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CHARACTERIZATIONS OF AMENABLE AND
STRONGLY AMENABLE C*-ALGEBRAS

JOHN BUNCE

In this paper it is proved that a C*-algebra A is strongly
amenable iff A satisfies a certain fixed point property when
acting on a compact convex set, or iff a certain Hahn-Banach
type extension theorem is true for all Banach A-modules. It
is proved that a C*-algebra A is amenable iff A satisfies a
weaker Hahn-Banach type extension theorem.

A topological group G is said to be amenable if there is a left
invariant mean on the space of bounded continuous complex functions
on G. A number of papers have been published which give equivalent
definitions of amenability (for example, see the papers [4, 7, 11] or
the book [3]). It has recently been proven that a locally compact
group G is amenable iff for all two-sided L'(G)-modules X and bounded
derivations D of L'(G) into X*, we have that D is the inner deriva-
tion induced by an element of X* [5, Theorem 2.5]. This result
motivates the definition of amenable and strongly amenable C*-algebras
[5, sections 5 and 7]. In §2 of this paper we give some conditions
on a C*-algebra that are equivalent to amenability or strong amena-
bility and are analogous to some of the known equivalent definitions
of amenable groups. In §3 we show that the generalized Stone-
Weierstrass theorem for separable C*-algebras is true when the
C*-subalgebra in question is strongly amenable.

1. Preliminaries. Let A be a C*-algebra. Then a complex
Banach space X is called a Banach A-module if it is a two-sided
A-module and there exists a positive real number M such that for
all ae A and € X we have

llax || = M|lal||l2]]
and
lwall = M|zl ||a]l .

If X is a Banach A-module, then the dual space X* becomes a Banach
A-module if we define for ac A4,, fe X*, and ze X,

(af)(x) = f(xa)
(fa)(®@) = flaz) .
A derivation from A into X* is a bounded linear map D from A into
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X* such that D(ab) = aD(b) + D(a)b for all a, bec A. If fe X*, the
function 6(f) from A into X* given by

(f)@) = af — fa

is called the inner derivation induced by f.

DeFINITION 1. [5, §5]. A C*-algebra A is said to be amenable
if every derivation from A4 into X* is inner for all Banach A-modules
X.

DEFINITION 2. [5, §7]. A C*-algebra A is said to be strongly
amenable if, whenever X is a Banach A-module and D is a derivation
of A into X*, there is a feco{Dw)u*:ue U(A,)} with D = —di(f),
where A, is the C*-algebra obtained by adjoining the identity e to
A, X is made into a unital A,-module by defining ze = ex = « for all
v e K, D is extended to A, by defining D(e) = 0, U(A,) is the unitary
group of A,, and co S denotes the w*-closed convex hull of a set S
contained in X*.

A C*-algebra A is strongly amenable iff A, is strongly amenable,
and a C*-algebra A with identity is strongly amenable iff the defini-
tion is satisfied for all unital A-modules X with A, replaced through-
out by A [5, §7]. The class of strongly amenable C*-algebras includes
all C*-algebras which are GCR, uniformly hyperfinite, or the C*-group
algebra of a locally compact amenable group [5, § 7]. It is not known
if there exist amenable C*-algebras which are not strongly amenable.

For A a C*-algebra, let A& A be the completion of the algebraic
tensor product A® A in the greatest cross-norm. Then we can
identify (A ® A)* with the space of bounded bilinear functionals on
A x A[13, p. 438]. We see that A& A becomes a Banach A-module
if we define for a, b, c€ 4,

ab@c) =abRc
bRc)a=0bR ca .
Hence (AA® A)* becomes a Banach A-module under the dual action:
If fe(AR A) and a, b, ce 4,
(@R o) = fbR ca)
()0 ®o) = flab@ec) .
We can also make /{1@ A4 and (A® A)* into Banach A-modules by
defining for fe (A X A)* and a, b, ce A:
ac(b®ec) = bR ac
b&®c)a=baRc
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(@) bR ) = fba o)
(fea)d R o) = FOQ ac) .

Note that the two operations on A® A do not interact; that is, if
a,bec deA,

a°(b(c Q@ d)) = blac(c Q d))
(c @ d)b)ea = ((c Q d)oa)b
a°((c @ d)b) = (ae(cQ d))b

and so forth.
2. Amenable and strongly amenable C*-algebras.

