{G}\left(f-f_{r}\right) \phi_{n}+\lim _{n \rightarrow \infty} \int_{T-G}\left(f-f_{r}\right) \phi_{n}
$$

[We may choose subsequences of the original ϕ_{n} 's if necessary in order to guarantee the limits exist.] Now for each $n, \int_{T-G}\left|\left(f-f_{r}\right) \phi_{n}\right| \leqq \varepsilon_{0}$. Hence $\left|\int_{G}\left(f-f_{r}\right) \phi_{n}-L(f)\right|<\varepsilon_{0}$ for all sufficiently large n.

Lemma 2. There exists a sequence of sets $E_{1}, E_{2}, \cdots ;$ a sequence of positive numbers $\delta_{1}, \delta_{2}, \cdots$; and an increasing sequence of positive integers j_{1}, j_{2}, \cdots such that:
(a) Each E_{n} is a finite union of closed intervals.
(b) Let E_{j}^{\prime} denote the closure of the δ_{j} neighborhood of E_{j}. Then $E_{j}^{\prime} \subset G$.
(c) $j \neq k \Rightarrow E_{j}^{\prime} \cap E_{k}^{\prime}=\varnothing . \quad\left[\right.$ Note that this $\Rightarrow \lambda\left(E_{j}\right) \rightarrow 0$, and $\lambda\left(E_{j}^{\prime}\right) \rightarrow$ 0.]
(d) $\int_{G-E_{k}}\left|\phi_{j_{k}}\right|<\varepsilon_{0} / 2$ for $\quad k=1,2, \cdots$.
(e) $\int_{E_{n}}\left(f-f_{r}\right) \phi_{j_{n}} \rightarrow x_{0}$ where $\left|x_{0}-L(f)\right|<2 \varepsilon_{0}$.

Proof. Construction using mathematical induction and the following scheme: After the first k, E_{j} 's, δ_{j} 's and j_{n} 's are constructed, we pick j_{k+1}, E_{k+1}, and δ_{k+1} in the order.

Using the fact that $\lim _{n \rightarrow \infty} \int_{\cup_{p=1}^{k} E_{p}^{\prime}}\left|\phi_{n}\right|<(1 / 2) \varepsilon_{0}$ [since $\lambda\left(\bigcup_{p=1}^{k} E_{p}^{\prime}\right)<$ $\lambda(G)<\delta]$ and the fact that $\int_{G}\left(f-f_{r}\right) \phi_{n}$ eventually comes within ε_{0} of $L(f)$, we have that for j_{k+1}^{G} sufficiently large: $\int_{\cup_{p=1}^{k} E_{p}^{\prime}}\left|\phi_{j_{k+1}}\right|<(1 / 2) \varepsilon_{0}$ and $\int_{G-\cup_{p=1}^{k} E_{p}^{\prime}}\left(f-f_{r}\right) \phi_{j_{k+1}}$, is within $2 \varepsilon_{0}$ of $L(f)$.

We now choose E_{k+1} inside the open set $G-\bigcup_{p=1}^{k} E_{p}^{\prime}$. Using the absolute continuity of $\phi_{j_{k+1}}$ we can choose E_{k+1} large enough that (d) holds, and that $\int_{E_{k+1}}\left(f-f_{r}\right) \phi_{j_{k+1}}$ is within $2 \varepsilon_{0}$ of $L(f)$.
δ_{k+1} will now be chosen so that (b) and (c) satisfied. Obviously our construction will satisfy (a), (b), (c), (d). We may choosen an appropriate subsequence if necessary in order that (e) be satisfied as well.

3. Construction of the counterexample function.

Lemma 3. Let E be a closed subset of $T, \varepsilon>0$. Then there is a function, s, analytic on D such that:
(a) s has positive real part and $|s|_{\infty}<1$
(b) $\theta \in E \Rightarrow\left|s\left(e^{i \theta}\right)-1\right|<\varepsilon$
(c) $\theta \notin E \Rightarrow\left|s\left(e^{i \theta}\right)\right|<2 \lambda(E) / \varepsilon \cdot \operatorname{dist}(\theta, E)$
(d) $|s(0)|<\lambda(E) / \varepsilon$.

Proof. Let $U=(1 / \varepsilon) \pi_{E}$ on $T\left[\pi_{E}\right.$ denotes characteristic function for E]. Let u be the harmonic function on D corresponding to U on the boundary [u is the integral of U with respect to Poisson's kernel]. Let v be the conjugate harmonic function for u such that $v(0)=0$. Let $g=u+i v$. [g is analytic on D with positive real part.]

