SEQUENCES OF QUASI-SUBORDINATE FUNCTIONS

James Miller

Abstract

In this paper a theorem is proved which connects bounded analytic functions in the unit disk and sequences of quasisubordinate functions. As an application a necessary and sufficient condition for certain sequences of quasi-subordinate functions to converge is found.

Let f and F be analytic functions in $|z|<R$. If there exist two functions ϕ and ω which are analytic in $|z|<R$ and satisfy $\omega(0)=0,|\phi(z)| \leqq 1,|\omega(z)|<R$, and $f(z)=\phi(z) F(w(z))$ for $|z|<R$, then we say that f is quasi-subordinate to F in $|z|<R$ and write $f \prec_{q} F$. Without loss of generality we may assume that $R=1$. This class was introduced by Robertson [2, 3].

We note that there are two special cases of quasi-subordination which are of interest: If ϕ is the constant function one, then f is subordinate to F, and on the other hand, if ω is the identity function, then f is majorized by F.

Let B denote the class of functions θ which are analytic in $|z|<1$ and satisfy $|\theta(z)| \leqq 1$ for $|z|<1$. Then the functions ϕ and ω which are defined above are elements of B. In this paper we prove a theorem which connects functions in B and sequences of quasi-subordinate functions. As an application we find necessary and sufficient conditions for certain sequences of quasi-subordinate functions to converge. This is a generalization of Pommerenke's results [1] on sequences of subordinate functions.

Let $\left\{f_{n}\right\}, n=1,2, \cdots$, be a sequence of functions which are analytic in $|z|<1$ such that $f_{n} \prec_{q} f_{n+1}$ for each n or $f_{n+1} \prec_{q} f_{n}$ for each n. When considering the convergence of such sequences we need to require that either the sequence $\left\{f_{n}(0)\right\}$ converges or the functions agree at a single point. In this paper we shall assume that the functions agree at a single point. Further we may assume that the point is $z=0$ for if the functions f_{n} agree at the point $a \neq 0$ then we could consider the functions $g_{n}(z)=f_{n}((z-a) /(1-a z))$. We will use $f_{n}(0)=0$ for all n, otherwise the function ϕ would be identically one. The proof for the case where $\left\{f_{n}(0)\right\}$ is convergent is similar.

THEOREM 1. Let $\left\{f_{n}\right\}$ be a sequence of functions which are analytic in $|z|<1$ and satisfy $f_{n}(0)=0, \alpha_{n}=f_{n}^{\prime}(0) \neq 0$, and $f_{n}(z) \prec_{q} f_{n+1}$, and let $\phi_{n+1}, \omega_{n+1} \in B$ and $\omega_{n+1}(0)=0$ be such that

$$
f_{n}(z)=\phi_{n+1}(z) f_{n+1}\left(\omega_{n+1}(z)\right)
$$

for $|z|<1$. If $\sum_{n=2}^{\infty} \arg \phi_{n}(0)$ converges and $\lim _{n \rightarrow \infty} \alpha_{n}=\alpha,|\alpha|<\infty$, then $\prod_{n=2}^{\infty} \phi_{n}(0)$ converges.

Proof. We observe that if $m<n$, then we have $f_{m}<_{q} f_{n}$. Thus for $m<n$ there are functions $\phi_{m n}, \omega_{m n} \in B$ where $\omega_{m n}(0)=0$ such that

$$
f_{m}(z)=\phi_{m n}(z) f_{n}\left(\omega_{m n}(z)\right)
$$

for $|z|<1$. Let $\phi_{n n+1}(z)=\phi_{n+1}(z)$. We now observe that

$$
f_{m}^{\prime}(0)=\phi_{m n}(0) \omega_{m n}^{\prime}(0) f_{n}^{\prime}(0)
$$

or

$$
\begin{equation*}
\alpha_{m}=\phi_{m n}(0) \omega_{m n}^{\prime}(0) \alpha_{n} \tag{1}
\end{equation*}
$$

Since $0<\left|\alpha_{m}\right| \leqq\left|\alpha_{n}\right|$ for $m<n$ and $\alpha_{n} \rightarrow \alpha$, there exists an integer K such that if $n>m>K$, then

$$
\begin{equation*}
\left|\frac{\alpha_{m}}{\alpha_{n}}-1\right|<\varepsilon \tag{2}
\end{equation*}
$$