PROPOSITION 1. Let A be a C*-algebra with unit e. Then the
following seven statements are equivalent:

(a) A is strongly amenable.

(b) For all unital Banach A-modules X and fe X*, there exists
g € co {ufu*: ue U(A)} such that ag = ga for all ac A.

(c¢) For any fe(A ® A)* there exists g € co {ufu*: ue U(A)} such
that ag = ga for all ac A.

(d) There is a linear map T of (A@) A)* into C = {g e (A®A)*:
ag = ga all ae A} such that T(aof) = acT(f), T(fea) = T(f)ca, and
T(f) € co {ufu*: we U(A)} for all ac A, fe (A& A)*.

(e) Let X be a Banach A-module, S a w*-closed convex subset
of X* such that usu*e S for all s€S,ue U(A). Then there exists
an element se€ S such that usu* = s for all we U(A).

(f) Let Y be a Banach A-module and X a subspace of Y such
that uzu* € X for all x € X, ue U(A). Let fe X* be such that f(urxu*) =
f(x) for all xe X, uwe U(A). Then for any ge Y* which extends f,
there is an h e co {ugu*: uwe U(A)} such that h extends f and h(uyu*) =
h(y) for all ye Y and uec U(A).

(g) Let Y be a Banach A-module and X a two-sided A-submodule
of Y. Let fe X* be such that fluxu*) = f(x) for all xe X, ue U(A).
Then for any g€ Y* which extends f, there is an h e co {ugu*: uwe U(A)}
such that h extends f and h(uyu*) = h(y) for all ye 'Y and ue U(4).

Before proving the proposition, we make some remarks. The
implications (a) implies (b) and (b) implies (d) were proven in [1].
The map T in (d) takes the place of the invariant mean that is
present in amenable groups. The condition in (e) is a fixed point
property; it is known that a locally compact group is amenable iff it
has a certain fixed point property [7]. The condition (f) and (g)
might be called the strong invariant extension property for subspaces,
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and the strong invariant extension property for submodules respec-
tively. A locally compact group is amenable iff it has a certain Hahn-
Banach type extension property similar to (f) and (g) [11].

Proof of Proposition 1. (a) implies (b): Let fe X* and 6(f) be the
inner derivation induced by f. Then there is a acco {0(f)(w)u*: ue
U(A)} such that 8(f) = —d(g). But ( (w)u* = ufu* — f, hence f +
geco{ufu*:ue U(A)}. Also o(f)(e) = —d(g)(a) for all aec A, thus
(f + 9)a = a(f + g) for all ac A.

(b) implies (¢): Clear.

(¢) implies (d): The proof is an adaption to the present situation
of a proof of J. Schwal'tz [10, Lemnla 5]. Let 4 be the set of all
linear mappings T of (A Q A)* into (A & A)* such that T(f) € co {ufu*:
we U(A)} and T(aof) = a°T(f), T(foa) = T(f)oa for all fe (AR A)*,
ac A. The set 4 is nonempty since the identity map is in 4. We
order A by defining T, = T, if for all fe (A® A)*,

co{uT,(fHu*:ue UA)} S co{uTy,(fHu*:ue UA)} .

Then = defines a quasi-order on 4. Suppose {T.: ac 4} is a totally
ordered subset of 4. We have || T.(/)|| < || f||, thus for all de A® A,
[T @] < || flld]] and {T.(f)(@): @€ 4} is a bounded function on
4. Let LIM be a Banach limit on the directed set 4 (see [10, p. 21]
for information on Banach linlits). Then set T(f)(d) = LIM T.(f)(d)
forall fe (A® A)* and de AR A. Then T is a bounded linear map
from (A @ A)* into (4 & A)*. An easy calculation shows that T(aof) =
aoT(f) and T(f-a) = T(f)oa. We show that T(f) € co {wfu*: u e U(A)}
and T= T, for all ac4. If 8= a and fe (A& A)* then

To(f) € co (uTu(f)u*: wU(A)} = K .

Suppose, for contradiction, that T(f)Ae K. Then by the strong sepa-
ration theorem, there exists de A X A, M real and ¢ > 0 such that
for all ge K,

Re T(f){@d) =M< » + ¢ = Reg(d) .