Note that for $\theta \notin E,\left|g\left(e^{i \theta}\right)\right|=\left|v\left(e^{i \theta}\right)\right|$ where

$$
v\left(e^{i \theta}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} u\left(e^{i \phi}\right) \frac{\sin (\theta-\phi)}{1-\cos (\theta-\phi)} d \phi=\frac{1}{2 \pi \varepsilon} \int_{E} \frac{\sin (\theta-\phi)}{1-\cos (\theta-\phi)} d \phi
$$

The maximum modulus of the function inside the integral occurs when $|\theta-\phi|=\operatorname{dist}(\theta, E)$. In order not to be troubled by awkward trigonometric expressions in the material to follow, we observe by some elementary calculations that $|\sin x| /(1-\cos x)<2 /|x|$ for $|x|<\pi$. Hence we may assert that $\left|v\left(e^{i \theta}\right)\right|<2 \lambda(E) / \varepsilon \cdot \operatorname{dist}(\theta, E)$. Now let

$$
s=g /(1+g)=1-1 /(1+g)
$$

(a) Since g is of positive real part, the range of $1 /(1+g)$ is contained in the disc $\{z||z-1 / 2|<1 / 2\}$. So is the range of s.
(b) For $\theta \in E, \operatorname{Re}\left(g\left(e^{i \theta}\right)\right)=1 / \varepsilon$ and hence $\operatorname{Re}\left(1+g\left(e^{i \theta}\right)\right)=1+1 / \varepsilon$. This makes $\left|1+g\left(e^{i \theta}\right)\right| \geqq 1+1 / \varepsilon$ and in turn $\left|1 /\left(1+g\left(e^{i \theta}\right)\right)\right| \leqq \varepsilon /(1+\varepsilon)<\varepsilon$ whence $\left|s\left(e^{i \theta}\right)-1\right|=\left|1 /\left(1+g\left(e^{i \theta}\right)\right)\right|<\varepsilon$.
(c) For $\theta \notin E,\left|s\left(e^{i \theta}\right)\right|=\left|g\left(e^{i \theta}\right)\right| /\left|1+g\left(e^{i \theta}\right)\right|$ where

$$
\left|g\left(e^{i \theta}\right)\right|<2 \lambda(E) / \varepsilon \cdot \operatorname{dist}(\theta, E) \quad \text { and } \quad\left|1+g\left(e^{i \theta}\right)\right| \geqq 1
$$

(d) $s(0)=g(0) /(1+g(0))$, where $g(0)=\lambda(E) / \varepsilon$ and the proof is complete.

Construction. Given $\varepsilon_{1}>0, \varepsilon_{2}>0$; a sequence of functions s_{1}, s_{2}, \cdots is to be constructed as follows:

Suppose $s_{1}, s_{2}, \cdots, s_{k}$ have been chosen and that $S_{k}=\sum_{j=1}^{k} s_{j}$ is such that $\left|S_{k}\right|_{\infty}=M_{k}<\infty, s_{k+1}$ will be of the form $c_{k+1} s$ where c_{k+1} is a positive real number and s is related to $E_{n_{k+1}}$ in the same manner that s is related to E in Lemma 3.

We want c_{k+1} sufficiently large and ε [in Lemma 3] sufficiently small that:
(a) $\theta \in E_{n_{k+1}} \Rightarrow \varepsilon_{2} \log \left|S_{k+1}\left(e^{i \theta}\right)\right|=(-1)^{k+1}(\pi / 2)(\bmod 2 \pi)-\pi / 2$ within an error of magnitude not more than ε_{1}. Note that we can pick ε dependent only on ε_{1} and ε_{2} [independent of $k+1$], and $c_{k+1} \gg M_{k}$ so as to make the ratio between $\left|s_{k+1}+S_{k}\right|$ and $\left|\operatorname{Re}\left(s_{k+1}\right)\right|$ small enough to make $\log \left|S_{k+1}\right|$ close enough to $\log \left(c_{k+1}\right)$ on $E_{n_{k+1}}$ for this purpose. Furthermore, the choice of c_{k+1} depends only on $E_{n_{1}}, E_{n_{2}}, \cdots, E_{n_{k}}$. We wish further to have:
(b) $\theta \in E_{n_{k}}=\varepsilon_{2} \log \left|S_{p}\left(e^{i \theta}\right)\right|=(-1)^{k} \pi / 2(\bmod 2 \pi)-\pi / 2$ within an
error of magnitude not more than ε_{1} for all $p>k$. To do this, we use the fact that for $\theta \in E_{n_{k}}, p>k$; then $\operatorname{dist}\left(\theta, E_{n_{p}}\right)>\delta_{n_{k}}$ [independent of p-note]. Hence $\left|s_{p}\left(e^{i \theta}\right)\right|<c_{p} \lambda\left(E_{n_{p}}\right) / \varepsilon \cdot \operatorname{dist}\left(\theta, E_{n_{p}}\right)<c_{p} \lambda\left(E_{n_{p}}\right) / \varepsilon \delta_{n_{k}}$. Recall that the choice of c_{p} depends only on S_{p-1} and is independent of $E_{n_{p}}$. Hence we may require that $\lambda\left(E_{n_{p}}\right) \rightarrow 0$ sufficiently rapidly to guarantee that $\sum_{p=k+1} c_{p} \lambda\left(E_{n_{p}}\right) / \varepsilon \delta_{n_{k}}$ is always small enough that (b) is satisfied. The above requirement also guarantees that $\sum_{k=1}^{\infty} c_{k} \lambda\left(E_{n_{k}}\right) / \varepsilon$ converges.