From (1) and (2) we see that

$$
1-\varepsilon<\left|\frac{\alpha_{m}}{\alpha_{n}}\right|=\left|\phi_{m n}(0) \omega_{m n}^{\prime}(0)\right| \leqq\left|\phi_{m n}(0)\right| \leqq 1
$$

We now observe that

$$
\phi_{m n}(0)=\prod_{k=m+1}^{n} \phi_{k}(0)
$$

Thus we have

$$
1-\varepsilon<\left|\prod_{k=m+1}^{n} \phi_{k}(0)\right| \leqq 1
$$

for $n>m>K$. Since $\sum_{n=2}^{\infty} \arg \phi_{n}(0)$ converges this says that $\prod_{k=2}^{\infty} \phi_{k}(0)$ converges. Further we have that $\omega_{n}^{\prime}(0) \rightarrow 1$ and $\omega_{m n}^{\prime}(0)=1$.

In applying Theorem 1 to sequences of quasi-subordinate functions we will also need two lemmas for functions in B. The proofs of the lemmas are essentially in [1].

Lemma 1. Let $\phi \in B, \phi(0)=0$, and satisfy $|\phi(0)| \geqq \sigma>0$. Then the mapping $w=\phi(z)$ maps the disk

$$
z \left\lvert\,<\rho=\frac{\sigma}{1+\sqrt{1-\sigma^{2}}}\right.
$$

univalently onto a region that contains $|w|<\rho^{2}$.
Lemma 2. For $\varepsilon>0$ and $0<r<1$, there exists an $\eta>0(\eta(\varepsilon, r))$ such that if $\phi \in B$ satisfies $\phi(z)=\sum_{n=0}^{\infty} \beta_{n} z^{n}$ and $\left|\beta_{k}-1\right| \leqq \eta$, then

$$
\left|\phi(z)-z^{k}\right|<\varepsilon, \quad \text { for } \mid z_{1}<r
$$

THEOREM 2. Let $\left\{f_{n}\right\}$ be a sequence of analytic functions in $|z|<1$ such that $f_{n}(0)=0, f_{n} \prec_{q} f_{n+1}$, and $\alpha_{n}=f_{n}^{\prime}(0) \neq 0$, and let $\phi_{n+1}, \omega_{n+2} \in B$ and $\omega_{n+1}(0)=0$ be such that $f_{n}(z)=\phi_{n+1}(z) f_{n+1}\left(\omega_{n+1}(z)\right)$ for $|z|<1$ and $\sum_{n=2}^{\infty} \arg \phi_{n}(0)$ converges. Then the sequence $\left\{f_{n}\right\}$ converges uniformly in $|z|<r$ for every $0 \leqq r<1$ if and only if

$$
\lim _{n \rightarrow \infty} \alpha_{n}=\alpha, \quad|\alpha|<\infty
$$

Proof. If $\left\{f_{n}\right\}$ converges uniformly in $|z| \leqq r$ for every $0<r<1$ then $\alpha_{n}=f_{n}^{\prime}(0)$ converges. Further since $\left|\alpha_{n}\right| \leqq\left|\alpha_{n+1}\right|, f_{n}(0)=0$, and $\alpha_{n} \neq 0$ we see that $\lim _{n \rightarrow \infty} \alpha_{n}=\alpha \neq 0$ and $|\alpha|<\infty$.

Let $\omega_{n+1}, \phi_{n+1} \in B$, and $\omega_{n+1}(0)=0$ be as defined in Theorem 2. Further for $m<n$, let $\phi_{m n}, \omega_{m n} \in B$ with $\omega_{m n}(0)=0$ be such that

$$
\begin{equation*}
f_{m}(z)=\phi_{m n}(z) f_{n}\left(\omega_{m n}(z)\right) \tag{3}
\end{equation*}
$$

Suppose that $\alpha_{n} \rightarrow \alpha,|\alpha|<\infty$. Then by Theorem 1 the product $\prod_{k=2}^{\infty} \dot{\phi}_{k}(0)$ converges. We will first show that $\left\{f_{n}\right\}$ is a normal family in $|\boldsymbol{z}|<1$.

