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BOCHNER’S THEOREM IN INFINITE DIMENSIONS

P. L. FALB AND U. HAUSSMANN

1. Introduction. Let G be a locally compact abelian group. A
well-known theorem of Bochner ([1], [11]) states that a mapping + of
G into C is positive definite and continuous if and only iAf there is a
unigue nonnegative finite regular Borel measure my on G (the dual

group of G) such that (g) = SA(v, 9)dmy. where (v, g) denotes the ac-
G

tion of the character v on g. An alternate version of the theorem
([9]) states that if A is a semi-simple, self-adjoint, commutative Banach
algebra and + is a linear functional on A, then «r is positive and ex-
tendable if and only if there is a finite positive Baire measure vy, on

# (the maximal ideal space of A) such that («) =S a(M)dyy

where & is the Gelfand transform of o ¢ A. Here we shall extend
these theorems to mappings takings values in a Banach space X.
Our results generalize the extension of Bochner’s theorem made in [5].

We shall, in fact, first prove that if A is a self-adjoint, com-
mutative Banach algebra and + is a linear map of A into the Banach
space X, then + is positive' and “almost” extendable if and only if
there is a weak-*-regular, finite, positive set function vj* mapping

X(.#) (the Borel field of _#) into X** such that (@) = S a(M)dysx
A

(where +r(a) is viewed as an element of X**). We next show that
if the mapping + of A into X given by (@) = () is weakly com-
pact?, then vj* can be viewed as a weakly regular positive vector
measure vy mapping ¥(_#) into X and, conversely, if

v = | aonavy

where vy is a weakly regular positive vector measure on X(_#) to
X, then 4 is positive and “almost” extendable and + is weakly com-
pact. In the case where A = L,(G, C), these results lead to a repre-

sentation of 4 by an element py of L.(G, X) i.e. J(a) = S a(9)py(g)dy

where g is the Haar measure on G. We then develop gn extended
Bochner’s theorem for maps p in L.(G, X). Finally, we use some
particular Banach spaces to illustrate the theory.

The general results obtained here are combined with the transform
theory on L,(G, X) to develop an inversion theorem and a Plancherel
theorem in [7]. These theorems are also applied to the solution of
convolution equations in Hilbert spaces in [8]. The convolution

1 Positivity is with respect to a suitable cone in X.
2 This means that f# maps bounded sets in A into weakly compact sets in X.
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equations arise in the study of problems relating to the stability and
control of systems described by parabolic partial differential equations.

2. Positive functions. Let X be a Banach space and let X*
and X** be the dual spaces of X and X*, respectively. If @ is an
element of X*, then the operation of ® on z is denoted by (z, ®).
The notion of positivity that we use is based on a cone of “positive”
elements contained in X. We assume that the cone is defined by a
family of elements of X*. More precisely, we have

DEFINITION 2.1. Let @ be a subset of X*. The subset K, (or
simply K when @ is fixed by the context) of X given by

(2.2) K,={xeX:(z,®) =0 for all » in @}

is called the cone determined by @.

Now let A be a Banach algebra with an involution given by
a—a*, ae A, and let + be a linear mapping of A into X. We then
have

DEFINITION 2.3. The mapping «+r is positive with respect to the
cone K, (or @-positive) if y(aa*)e K, for all @ in A.

We observe that + is @-positive if and only if the mappings
((+), #) of A into C are positive functionals for all » in @. Note
also that if « is @-positive, then, for any ¢ in @, the functional
B,(a, B) given by

(2.4) B.(a, B) = (v(ag*), P)

is a symmetric bilinear form satisfying the Cauchy inequality
(2.5) | Bo(, B) " = Bo(at, @)Bo(3, B)

for a, g in A.

DEFINITION 2.6. The mapping « is symmetric with respect to @
(or simply symmetric) if (y(a), ) = (y(a*), ) for all » in @ and «
in A.

If A has a unit e, then every @-positive mapping is symmetric
since (y{(a), @) = (p(ae), ) = Bo(a, €) = Byle, @) = (y(a*), ) for all @.
If A does not have a unit, then 4 can be imbedded in an algebra
A = A@C with a unit in a natural way. Letting e be the unit in

~

A, we can extend - to a linear mapping +, of A into X by setting
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Vapla + ce) = (a) + cx, for a given x, in X. Clearly v is symmetric
if and only if ¥, is. We now have

DEFINITION 2.7. A @-positive mapping ++ is almost extendable
if (1) + is symmetric, (ii) + is continuous, and (iii) |[(v(@), P)F <
dl|v| llell(v(aa*), @) for all @ in @ and « in A where d is a constant
with d = 1.

DEFINITION 2.8. A ®@-positive mapping + is extendable if + is
symmetric and if there is an z, in X such that

|(y(@), ?)I* = (2, P)(Yr(aa®), P)
for all » in @ and « in A.