Each s_{p} has positive real part and hence by Harnack's principal the S_{p} 's must either converge to an analytic function, S, of positive real part on D, or diverge to ∞ on D. The latter is impossible since each $\left|S_{p}(0)\right|<\sum_{k=1}^{p}\left|s_{k}(0)\right| \leqq \sum_{k=1}^{p} c_{k} \lambda\left(E_{n_{k}}\right) / \varepsilon<\sum_{k=1}^{\infty} c_{k} \lambda\left(E_{n_{k}}\right) / \varepsilon<\infty$. We also note that our requirement in (b) above also guarantees that the S_{p} 's converge absolutely on each $E_{n_{k}}$ and hence we also have: $\theta \in E_{n_{k}} \Rightarrow$ $\varepsilon_{2} \log |S|=(-1)^{k} \pi / 2(\bmod 2 \pi)-\pi / 2$ within an error of magnitude not more than ε_{1}.

Let $g=e^{i \varepsilon_{2} \log S}$. Then g is bounded on D [in fact: $e^{-\varepsilon_{2} \pi / 2}<|g(z)|<$ $e^{\varepsilon_{2} \pi / 2}$ for all $\left.z \in D\right] . \quad \theta \in E_{n_{p}} \Rightarrow \operatorname{argument}\left(g\left(e^{i \theta}\right)\right)=\left((-1)^{p} \pi / 2\right)(\bmod 2 \pi)-$ $\pi / 2+$ error not larger than ε_{1}. This is, given $\varepsilon_{3}>0$ we may choose $\varepsilon_{1}, \varepsilon_{2}$ so that $1-\varepsilon_{3}<|g(z)|<1+\varepsilon_{3}$ for all $z \in D$ and such that $\left|g\left(e^{i \theta}\right)-(-1)^{p}\right|<\varepsilon_{3}$ for all $\theta \in E_{n_{p}}$. Now:

$$
\begin{aligned}
\int_{T} g\left(f-f_{r}\right) \phi_{j_{n_{k}}}= & \int_{E_{n_{k}}} g\left(f-f_{r}\right) \dot{\phi}_{{j_{n_{k}}}}+\int_{G-E_{n_{k}}} g\left(f-f_{r}\right) \phi_{j_{n_{k}}} \\
& +\int_{T-G} g\left(f-f_{r}\right) \dot{\phi}_{j_{n_{k}}} .
\end{aligned}
$$

Recalling Lemma 2, we see that the first of these three integrals is within $2 \varepsilon_{0}\left(1+\varepsilon_{3}\right)$ of $(-1)^{p} L(f)$; the second has magnitude less than $\varepsilon_{0}\left(1+\varepsilon_{3}\right.$) [by (d), Lemma 2] and the third also has magnitude less than $\varepsilon_{0}\left(1+\varepsilon_{3}\right)$ [from the way in which f_{r} and G were chosen]. If ε_{3} is chosen small enough, $\int_{T} g\left(f-f_{r}\right) \phi_{j_{n k}}$ fails to have a limit as $k \rightarrow$ ∞ and we have our contradiction.

References

1. L. Brown, A. Shields, and K. Zeller, On absolutely convergent exponential sums, Trans. Amer. Math. Soc., 96 (1960), 162-183.
2. K. Hoffman, Banach spaces of Analytic Functions, Prentice Hall, Englewood Cliffs, N. J., 1962.
3. J. P. Kahane, Another theorem on bounded analytic functions, Proc. Amer. Math. Soc., 18 (1967), 827-831.
4. G. Piranian, A. L. Shields and J. H. Wells, Bounded analytic functions and absolutely continuous measures, Proc. Amer. Math. Soc., 18 (1967), 818-826.
5. A. Zygmund, Trigonometric Series, 2nd Ed., Vol I, Cambridge Univ. Press, Cambridge, 1959.

Received April 15, 1971 and in revised form February 3, 1972.
Louisiana State University