Hence Re T(f)(d) <A< A+ e ZRe Tu(f)(d) for all 8 = «. But applying
the Banach limit to this equation we obtain Re T(f)(d) < Re T(f)(d).
Hence T(f)e K. Thus

co {uT(f)u*: ue U(A)} = co {uTu(f)u*: ue U(A)}

for all ae 4. Hence Ted and T = T,. Hence 4 is inductive, so by
Zorn’s lemma /4 has a maximal element 7. We show that T(f)eC
for all fe(A@A)*. If ge(A@A)* is such that 7T(g)¢C, then
co {uT(g)u*: ue U(A)} contains more than one element. Since we
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assumed (¢), C Neco{uT(g)u*: ue U(A)} is nonempty. Let 3 WuT(g)u*
be a net indexed by a directed set 4 which converge w* to an element
h of C (we suppress all indices in the sum). Define for fe (A& A)*
and de (AR A),

T'()(d) = LIM 3 M T(f)u*(d) -

Then 7" is a bounded linear map from (A®A)* to (A@A)* and
another application of the strong separation theorem shows that
T(f)eco{uT(fHu*:ue U(A)}. If we show that T’(aof) = a-T'(f) and
T (foa) = T'(f)oa, we will know that 7"e 4 and 7" = T. But

T'(aof)(b Q ¢) = LIM > MuT{aof)u*(b X ¢

= LIM 3, Mao T(f))(w*b @ cu)

= LIM 3, \T(f)(u*ba & cu)

= T'(f)(ba & ¢)

= (aT"(NOXec) .
Hence T'(acf) = aoT"(f) and likewise T"(fea) = T"(f)-a. But the net
S auT(g)u*(d) has the actual limit h(d). Thus T'(9) =k and
co{uT(9)(g)uw*:uwe UA)} = {h}, and {h} is properly contained in
co {uT(g)u*: v U(A)}, hence it is not true that T = 7". But this
contradicts the maximality of 7, and we have that 7T(f)eC for all
f. The completes the proof.

(d) implies (e): Let e X and fix se S. Define a bounded bilinear
function F(, s) on A X A by F(z, s)(a, b) = s(axd) for all a, be A. We
consider F(x, s) as an element of (A& A)*. Let G(s)(x)= T(F(x, s))(eRe).
Then clearly G(s)e X*. Now if we U(4), then

F(u*zu, s)(a ® b) = s(au*zubd)
= F(z, s)(u(a @ b)ou*)
= (u*oF(x, s)ou)(a ® b) .
Thus F(u*xu, s) = u*oF(x, s)ou. Hence for all xe X and uwe U(A), by
using the properties of the map T,

(uG{s)u*)(x) = G(s)(u*zu)
= T(F(u*2u, s))(e® e)
= T(u*F(x, s)ou)(e R e)
= (uT(F @, s)u*)(e X e)
= T(F(x, s))(e ® e)
= G(s)(@) .

Thus uG(s)u* = G(s) for all uwe U(4). We will be done when we
show that G(s)e S. If G(s) ¢ S, then there exists x ¢ X, a real number
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» and € > 0 such that for all £e S we have
Re G(s)(x) =A< N+ e =< Ret(x) .

Now T(F(z, s)) € co {uF(z, sju*:ue U(A)}, and uF(z, s)u*)(eRe) =
(usu*)(x). Since usu* € S for all u e U(A), this implies that Re G(s)(x) =
A + €. This contradiction proves that G(s)e S.

(e) implies (f): Let X, Y and fe X* be as in (f). Let ge Y*
be any extension of f and let S = co{ugu*:ue U(4)}. Then S is
w*-closed convex subset of Y* and if seS then usu*e S for all
ue U(A). Hence by (e) there is an element ke S such that whu* = h
for all ue U(4). Since uXu* & X for all ue U(4), f(uzu*) = f(z) for
all xe X and g extends f, it is easily seen that h extends f.

(f) implies (g): Clear.

(g) implies (c): Givenge (AR A)*, let Y=AR A, X=1{0},f=0
and apply (g). Thus there Ais an heco{ugu*;ue U(A)} such that
h(uyu*) = h(y) for all ye AR A and ue A; that is, akh = ha for all
a in A.