If A has a unit ¢, then any @-positive mapping is extendable.
(% = 4r(ee*)). If A does not have a unit, then we have

PROPOSITION 2.9. A @-positive mapping + is extendable if and
only if there is an extension 4 of + to A which is @-positive.

Proof. If 4 is a @-positive extension of 4 and e is the unit in
A, then, letting », = 7(¢), we deduce immediately that |(y(a), @) =
[(F (@), P) I = (3, P)(Flaa*), P) = (%, P)(¥(aa*), ®) (by 2.5) and that
4 is symmetric.

On the other hand, if + is extendable, then let +r(a + ce) =
Vo (@ + ce) = y(a) + cx,. Since (y([a + ce][a + ce]*), P) = (y(aa*), @) +
2Re c(y(a), @) + |c*(x,, ), we have

(P(lex + cella + cel*), ) = (y(aa®), P) — 2[¢| [(¥(@), P| + |e[* (@, P)
= {(y(aa®), )" — [cl(@, PP = 0

(as 4 is extendable). Thus, 4 is @-positive.

PROPOSITION 2.10. If there is an approximate identity {e,} in A,
then a continuous P-positive mapping +r is almost extendable.

Proof. Sinece (y(a*), @) = lim,_., (V(e,a*), ®) = lim,_., (v(ae}), @) =
(“#(a)y ¢)y “/p iS Symmetric’ and Since [Bsﬁ(em a) ]2 é B?(em en)Bw(a’ a) é
Nl 1@ l|Bo(ex, @) = [|4]] [|@l|(v(aa*), @), 4 is almost extendable.

In order to prove the extension of Bochner’s theorem, we require
a condition on the family @ defining the cone of “positive” elements.
As we shall see, the essential point is to deduce an estimate of the
form ||y (@) | < kl|v(axa*)|| from estimates of the form |(y(a), ) [F <
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dlle |y ]| | v(aa*) || (v almost extendable) or

(¥ (@), ) F = [P 1Pl ] [[4r(aa®) ||
(v extendable). The following definition allows us to do this.

DerFINITION 2.11. The family @ is full if there is a 0 > 0 such
that

(2.12) 1zl < o sup (i, @) i1}

@70

for all z in X.3
We now have

LemmA 2.13. If A has a unit e, if the involution on A 1is con-
tinuous, and if @ is full, then every @-positive mapping - s con-
tinuous and almost extendable.

Proof. Suppose first that « is a Hermitian element of A with
||a|l 1. The binomial series (1 — t)* =1 — ¢/2 — t}/2°2! — «.. con-
verges absolutely for |¢] <1 and so the series ¢ — /2 — ?/22! — .-
converges absolutely in A. Since the involution is continuous, the
sum B of this series is a Hermitian element of A with gg* = §° =
e — a. It follows that (y(¢ — @), ) = (¥(BB*), #) = 0 and hence, that
(v{e), ) = (¥(a), ). Replacing a by —a, we have (y(¢), ) =(¥(—a), P).
But (v(a), ®) is real (since « is Hermitian) and so |(y(@), )| =
e[l [lv(e)]l. Since @ is full, {[y(a)|| = plly(e)]l-

Now, if « is any element of A, then a = 1/2(a + a*) — 7/2(i(a — a*)).
Since the involution is continuous, there is a ¢ > 0 such that ||a*|| =
cl|a|| and so, if ||a||<2/c+1, then |[(a+a*)/2]|<1 and ||i(a—a*)/2||< 1.
It follows that [|4(a)|| < 20]|v(e)|| for all @ in A with ||a|| < 2/c + 1.
Thus, + is bounded and therefore continuous.

Since | (y(@), ?) " = (v (e), P)y(aa*), @) < (||| [|Pll(y(aa*), P), v is
almost extendable.

COROLLARY 2.14. If the involution on A is continuous, if @ s
full, and if + is @-positive and extendable, then ~ is continuous and
almost extendable.

Proof. Apply Proposition 2.9 and the lemma.

3 This could be replaced by the following: @ is full relative to ¥ if there is a o >0
such that || ¥(@) ]| £ psug{lqﬁ(a), o)/l e} for all @ in A.
e
©5£0
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Let G be a o-finite locally compact abelian group and let A =
L,(G, C). The involution on L,(G, C) is given by a*(g) = a(—g) and
is continuous since L,(G, C) is semi-simple. Observe that if @ is full
and «+r is a @-positive mapping of L,(G, C) into X, then + is continu-
ous and almost extendable if + is extendable (Corollary 2.14) and
conversely, + is almost extendable if +y is continuous (Proposition 2.10).

