SEQUENCES OF QUASI-SUBORDINATE FUNCTIONS

JAMES MILLER

In this paper a theorem is proved which connects bounded analytic functions in the unit disk and sequences of quasisubordinate functions. As an application a necessary and sufficient condition for certain sequences of quasi-subordinate functions to converge is found.

Let f and F be analytic functions in |z| < R. If there exist two functions ϕ and ω which are analytic in |z| < R and satisfy $\omega(0) = 0$, $|\phi(z)| \leq 1$, $|\omega(z)| < R$, and $f(z) = \phi(z)F(w(z))$ for |z| < R, then we say that f is quasi-subordinate to F in |z| < R and write $f \prec_q F$. Without loss of generality we may assume that R = 1. This class was introduced by Robertson [2, 3].

We note that there are two special cases of quasi-subordination which are of interest: If ϕ is the constant function one, then f is subordinate to F, and on the other hand, if ω is the identity function, then f is majorized by F.

Let *B* denote the class of functions θ which are analytic in |z| < 1 and satisfy $|\theta(z)| \leq 1$ for |z| < 1. Then the functions ϕ and ω which are defined above are elements of *B*. In this paper we prove a theorem which connects functions in *B* and sequences of quasi-subordinate functions. As an application we find necessary and sufficient conditions for certain sequences of quasi-subordinate functions to converge. This is a generalization of Pommerenke's results [1] on sequences of subordinate functions.

Let $\{f_n\}, n = 1, 2, \dots$, be a sequence of functions which are analytic in |z| < 1 such that $f_n \prec_q f_{n+1}$ for each n or $f_{n+1} \prec_q f_n$ for each n. When considering the convergence of such sequences we need to require that either the sequence $\{f_n(0)\}$ converges or the functions agree at a single point. In this paper we shall assume that the functions agree at a single point. Further we may assume that the point is z = 0 for if the functions f_n agree at the point $a \neq 0$ then we could consider the functions $g_n(z) = f_n((z-a)/(1-az))$. We will use $f_n(0) = 0$ for all n, otherwise the function ϕ would be identically one. The proof for the case where $\{f_n(0)\}$ is convergent is similar.

THEOREM 1. Let $\{f_n\}$ be a sequence of functions which are analytic in |z| < 1 and satisfy $f_n(0) = 0$, $\alpha_n = f'_n(0) \neq 0$, and $f_n(z) \prec_q f_{n+1}$, and let $\phi_{n+1}, \omega_{n+1} \in B$ and $\omega_{n+1}(0) = 0$ be such that

$$f_n(z) = \phi_{n+1}(z) f_{n+1}(\omega_{n+1}(z))$$

for |z| < 1. If $\sum_{n=2}^{\infty} \arg \phi_n(0)$ converges and $\lim_{n\to\infty} \alpha_n = \alpha$, $|\alpha| < \infty$, then $\prod_{n=2}^{\infty} \phi_n(0)$ converges.

Proof. We observe that if m < n, then we have $f_m \prec_q f_n$. Thus for m < n there are functions $\phi_{mn}, \omega_{mn} \in B$ where $\omega_{mn}(0) = 0$ such that

$$f_m(z) = \phi_{mn}(z) f_n(\omega_{mn}(z))$$

for |z| < 1. Let $\phi_{n n+1}(z) = \phi_{n+1}(z)$. We now observe that

$$f'_{m}(0) = \phi_{mn}(0)\omega'_{mn}(0)f'_{n}(0)$$

or

(1)
$$\alpha_m = \phi_{mn}(0)\omega'_{mn}(0)\alpha_n .$$

Since $0 < |\alpha_m| \le |\alpha_n|$ for m < n and $\alpha_n \to \alpha$, there exists an integer K such that if n > m > K, then

(2)
$$\left|\frac{\alpha_m}{\alpha_n}-1\right|<\varepsilon$$
.

From (1) and (2) we see that

$$1-arepsilon < \left|rac{lpha_m}{lpha_n}
ight| = |\phi_{mn}(0)\omega_{mn}'(0)| \leq |\phi_{mn}(0)| \leq 1$$
 .

We now observe that

$$\phi_{mn}(0) = \prod_{k=m+1}^{n} \phi_k(0)$$

Thus we have

$$1-arepsilon < \Big|\prod\limits_{k=m+1}^n \phi_k(0)\Big| \leq 1$$

for n > m > K. Since $\sum_{n=2}^{\infty} \arg \phi_n(0)$ converges this says that $\prod_{k=2}^{\infty} \phi_k(0)$ converges. Further we have that $\omega'_n(0) \to 1$ and $\omega'_{mn}(0) = 1$.

In applying Theorem 1 to sequences of quasi-subordinate functions we will also need two lemmas for functions in B. The proofs of the lemmas are essentially in [1].