(d) implies (a): Let D: A— X* be a derivation. Let xe X and
define a bounded bilinear functional f(®) on A X A by f(x)(b, ¢) =
D(b)(xc). Then define an element Ge X* by G(x) = T(f(®)(e X e).
We will show that D = d6(G) and —Geco{Dwu*:uc U(4)}. For
ze X and ae A, define a bounded bilinear functional g(x, a) on A x A
by g(=, a)(b, ¢) = D(a)(zcb). Then a computation shows that aof(x) =
flaz) + g(z, a) and f(za) = f(®)oa. If aec A, xe X, then

(@ (@) (@) = (aG — Ga)(2)
= Gxa — ax)
= T(f(za — ax))(e X ¢)
= T(f(@)oa — a°f(@) + g(x, a))(e R e)
= T(f@)(e®a) — T(f(@)(e®e) + T(g(x, a))(e @ e)
= T(g(z, a))e®e) .

The last equality is true because T maps into C. Now for u e U(A4),
(ug(@, a)u*)(e® e) = g(x, a)(w* @ u) = D(a)(x), and T(g(v,a)) is in
co {ug(w, a)u*: u € U(A)}, hence (6(G)(a))(x) = D(a)(x) for all xze X and
ac A, thus D = 6(G). An application of the strong separation theorem
shows that —Geco{Dwu)u*: we U(A)}. Thus (d) implies (a) and the
proof of Proposition 1 is complete.

REMARKS. (1) The equivalence of (a) and (c) shows that, to
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check strong amenability of A, it is only necessary to consider the
A-module 4 & A; this gives another proof of the Proposition 7.15 of
[5].

(2) In the notation of [6], a C*-algebra A is amenable iff the
first cohomology group H}(A, X*) is zero for all Banach A-modules X.
The reduction of dimension argument of [5, §1. a] then shows that
all the cohomology groups HA, X*) are zero. If A is strongly
amenable, then the proof of (d) implies (a) above can be changed to
show directly that H(A, X*) is zero for all #» and all Banach A-
modules X; this proof is similar to the proof of Theorem 3.3 in [6],
with the map T taking the place of the invariant mean which is
present in that theorem.

(3) In [1] the author used the existence of the function 7' to
generalize the well-known Dixmier-Mackey theorem on amenable groups
by proving that every continuous representation of a strongly amena-
ble C*-algebra on a Hibert space is similar to a *-representation.
However, this fact can be proved in a more elementary fashion as
follows: Let A be a strongly amenable C*-algebra and let = be a
continuous representation of A as bounded operators on a Hilbert
space H. It suffices to assume A has an identity ¢ and n(e) = I.
Make B(H) into a Banach A-module by the operations aT = 7(a)T,
Ta = Tr(a*)* for ac A, Te B(H). Then B(H) is the dual Banach
A-module of the trace class operators. Define a bounded linear map
D of A into B(H) by D(a) = w(a) — w(a*)*. Then

aD(b) + D(a)b = m(a)(m(b) — 7(b*)*) + (m(a) — m(a*)*)m(b*)*
= n(ab) — 7w((ab)*)*
= D(ab) .

Hence D is a derivation. Thus, since A is strongly amenable, there
is an operator T in co {D(u)u*: u € U(A)} such that D = —d(T). Then
for a€ A, 7(a) — w(a*)* = —aT + Ta = Tz(a*)* — w(a)T, thus w(a)(I +
T) = + Tx(a*)*. Welet R = T + I. Now Dw)u* = w(w)zw(u)* — I,
thus R € co {w(uw)mw(u)*: we U(A)}. For e H, (x(w)m(u)*x, x) = ||z(u)*z |
and (||} = |[z(w*)*ww)*z | = ||z |} ||[z(w)*x[’. Hence 1/[|z|P) || =<
[|rw)*2|*. Thus R is positive and invertible. Let S be the positive
square root of B. Then m(a)S* = S*z(a*)*, and S7'7(a)S = Sr(a*)*S™.
If we define z,(a) = S™'w(a)S, then 7, is clearly a representation of
A, and m(a*)* = (S7'w(a*)S)* = Sx(a*)*S™* = S™'7(a)S = 7,(a). Hence
w, is a *-representation.

We now give some equivalent conditions for a C*-algebra to be
amenable.

PROPOSITION 2. Let A be a C*-algebra with umnit e. Then the
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following three statements are equivalent:

(a) A is amenable.