Now let us introduce the following

DEFINITION 2.15. Let p be an element of L.(G, X). The mapping
p is @-positive definite if

N N
(2‘16) ”Z_;lmz:“lcnc_m(p(gn - gm), ?) g 0
for any integer N, any ¢, «--, ¢y in C, any g,, «++, gy in C, and all
® in @. The mapping p is integrally @-positive definite if

(2.17) (1,],0@a@)p( — g)dpan, #) = 0
for all &« in L(G, C) and all @ in @.
We then have

ProPOSITION 2.18. Let p be a continuous element of L.(G, X).
Then p is O-positive definite if and only if p is integrally O-positive
definite.

Proof. If p is @-positive definite, then p is integrally @-positive
definite by a result of Naimark ([10], p. 897). Conversely, if p is
integrally @-positive definite, then there is a continuous positive definite
function f, mapping G into C such that f,(g9) = (p(9), ) locally almost
everywhere on G ([10], p. 397) for each ® in @. Since (p(-), ®) is
continuous, f,(+) = (p(-), #) everywhere and hence, p is @-positive
definite.

Now it is a fact that + is a bounded weakly compact linear map
of L,(G, C) into X with separable range if and only if there is a p
in L.(G, X) with (essentially) weakly compact range such that

(2.19) ¥ = | a)plo)dp

for all a in LG, C) ([2], p- 279, or [4], p.507). Moreover, ||4| =
l|pll.. The fact that the weakly compact maps in £ (LG, C), X)
are essentially the same as the functions in L.(G, X) with (essen-
tially) weakly compact range will allow us to relate the notion of @-
positivity to the notions of @-positive definiteness and integral @-
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positive definiteness.

LEMMA 2.20. Let @ be full. If + is a weakly compact linear
mapping of L,(G, C) into X which is @-positive and extendable, then
there is an (essentially unique) integrally @-positive p in L. (G, X)
such that

(2.21) y(a) = La(g)p(g)dﬂ

for all « in L(G, C). Conversely, if p is an integrally @-positive
definite element of L.(G, X) and  is given by 2.21, then + is @-
positive and almost extendable.

Proof. Assume that + is given. In view of [4], p.507, the
mapping p exists and we need only show that p is integrally @-
positive definite. But

o)y = S S alg — gNha(—g"plg)dpdpy
(2.22) e

= SGSGQ@WW‘Q — g))dpdp

by virtue of the Fubini and Tonelli theorems and the invariance of
Haar measure. Conversely, given p, we simply note that {aa*) is
determined by 2.22 in order to prove that + is @-positive. Moreover,
since +y is continuous, + is almost extendable by Proposition 2.10.

3. Bochner’s theorem for algebras. Before proving the gener-
alization of Bochner’s theorem to maps of A into X, we recall the
following.

DEFINITION 3.1. Let S be a locally compact topological space and
let 2(S) be the Borel field of S. A vector measure y is a weakly
countably additive set function taking values in X. The vector measure
y is weakly regular if the scalar measures (v{:), ®) are regular* for
all @ in X*., The vector measure vy is @-positive if (V(E), #) = 0 for
all @ in ® and Ein ¥(S). A set function v** mapping ¥(S) into X**
is weak-*-regular if (@, v**(+)) is a regular scalar measure for all @
in X*. The set function v** is @-positive if (p, v**(H)) = 0 for all @
in @ and £ in X(S).

We now have

¢+ A scalar measure g is regular if given ¢ >0 and E€3(S) with || ¢||(F) < oo,
then there is a compact K < E and an open O 2 E such that || #[[(0—K) <.
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THEOREM 3.2. Let A be a self-adjoint commutative Banach algebra
whose involution satisfies the condition (c/z;) =& (e.g. A semi-stimple)
and let @ be a full fomily. If + ts a mapping of A into X, then
¥ ts O-positive and almost extendable if and only if there is a set
Sunction v** mapping 2(_#) into X** such that (1) v** is weak-*-
regular, (ii) v** is @-positive, (iii) v** has finite semi-variation, i.e.
[|V¥*||(#Z) < oo, (iV) the mapping T, of X* into the scalar measures
on A gwen by T,(p) = (V**(+), ) is continuous in the X and Cy(_2Z)°
topologies in these spaces respectively, and (v)

(33 (@), 9) = |_aande=+, o)
for all a in A and all @ in X*.

Proof. Suppose first that + is @-positive and glmost extendable.
Then + is continuous. Let 4 be the map of A into X given by
$(@ = y(@). Then [|[F@)] = [|¥(a)]| and

(@), ) * < dllv [l [|2l(v(aa®), P) < dllv | [| 2 Il y(aa*) ||

for all @ in @ (since 4 is almost extendable). Since @ is full, there
is a o > 0 such that

(@)l = o sup {|(¥(@), A)l/liPll} -

Thus, there is a constant k(=pd||+||) such that

(3.4) [y () [P < k|| y(aa*) ||
for all « in A. It follows that

(@) [P < Elly(ea®) || < B2 y(lea* ) [ < - = Bl vllollal?

and hence, that 4 is a bounded linear map.