LEMMA 1. Let $\phi \in B$, $\phi(0) = 0$, and satisfy $|\phi(0)| \ge \sigma > 0$. Then the mapping $w = \phi(z)$ maps the disk

$$|z|<
ho=rac{\sigma}{1+\sqrt{1-\sigma^2}}$$

univalently onto a region that contains $|w| < \rho^2$.

LEMMA 2. For $\varepsilon > 0$ and 0 < r < 1, there exists an $\eta > 0$ $(\eta(\varepsilon, r))$ such that if $\phi \in B$ satisfies $\phi(z) = \sum_{n=0}^{\infty} \beta_n z^n$ and $|\beta_k - 1| \leq \eta$, then

$$| \, \phi(z) \, - \, z^k \, | < arepsilon \,$$
 , for $| \, z_{\scriptscriptstyle \perp} < r$.

THEOREM 2. Let $\{f_n\}$ be a sequence of analytic functions in |z| < 1 such that $f_n(0) = 0$, $f_n \prec_q f_{n+1}$, and $\alpha_n = f'_n(0) \neq 0$, and let $\phi_{n+1}, \omega_{n+2} \in B$ and $\omega_{n+1}(0) = 0$ be such that $f_n(z) = \phi_{n+1}(z)f_{n+1}(\omega_{n+1}(z))$ for |z| < 1 and $\sum_{n=2}^{\infty} \arg \phi_n(0)$ converges. Then the sequence $\{f_n\}$ converges uniformly in |z| < r for every $0 \leq r < 1$ if and only if

$$\lim_{n o\infty}lpha_n=lpha$$
 , $|lpha|<\infty$.

PROOF. If $\{f_n\}$ converges uniformly in $|z| \leq r$ for every 0 < r < 1then $\alpha_n = f'_n(0)$ converges. Further since $|\alpha_n| \leq |\alpha_{n+1}|$, $f_n(0) = 0$, and $\alpha_n \neq 0$ we see that $\lim_{n\to\infty} \alpha_n = \alpha \neq 0$ and $|\alpha| < \infty$.

Let $\omega_{n+1}, \phi_{n+1} \in B$, and $\omega_{n+1}(0) = 0$ be as defined in Theorem 2. Further for m < n, let $\phi_{mn}, \omega_{mn} \in B$ with $\omega_{mn}(0) = 0$ be such that

(3)
$$f_m(z) = \phi_{mn}(z) f_n(\omega_{mn}(z)) .$$

Suppose that $\alpha_n \to \alpha$, $|\alpha| < \infty$. Then by Theorem 1 the product $\prod_{k=2}^{\infty} \phi_k(0)$ converges. We will first show that $\{f_n\}$ is a normal family in |z| < 1.

Let r, 0 < r < 1, be fixed and σ determined by

$$\sqrt{r} = rac{\sigma}{1+\sqrt{1-\sigma^2}} \, .$$

Since $\sigma < 1$ and $\alpha_n \rightarrow \alpha \neq 0$, there exists an integer N_1 such that

$$\Big| \, rac{lpha_m}{lpha_n} \Big| > \sigma$$
 , for $n > m > N_{\scriptscriptstyle 1}$.

Further, since $|\phi_{mn}(z)| \leq 1$, we have $|\phi_{mn}(0)|^{-1} \geq 1$. For $n > m > N_1$ we have $\omega'_{mn}(0) = \alpha_m/(\alpha_n \phi_{mn}(0))$ or

$$| \omega_{mn}'(0) | = \left| \frac{1}{\phi_{mn}(0)} \frac{\alpha_m}{\alpha_n} \right| > \sigma .$$

Thus by Lemma 1 the mapping $\zeta = \omega_{mn}(z)$ for $n < m < N_1$ maps $|z| < \sqrt{r}$ univalently onto a domain that contains $|\zeta| < r$. Let ψ_{mn} be the inverse of $\zeta = \omega_{mn}(z)$ in $|\zeta| < r$, then

$$|\psi_{mn}(\zeta)| \leq \sqrt{r}$$
.

From (3) we may write

$$f_n(\zeta) = rac{1}{\phi_{mn}(\psi_{mn}(\zeta))} f_m(\psi_{mn}(\zeta)) \ , \qquad ext{for } |\, \zeta\,| < r \ .$$

For $|\zeta| \leq r$ we have

$$|f_n(\zeta)| \leq \max_{|z| \leq \sqrt{r}} \left| rac{f_m(z)}{\phi_{mn}(z)}
ight| \leq rac{1}{\min_{|z| \leq \sqrt{r}} |\phi_{mn}(z)|} \max_{|z| \leq \sqrt{r}} |f_m(z)| \; .$$

From Lemma 2 with k = 0, given $\varepsilon > 0$, there exists an η such that if $|\beta_0 - 1| < \eta$ then $|\phi(z) - 1| < \varepsilon$ for |z| < r. Since $\prod_{k=2}^{\infty} \phi_k(0)$ converges by Theorem 1 and $\phi_{mn}(0) = \prod_{k=m+1}^{n} \phi_k(0)$, there exists an integer N_2 such that if $n > m > N_2$ then $|\phi_{mn}(0) - 1| < \eta$. Let $N = \max(N_1, N_2)$. Thus, by Lemma 2 we have that $|\phi_{mn}(z) - 1| < \varepsilon$ for $|z| \leq r$ and n > m > N or

$$\min_{|z|\leq r} |\phi_{mn}(z)| \geq 1-arepsilon$$
 .