Let $r, 0<r<1$, be fixed and σ determined by

$$
\sqrt{r}=\frac{\sigma}{1+\sqrt{1-\sigma^{2}}}
$$

Since $\sigma<1$ and $\alpha_{n} \rightarrow \alpha \neq 0$, there exists an integer N_{1} such that

$$
\left|\frac{\alpha_{m}}{\alpha_{n}}\right|>\sigma, \quad \text { for } n>m>N_{1}
$$

Further, since $\left|\phi_{m n}(z)\right| \leqq 1$, we have $\left|\phi_{m n}(0)\right|^{-1} \geqq 1$. For $n>m>N_{1}$ we have $\omega_{m n}^{\prime}(0)=\alpha_{m} /\left(\alpha_{n} \phi_{m n}(0)\right)$ or

$$
\begin{equation*}
\left|\omega_{m n}^{\prime}(0)\right|=\left|\frac{1}{\phi_{m n}(0)} \frac{\alpha_{m}}{\alpha_{n}}\right|>\sigma \tag{4}
\end{equation*}
$$

Thus by Lemma 1 the mapping $\zeta=\omega_{m n}(z)$ for $n<m<N_{1}$ maps $|z|<\sqrt{r}$ univalently onto a domain that contains $|\zeta|<r$. Let $\psi_{m n}$ be the inverse of $\zeta=\omega_{m n}(z)$ in $|\zeta|<r$, then

$$
\left|\psi_{m_{n}}(\zeta)\right| \leqq \sqrt{r} .
$$

From (3) we may write

$$
f_{n}(\zeta)=\frac{1}{\phi_{m_{n}}\left(\psi_{m_{n} n}(\zeta)\right)} f_{m}\left(\psi_{m n}(\zeta)\right), \quad \text { for }|\zeta|<r .
$$

For $|\zeta| \leqq r$ we have

$$
\left|f_{n}(\zeta)\right| \leqq \max _{|z| \leqq \sqrt{r}}\left|\frac{f_{m}(z)}{\phi_{m_{n}}(z)}\right| \leqq \frac{1}{\min _{|z| \leqq \sqrt{r}}\left|\phi_{m_{n}}(z)\right| z \mid \leq \sqrt{r}} \max \left|f_{m}(z)\right| .
$$

From Lemma 2 with $k=0$, given $\varepsilon>0$, there exists an η such that if $\left|\beta_{0}-1\right|<\eta$ then $|\phi(z)-1|<\varepsilon$ for $|z|<r$. Since $\prod_{k=2}^{\infty} \phi_{k}(0)$ converges by Theorem 1 and $\phi_{m n}(0)=\prod_{k=m+1}^{n} \phi_{k}(0)$, there exists an integer N_{2} such that if $n>m>N_{2}$ then $\left|\phi_{m n}(0)-1\right|<\eta$. Let $N=$ $\max \left(N_{1}, N_{2}\right)$. Thus, by Lemma 2 we have that $\left|\phi_{m_{n}}(z)-1\right|<\varepsilon$ for $|z| \leqq r$ and $n>m>N$ or

$$
\min _{|z| \leqq r}\left|\phi_{m n}(z)\right| \geqq 1-\varepsilon .
$$

Hence, for $n>N$ and $|\zeta| \leqq r$ we have

$$
\left|f_{n}(\zeta)\right| \leqq \frac{1}{1-\varepsilon} \max _{k \mid \leq \sqrt{r}}\left|f_{N+1}(z)\right| .
$$

Thus there exists $M(r)$ such that

$$
\begin{equation*}
\left|f_{n}(z)\right| \leqq M(r) \tag{5}
\end{equation*}
$$

for all n, that is, $\left\{f_{n}\right\}$ is locally uniformly bounded. Therefore $\left\{f_{n}\right\}$ is normal.