Since A is self-adjoint and commutative, A is dense in Co(.#2)
and 4 can, therefore, be extended to C,(_#). Let 4, denote the ex-
tension of + to C,(_#). We claim that there is a weak-*-regular set
function v** on 3(_#) such that

(3.5) (300, 9) = |_ranaers, o

for all f in C(_#) and @ in X*.

5 If _# is compact, then Co(_#) is the set of all continuous complex valued func-
tions on _#Z. If _# is locally compact but not compact, then Cyo(_#") is the set of
all continuous complex valued functions on _# which “vanish at infinity”.

6 We apply (8.4) repeatedly and then use the spectral radius formula.
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To verify this claim, we let M(_#) be the space of all complex
valued regular measures ¢t on . for which ||#|| is finite ([11]). Note
that C)(_2)* = M(_#) by the Riesz representation theorem. If Ee
3(.#), then let T, be the element of C,(_#)** defined by

(3.6) Tp(t) = t(E), e M(-#) .
Now define a set function v** of ¥(_#) into X** by setting
(3.7) V(E) = (T

for £ in Y(_#). We show that v** is weak-*-regular. If @ is an
element of X*, then +7(®) is, by the Riesz representation theorem,
a measure p, in M(_~). But

(3.8)  t(E) = Tp(pty) = To(J (@) = ¥ (Te)(P) = (v**(E), P)

and so, the set function v** is weak-*-regular. Moreover, since
SE@) = (v**(+), ) by 3.8, the mapping T... satisfles (iv). Also,

F),9) = T2 () = |_FODdp, = | D, @)

for f in Cy(_) so that 3.3 is satisfied. It is easy to check that
Vv *|[(Z) = |[¥.]] ([4], p. 492) and so, (iii) is satisfied.

All that remains to establish the first half of the theorem is to
prove that v** is @-positive. If f is an element of Cy(_#) with
f(M) =0 for all M, then f'*is in C,(_#) and there is a sequence
{a,} in A such that lim,_., &, = fY%. Since

T A 0 sk

G@ai), o) = | 1a,00 e, @) ,
it follows that if ® is an element of @, then

0= Wlaad, 9 = | (2,00 (2", )

and hence, by taking limits, that
(3.9) | ronae, 9 =0
for all @ in @ and all f in C(_Z) with f(-) = 0. But (v**(.), ®)
when restricted to the Baire sets in .2 is a Baire measure, and as
such, is positive. The Baire measure can be extended to a wunique
regular Borel measure ([2]) which must (by uniqueness) be (v**(.), ).
It follows that v** is @-positive.

Now suppose that v** is given. Since the mapping T... is con-
tinuous in the X and C,(_#) topologies, the linear mapping @ —
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g FMd(y**, 9) is, for each fixed f in C,(.~), continuous in the X-
A

topology of X* and is, therefore, generated by an element z, of X.
Thus, the mapping +, of C,(_#) into X given by #.(f) = z, is a
bounded linear map of Cy(_#) into X. If « is an element of A, then

let y(@) = §.(&). Since ||y@) || = | 7@ || < [P 1@l < [Pl llll, ¥
is a continuous linear map. If @ is an element of @, then

(wlaa), @) = | 120D e, @) 2 0

and

(), @) = | @onae,9) = | a0nie™, 9) = (4@, 9)
so that « is @-positive and symmetric. Also,

(e, Pk || 1aonrae, o ]| rae, 9]

= (y(aa®), PYV**(AZ), P)
= [l el (aa®), P)
< max {1, [[v** [|(2)/llv [} [ [| 2 [|(v(aa®), P)

so that 4 is almost extendable.

COROLLARY 3.10. Let A be a self-adjoint commutative Banach
AN —
algebra with (a*) = & and let @ be a full family. If + is O-positive
and almost extendable and + is weakly compact, then there is a weakly
regular @-positive vector measure v on () such that

3.11) W@ = L&(M)du

for all @ in A. Conwversely, if v is a weakly regular @-positive vector
measure and + s given by (3.11), then + is @-positive and almost
extendable and + is weakly compact.

Proof. Suppose that + is given. Since 4 is weakly compact,
is weakly compact and so, 1 *(Cy(_#)**) is contained in the natural
imbedding of X in X**. Thus, the set function y** given by 3.7
may be identified with a mapping v of ¥(_#) into X. In that case,
(¥(+), ®) is an element of M(_#) for all @ in X*. It follows that v(:)
is a weakly regular vector measure (as y(-) is weakly countably ad-
ditive). Clearly v is @-positive. Moreover, since

7 We use the notation of the proof of the theorem.
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W@, 9) = |_aondw, o) = ({_aona, »)

for all @ in X*, 8.11 is satisfied.