Hence, for n > N and $|\zeta| \leq r$ we have

$$|f_n(\zeta)| \leq \frac{1}{1-\varepsilon} \max_{|z| \leq \sqrt{-r}} |f_{N+1}(z)|.$$

Thus there exists M(r) such that

 $|f_n(z)| \leq M(r)$

for all n, that is, $\{f_n\}$ is locally uniformly bounded. Therefore $\{f_n\}$ is normal.

Let $\{f_{n_{\nu}}\}$ be a subsequence of $\{f_n\}$ which is uniformly convergent in $|z| \leq r_0$, for every $r_0 < 1$. Let f be the limit function of $\{f_{n_{\nu}}\}$. Let $\varepsilon > 0$ and r < 1. Then choose ν_0 such that

$$|f_{n_{y}}(z) - f(z)| < \varepsilon/3$$

for $\nu \ge \nu_0$ and $|z| \le r$. From inequality (5) we have that the sequence $\{f_n\}$ is bounded in $|z| \le r$ and thus equicontinuous in $|z| \le r$. Therefore there exists a $\delta > 0$ such that

$$|f_n(z_1) - f_n(z_2)| < \varepsilon/3$$

for $|z_1 - z_2| < \delta$, $|z_1| \leq r + \delta$, $|z_2| \leq r + \delta$, and for all n.

Using (4), the convergence of $\sum_{n=2}^{\infty} \arg \phi_n(0)$, and applying Lemma 2 we have that there exists an integer M_1 such that if $n \ge m \ge M_1$, then

$$\mid \omega_{{}_{mn}}(z)-z\mid <\delta$$
 , for $\mid z\mid \leq r$

440

where M_1 is chosen so that $|\omega'_{mn}(0) - 1| < \eta$ for a suitable η . Again making use of Lemma 2 we have that there exists an integer M_2 such that if $n > m > M_2$ then

$$| \phi_{mn}(z) - 1 | < arepsilon/3M(r), ext{ for } |z| < r$$
 .

Let $M = \max{\{M_1, M_2, n_{
u_0}\}}$. If $M \leq k < n_{
u}$ and |z| < r then

$$egin{aligned} |f_k(z) - f(z)| &\leq |f_k(z) - f_{n_
u}(z)| + |f_{n_
u}(z) - f(z)| \ &< arepsilon/3 + |f_{n_
u}(z) - \phi_{kn_
u}(z) f_{n_
u}(w_{kn_
u}(z))| \ &\leq arepsilon/3 + |f_{n_
u}(z) - f_{n_
u}(\omega_{kn_
u}(z))| \ &+ |f_{n_
u}(\omega_{kn_
u}(z)) \left[1 - \phi_{kn_
u}(z)
ight] | \ &< arepsilon/3 + arepsilon/3 + M(r) \, arepsilon/3 M(r) = arepsilon \end{aligned}$$

for $|z| \leq r$ and k > M. This completes the proof of Theorem 2.

THEOREM 3. Let $\{f_n\}$ be a sequence of functions analytic in |z| < 1 such that $f_n(0) = 0$, $\alpha_n = f'_n(0) \neq 0$, and $f_{n+1} \prec_q f_n$, and let $\phi_{n+1}, \omega_{n+1} \in B$ and $\omega_{n+1}(0) = 0$ be such that

$$f_{n+1}(z) = \phi_{n+1}(z) f_n(\omega_{n+1}(z))$$

for |z| < 1 and $\sum_{n=2}^{\infty} \arg \phi_n(0)$ converges. Then the sequence $\{f_n\}$ converges uniformly in $|z| \leq r$ for every r < 1 if the sequence $\{\alpha_n\}$ converges. The limit function is constant if and only if

$$\lim_{n\to\infty}\alpha_n=0$$

The proof of this theorem is similar to that of Theorem 2 and Pommerenke's Theorem 2 [1].

References

1. Ch. Pommerenke, On sequences of subordinate functions, Mich. Math. J., 7 (1960), 181-185.

2. M. S. Robertson, Quasi-subordination and coefficient conjectures, Bull. Amer. Math. Soc., **76** (1970), 1-9.

3. _____, *Quasi-subordinate functions*, Mathematical Essays Dedicated to A. J. MacIntyre, Ohio University Press, Athens, Ohio, pp. 311-330.

Received May 17, 1971 and in revised form February 7, 1972.

TEXAS A AND M UNIVERSITY