Let $\left\{f_{n_{2}}\right\}$ be a subsequence of $\left\{f_{n}\right\}$ which is uniformly convergent in $|z| \leqq r_{0}$, for every $r_{0}<1$. Let f be the limit function of $\left\{f_{n_{\nu}}\right\}$. Let $\varepsilon>0$ and $r<1$. Then choose ν_{0} such that

$$
\left|f_{n_{2}}(z)-f(z)\right|<\varepsilon / 3
$$

for $\nu \geqq \nu_{0}$ and $|z| \leqq r$. From inequality (5) we have that the sequence $\left\{f_{n}\right\}$ is bounded in $|z| \leqq r$ and thus equicontinuous in $|z| \leqq r$. Therefore there exists a $\delta>0$ such that

$$
\left|f_{n}\left(z_{1}\right)-f_{n}\left(z_{2}\right)\right|<\varepsilon / 3
$$

for $\left|z_{1}-z_{2}\right|<\delta,\left|z_{1}\right| \leqq r+\delta,\left|z_{2}\right| \leqq r+\delta$, and for all n.
Using (4), the convergence of $\sum_{n=2}^{\infty} \arg \phi_{n}(0)$, and applying Lemma 2 we have that there exists an integer M_{1} such that if $n \geqq m \geqq M_{1}$, then

$$
\left|\omega_{m n}(z)-z\right|<\delta, \quad \text { for }|z| \leqq r
$$

where M_{1} is chosen so that $\left|\omega_{m n}^{\prime}(0)-1\right|<\eta$ for a suitable η. Again making use of Lemma 2 we have that there exists an integer M_{2} such that if $n>m>M_{2}$ then

$$
\left|\phi_{m n}(z)-1\right|<\varepsilon / 3 M(r), \quad \text { for } \quad|z|<r
$$

Let $M=\max \left\{M_{1}, M_{2}, n_{\nu_{0}}\right\}$. If $M \leqq k<n_{\nu}$, and $|z|<r$ then

$$
\begin{aligned}
&\left|f_{k}(z)-f(z)\right| \leqq\left|f_{k}(z)-f_{n_{\nu}}(z)\right|+\left|f_{n_{\nu}}(z)-f(z)\right| \\
&<\varepsilon / 3+\left|f_{n_{\nu}}(z)-\phi_{k n_{\nu}}(z) f_{n_{\nu}}\left(w_{k n_{\nu}}(z)\right)\right| \\
& \leqq \varepsilon / 3+\left|f_{n_{\nu}}(z)-f_{n_{\nu}}\left(\omega_{k n_{\nu}}(z)\right)\right| \\
&+\left|f_{n_{\nu}}\left(\omega_{k n_{\nu}}(z)\right)\left[1-\phi_{k n_{2}}(z)\right]\right| \\
&<\varepsilon / 3+\varepsilon / 3+M(r) \varepsilon / 3 M(r)=\varepsilon
\end{aligned}
$$

for $|z| \leqq r$ and $k>M$. This completes the proof of Theorem 2.
Theorem 3. Let $\left\{f_{n}\right\}$ be a sequence of functions analytic in $|z|<1$ such that $f_{n}(0)=0, \alpha_{n}=f_{n}^{\prime}(0) \neq 0$, and $f_{n+1} \prec_{q} f_{n}$, and let $\phi_{n+1}, \omega_{n+1} \in B$ and $\omega_{n+1}(0)=0$ be such that

$$
f_{n+1}(z)=\phi_{n+1}(z) f_{n}\left(\omega_{n+1}(z)\right)
$$

for $|z|<1$ and $\sum_{n=2}^{\infty} \arg \phi_{n}(0)$ converges. Then the sequence $\left\{f_{n}\right\}$ converges uniformly in $|z| \leqq r$ for every $r<1$ if the sequence $\left\{\alpha_{n}\right\}$ converges. The limit function is constant if and only if

$$
\lim _{n \rightarrow \infty} \alpha_{n}=0
$$

The proof of this theorem is similar to that of Theorem 2 and Pommerenke's Theorem 2 [1].

References

1. Ch. Pommerenke, On sequences of subordinate functions, Mich. Math. J., 7 (1960), 181-185.
2. M. S. Robertson, Quasi-subordination and coefficient conjectures, Bull. Amer. Math. Soc., 76 (1970), 1-9.
3. -, Quasi-subordinate functions, Mathematical Essays Dedicated to A. J. MacIntyre, Ohio University Press, Athens, Ohio, pp. 311-330.

Received May 17, 1971 and in revised form February 7, 1972.
Texas A and M University