On the other hand, if v is given and 4 is defined by 3.11 (note
that @(-) is bounded and continuous), then + is @-positive and almost
extendable. In fact, [ly(@] < [|&]l]I¥]I(2) = lle|l||v](#) and
|(¥r(@), ) £ (v(aa*), PYW(#Z), #) so that « is extendable (x, =
y(#)e X). Thus, to complete the proof we need only show that +
is weakly compact.

Now, + is clearly linear and, since

I¥@1 = llv@ | = [Vl ,

+ is continuous. Let +, be the mapping of Cy(_#) into X defined by
F(f) = S F(M)dy. Thus, it will be enough to prove that -, is weakly
compact.

If @ is an element of X*, then (@) = (¥(-),®) is an element
of M(_#). Since the set {(¥(-), ): pe X*, ||@|| £ 1} is weakly sequen-
tially compact as a subset of the space of scalar measures and since
v is weakly regular, 4 is a weakly compact mapping. It follows that
&, is weakly compact and the corollary is established.

COROLLARY 3.12. If v satisfies the conditions of Corollary 3.10
and + ts given by 3.11, them + is extendable. Conversely, if + is
extendable (rather than almost extendable) and if the involution on A
is continuous (e.g. A semi-simple), then a v satisying the conditions
of Corollary 3.10 exists (the other hypotheses of Corollary 3.10, are,
of course, assumed).

Proof. The first assertion was established in the course of the
proof of Corollary 3.10. The second assertion is an immediate con-
sequence of Corollary 2.14.

COROLLARY 1.13. If X is weakly complete, if A and @ satisfy
the conditions of corollary 3.10, and if + 1is @-positive and almost
extendable, then - is weakly compact.

Proof. By the argument given in the proof of Theorem 3.2,
is a continuous linear map. If A has a unit, then _# is compact.
Since A is dense in C,(_#), we may extend < to a continuous linear
map +, of Cy(_#) into X. As X is weakly complete, +, is weakly
compact ([4], p. 494) and a fortiori so is 4. If A does not have a
unit, then we extend 4 to 4 = A4 @ C. Letting 2, be an element of
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X, we extend + to a mapping 7 of A into X by setting J(a + \e) =
¥(a) + Ax,. Then «T;(c’? + \8) = (@) + Mz, is a bounded linear map of
A into X. It follows that 4 is weakly compact and hence, that + is
weakly compact.

4. Bochner’s theorem on a group. Let G be a o-finite locally
compact abelian group and let A = L,(G, C). The involution on A is
given by a*(9) = a(—g) and is continuous. Let X be a Banach space
and let @ be a full family. We shall prove a generalization of Bochner’s
theorem for integrally @-positive definite mappings » in L.(G, X) by
combining Lemma 2.20 with Theorem 3.2 and its corollaries. We have

THEOREM 4.1. (A)A If v is a weakly regular (D—positi};e vector
measure defined on 3(G) (the Borel field of the dual group G) and if

“.2) p@) = |, 0, 9y

then p is an integrally @-positive definite element of L.(G, X).

(B) If p is an integrally @-positive definite element of L.(G, X),
then there is a set fumnction Y** mapping Z’(@) wmto X** such that
(i) v** is weak-*-regular, ®-positive, and finite, (ii) the map T, given
by To(®) = (V**(+), ) is continuous in the X topology of X* and the
Cy(B) topology of M(G), and (iii)

(#3) (@), ?) = |, T 9", 9)

for all @ in X* and (almost) all g in G. (The null set on which
(4.3) does not hold may depend on ®.)

Proof. (A) Let p(-) be given by 4.2. Suppose, for the moment,
that p(-) is measurable. Then p is in L.(G, X) since ||p(g) ]| < |[Y||(G)

for all g. Let y(a) = g a(g)p(g)dpe for @ in LG, C). Then
(2]

(¥(@), ) = Saa(g)Sam i, P
N Sagea(g)md#d(v, )
= {,amdw, ) = ({,amav, )

for all » in X* by the Fubini and Tonelli theorems. Since G and
# can be identified ([11] or [9]), we have (a) = S aMydy (as v

may be viewed as a measure on _#). But then (Cox%llary 3.10) +
is @-positive and extendable (Corollary 3.12). The result follows im-
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mediately from 2.22 of Lemma 2.20.

Thus, to complete the proof of (4), we need only show that p
is measurable. To do this it will be sufficient to show that, for any
set F'C G with p(F) < oo, Pu(+) = yp(+)p(+) is the limit in measure
of a sequence of simple functions where y is the characteristic func-
tion of F.

Since v is weakly regular, there is a finite, positive, regular
scalar measure A such that [|v||(E) — 0 if and only if M(E) — 0 where
|VI[(E) is the semi-variation of v on K ([4]). Therefore, given 1 > 0,
there is a & > 0 such that if MG — K)* < &, then ||v]|(G — K) < /4
for K compact in G. Since \ is finite and regular, there is a compact
set K <G for which MG — K) < & and hence for which ||v]|(G — K) <
n/4. Let n, = 7/2|[v]|(G) and let

Ng; K,7) ={9'eG |l - (v, 9)|<n,reK}+g.

Then N(g; K, n,) is an open neighborhood of ¢ in G.

Now G is o-finite and so there is an increasing sequence of sets
G, with ¢#(G,) < « and UG, = G. Moreover, since Haar measure is
regular, given & > 0 there is a compact set L,ZS G, such that
MG,—L,) < e The sets N(g; K, 7,), g€ L,, form an open cover of
L,. Thus there areg,, «--, gy, in L, such that L,/ N(g;; K, 1,).
Let Nt = N(g; K, 7)) and N, = N(g:1; K, 1) — (N(g; K, ) U --- U
N(g;; K, 7). Then L,= ! N and the union is disjoint. Let p, be
defined on L, by pilg) = p{g:) if g€ N7 and let py7(-) be given by

p(g) geL,

4.4 2(g) = .
(4.4) 03"(g) 0 gel,
Then p3%(+) is a simple function and we claim that

(4.5) pr({ge G liple) — i (@)l > 1) <e
where p*(E) = inf, p(E), E,2 E. For if g is in L,, then

[[2(g) — v (@ = [[p(9) — pL9) ]|
- |.ooln - o=l

:

S&_K(“/, DL — (7, 9: — 9)]@“

+ | won - o=l

< g +lYIG) =7

s Here G-K is the complement of K.
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(for some 1) so that {g € G,: || p(g) — p3"(9)|| > 9} &G, — L,. It follows
that 4.5 holds. Let p,(g9) = pY™'"(g) so that p, is a simple function.
Now suppose that a is any positive number. We show that

(4.6) lim r*({g € F: [|p(9) — pa(9)[| > a}) = 0

for any FFC G with p#(F') < . So let ¢ >0 be given. Then there
is an n, = max (1/a, 2/¢) such that #(F N (G — G,)) < ¢/2 for n = n,.

It follows that

1r({geF:|lp(g) — p.(9)ll > a})
s r*({ge F NG, o) — pug)l] > a}) + ¢/2
s pr*({ge F NG, ||p(g) — pug)l] > 1/n)) + ¢/2
S1ln+¢e2<Ze

for » = n,. In other words, p, converges to p in measure on F. The
proof of (A) is now complete.

(B) Let v(a) = S a(@)p(g)dy. Then 4 is @-positive and almost

extendable by LemmaGZ.ZO. It follows from Theorem 3.2 that there
is a set function y** on ¥(_#) such that (i) and (ii) are satisfied and

@) W@, 9) = |_aande, )

for all ® in X*. Since g and _# ecan be identified, v** may be viewed
as a set function on X(G) and

«.8) @, ?) = ||| a@® dae]ae, 9

for all @ in X*. Application of the Fubini and Tonelli theorems then
yields

*.9) |20 0@, Pdu = (@), ) = | a@a)dn

where ¢,(9) = |, (7, 9)d(**, #). Since (p(-), P) and ¢,(-) are in L..(G, C),

we have |[(p(+), ) — ¢o(+)|l. =0 for all @ in X*. In other words,
4.3 holds. The proof of (B) is now complete.

REMARK 4.10. Since (v, g) = (=7, ¢) and since the measure v,
(or the set function v}*) given by v,(E) = v(—E) (or v}*(E) = v**(— E))
has the same properties as v (or v**), p(g) is given by p(g) = SA(’)’, 9)dy,
(or satisfies (p(g), ) = S&('Y, 9)d(¥*, #)). [This agrees with co;vention
in the scalar case.]



614 P. L. FALB AND U. HAUSSMANN

We observe that if the hypotheses of (A4) are satisfied and (a) =
Sga(g)p(g)d/x, then the mapping + of A into X given by #(@) = v(a) is
weakly compact (Corollary 3.10). Note also that if X is weakly com-

plete and p(-) is an integrally @-positive definite element of L. (G, X),
then + is weakly compact. This leads to

COROLLARY 4.11. If X is weakly complete and if p is an integrally
O-positive definite element of Lw(Ci, X) then there is a weakly regular
O-positive vector measure v on 2(G) such that

(4.12) ®@), ) = (|, v, )

for all @ in X* and (almost) all g in G. If, in addition, @ is count-
able, then

(*.13) p@) = |0, v

for (almost) all g in G.

Proof. The first assertion follows Corollary 3.12. On the other
hand, if @ = {®p;} is countable, then there is a p-null set N such that

(p(9) — q(g), ) = 0 for all » in @ and g¢ N where q(g9) = g&(“/, g)dy.
But then

llp(9) — q(@) |l = Pg}gg{l(p(g) —-q(9), P) /Pl =0 for ggN.

¢50

It follows immediately that [[p(:) — ¢(+)[l. = 0, i.e. that 4.13 holds.
In order to state our final corollary we require

DEFINITION 4.14. Then element p of L.(G, X) is dominated if
there exists a finite regular positive Borel measure A\ such that

(¢.15) ] 2@p@dr| < |, 1a0010n

for all @ in L,(G, C), where & is the Fourier transform of a.

COROLLARY 4.16. Assume @ is countable. Then p is a dominated
integrally @-positive definite element of L.(G, X) if and only if there
exists a weakly regular @-positive vector measure v of finite variation
mapping 3(G) into X such that

(.17 p(o) = |07, ) .
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Proof. We have only to note that there exists an isomorphism
between the set of weakly regular vector measures v: 3(G) — X with
finite variation and the set of bounded linear operators T: Cy(G) — X
for which there exists a finite regular positive Borel measure )\ such
that [|T(N)] = SAlf(’Y)Id?v- This isomorphism is given by 7(f) =

G
S f(dy, ([2], p. 380, or [8]). Now using Theorem 4.1 (B) we have,
G
if we assume the existence of p, that (SAf (7)dy, g)) = S&f (Md(v**, ®)
A A G P
for any f in C,(G), # in X*. But C(G)* = M(G), the space of regular
complex valued measures defined on X(G) of finite variation, and
(@, v**), (v, #) are in M(G). Thus, for any E in 3(G), (¥(E), ) =
(@, v¥**(F)). Consider y(E) as an element of X**, then v(F) = v**(F)
and so v** is actually a measure. From the countability of @ we
derive (4.17).
The converse follows immediately from Theorem 4.1 (A).

5. Some Examples. We now give several examples of spaces
to which the theory applies.

ExampLE 5.1. Let X = L,([0, 1], C). Note that X is weakly com-
plete. If ¥ = ¥([0, 1]) is the Borel field on [0, 1], then ¥ is a separ-
able metric space with respect to the usual metric d(E, E') = pw(EAE")
where EAE = (E — E') U (E' — E) is the symmetric difference of FE
and E’. Let {E;} be a countable dense set in ¥ with E, = [0, 1].
Let y; be the characteristic function of E; and let @; be the element
of X* given by

(52 @), 29 = | 2:()ds .

If @ = {p;}, then K, is the cone of (essentially) nonnegative functions.
Note also that ||@;|| =< 1.

Now we claim that @ is full. Set x*(s) = max {0, x(s)} and 2 (s) =
max {0, —x(s)} for real # in X. Then x(s) = x*(s) — 7 (s) and |x(s)| =
x*(s) + #7(s). Moreover, #* and 2~ are nonnegative. Letting

Slxo(s)ds = max {glx“L(s)ds, Slx‘(s)ds}

0 [ 0

(i.e. ¥, = ™ or x~ according to which integral is greater), we see that
(5.3) () 1 = 2{ m(o)ds

for real x in X. Now, suppose, for example, that z, = x*. Since z*
is measurable, (z*)"([0, «)) = E is in X and Sxo(s)ds - ! o+ (s)ds =
0 E
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Lx(s}ds. As {E;} is dense in XY, there is a sequence {F;,} such that
A(E;., B)—0 as n— . But H w(s)ds — S x(s)dsl < g Ja(s)|ds

z'n

and limnqwg |2(s)|ds = 0 as y(E% AE)—0 as n— oo and 2 is in
E; o 4E
L.([0,1], R). It follows that there is a sequence {®,,} such that
m,_. (z, P;,,.) = S 2,(s)ds and hence, that S x,(s)ds < sup, | (x, #)|. Now
0 0

choose any x in X. Then x = x, + ix, where z,(-), #,(+) are real valued.
But ||#]| £1 for @ in @ and so,

G4) ol = [lo. ], + o]l < 4sup (5, #)| < 4sup (I, ) /[ 2]}

for all x in X.

ExavMpLE 5.5. X = H Dbe a separable Hilbert space. Fix an
orthonormal basis {¢;} in H. If he H, then h = h, + th, where h, =
S Re {<h, e;dle; and h, = >, Im {Kh, e;>}e;.  An element i is real if
h = h,. Let H, be the set of all real elements % such that (i) ||| =1,
(i) & is positive i.e. <h, ¢;> = 0 for all 4, (iii) A is rational i.e. <h, e;)
is rational for all 4, and (iv) A is fintte i.e. only a finite number of
components <k, ¢;> of h are not zero. Since H* can be identified with
H, we let ® = H,. In other words, if @€ ®, then (h, ¢) = <k, k) for
some k in H,. The cone K, is the set of all positive real elements
of H.

We claim that @ is full. Suppose first that A = &, is real. Then
h, = h{ — h7 where (h, e;> = max {0, {h,, e;>} and <{hy, ¢;> = max {0, —
{hy, e;»} for all 7. Note that ||A. ] = |A7|]* + ||AT]. Let k; be the
element of H, with components <k}, ¢;> given by

ry 1< N
5.6 k;, i/ = . _
(5.6) < e 0 >N
where N is chosen so that
(5.7) Sk, ey < Ik
N+1 2n

and 7; is a nonnegative rational such that

+ + + [ 7]
. > = il || = K0T e ———= .
8) iy ey 2 | 2 {ahr, e ——LALL
Clearly ||E; — hi/||hi ]| || < 1/n. It follows that (A, ki) — || k|| as n—co.
Similarly, there is a sequence k; in H, such that (&7, k;) — ||h7]| as
n — co. Noting that for any k = h, + ih, in H, |(h, ®)| = max {|(h,, ?) |,
[(hyy, @) |}, we have
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ol = W[RNF + (TAT [ = Lim (R), k)* + lim (h7, &r)?
< lim [(hf, k) [P + Tim| (b, k7) P < 2 sup [ (b, P) [ .
0eP

Now, if & = h, + ih, is any element of H, then ||A, | = ||A|? + ||k <
2 sup, [(hy, P)* + 2sup | (hs, P)|* < 4 sup, |(h, ). Since [lp|| =1 if
®e® = H, we deduce that

Ikl < 2 sup {|(h, @) |21}

070

for all » in H. Thus, @ is full.

ExAMPLE 5.9. Let H be a separable Hilbert space and let X =
< (H, H) be the space of bounded linear maps of H into itself. Let
H, be a countable dense subset of the closed unit ball in H and let
O ={peX*: (T, ) = {Tk, k), for some k in H,}. The cone K, is the
set of positive operators in £ (H, H). Since || T|| < 2 supyui < [{Th, h)|
for T in ¥ (H, H) and since ||@|| < ||k|* <1 for k in H,, we have
Ty < Ziug){](T, o) |/llell}. In other words, @ is full.

050

ExAmpPLE 5.10. Let & be a bounded domain in R" and let X =
L,(=,C) where 1 < p < . Let X be the Borel field of <. Then
2 is a separable metric space with respect to the usual metric d(E, E')=
M(EAE"). Let Y, = {E;} be a countable dense set in 3 which include
all hypercubes with rational vertices contained in & and let Q =
{a + bieC: a, b rational}. Let 27 be the set of simple functions of
the form 3, q;xz, where the ¢; are in @ and the E; are disjoint ele-
ments of X,. Note that 2/ is a countable subset of L,(=, C) where
1/p + 1/qg = 1. It is easy to check that 2/ is dense in L, (<, C).
element 33, q;xs, of 2/ is positive real if ¢; is a nonnegative real
number for ¢ =1, , n. Let @ be the subset of 27 consisting of all
the positive real elements. Since X* = L, (=, O)* = L(=,C), ?c X*
and the cone K, is simply the set of nonnegative functions in L, (=, C).
The proof that @ is full is straightforward and is, therefore, left to
the reader. Theorem 4.1, when interpreted in this context, becomes:

COROLLARY 5.11. If p is an element of L.(G, L,(=, C)) such

that S S E(g)&(g")p(g — gdudy is a nonnegative function in L,(<=, C)
GJa@

for all &(-) in LG, C), then p(g) = S (v, g)dy where v is a weakly

regular measure on G such that V(F') 1s a nonnegative fumnction in
L=, C) for all F in 3(G), and conversely.

This corollary plays a role in the study of positive solutions of
certain partial differential equations.
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ExXAMPLE 5.12. Let H be a separable Hilbert space and let & =
& (H, H) be the closed ideal of compact operators in £ (H, H). It
is well-known ([3]) that <~ (H, H)* = &£ P &+ where &€+ is the an-
nihilator of & and &4 is the trace class. Moreover, &4 is isometri-
cally isomorphic with &* and & ** is isometrically isomorphic with
Lt = L (H, H). Now let H, be a countable dense subset of the
closed unit ball in Hand let @ = {pe &*: (T, ) = {Tk, k) some k in
H,}. The cone K, is the set of positive compact operators and @ is
a countable full family.
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