(b) There is a bounded linear map T of (AR A)* into C =
(Fe (AR A)*:af = fa all ac A} such that T restricted to C is the
identitzA/ on C and T(aof) = a-T(f), T(feca) = T(f)ea for all ac A,
fe(A® A)*.

(¢) Let Y be a Banach A-module and X a two sided A-submodule
of Y. Let fe X* be such that fluxu*) = f(x) for all xc X, ue U(A).
Then there is a he Y* such that h extends f and h(uyu*) = h(y) for
all ye Y, ue UA).

Proof. (a) implies (b): Let ¥ = (A® A)* ® (AR® A) and let Z,
W and X be as in the proof of (g) implies (d) of Proposition 1. Let
Fe Y* be defined by F(f ®t) = f(t) and let D, be the inner deriva-
tion induced by F. Then for ac A, fe(4 ® A)*, and te (A ® A),
D(a)(f ®t) = (af — fa)(t). Hence D,(a) is zero on W. A calculation
using the fact that the two A-module operations on (A@A) do not
interact (see the comment at the end of §1) shows that D,(a) is zero
on Z. Hence there is a map D from A into (Y/X)* given by D(a)(y) =
D, (a)(y), where ¥ is the coset in Y/X of an element ye Y. It is
easily seen that D is a derivation, hence since A is amenable there
is an element G,e (Y/X)* such that D = d¢(G,). Let Ge Y* be defined
by G(y) = Gi(¥) for all ye Y. Define a bounded linear map 7, from
(A® A)* into (A® A)* by T(f)() = G(f @) for all fe (AR 4)*,
te (A® A). Now D(a) = aG, — G,a for all ac A, thus

D(a)(f ®t) = Di(a)(f ® 1)

= (af — fa)(?)

= (aG, — Ga)(f ® 1)

= G(f X (ta — at)

= T.(f)(ta — at)

= (aT\(f) — Tu(f)a)(@) -
Hence (af — fa)(t) = (aT.(f) — T(f)a)(t) for all te (AR A), ancAl we thus
have f— T\(f) € C. Let T be the bounded linear map from (A A)* into
C given by T(f) =f — Tu(f). If feC, then T.(f)(t) = G.(f ®¢t) =0,
thus T(f) = f if feC. Similarly, since G is zero on Z, we have

that T(acf) = a-T(f) and T(foa) = T(f)oa. This completes the proof
of (a) implies (b).

(b) implies (¢): Let Y be a Banach A-module, X a submodule of
Y, and let fe X* be such that fluzu*) = f(z) for all ze X, u e U(4).
Let fie Y* be any extension of f and for each y ¢ Y define an element
F(y) of (A® A)* by F{y)(a ® b) = fi(ayb). Then let he Y* be defined
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by h(y) = T(F(¥))(e ® e). A calculation shows that for all e U(4),
Fu*yu) = u*oF(y)ou, so that h(u*yu) = h(y). Also, if xe€ X, then it
is easily seen that F'(z) € C, hence h(z) = T(F(x))(e R e) = F(x)(e® e) =
fi(x) = f(x). Thus & has the desired properties.

(¢) implies (b): The proof is essentially the same as the proof
of (g) implies (d) in Proposition 1; we omit the details.

(b) implies (a): Again, the proof is essentially the same as the
proof of (d) implies (a) in Proposition 1.

While we can not settle the question of whether every amenable
C*-algebra is strongly amenable, we think that the relationship be-
tween conditions (¢) of Proposition 2 and conditions (f) and (g) of
Proposition 1 may be useful in settling the question.

3. A Stone-Weierstrass type theorem. For A a C*-algebra,
let ES(A) be the set of pure states of A. Let B be a C*-subalgebra
of A which separates ES(A4) U {0}. The generalized Stone-Weierstrass
question for C*-algebras [9, section 4.7] asks when is A equal to B?
Using a method introduced by Sakai [8], we can show that A = B
if A is separable and B is strongly amenable.

PROPOSITION 3. Let A be a separable C*-algebra. If B is a
strongly amenable C*-subalgebra of A which separates ES(A) U {0},
then A = B.

Proof. By [8, Lemma 1] we can assume that A has an identity
which is also in B. Then as in [8, proof of Proposition 2] if B A,
there is a *-representation = of A on a separable Hilbert space such
that (z(B))” # (z(A))"”. Then by [12, Theorem 12.2] there is a Hilbert
space H and a von Neumann algebra D & B(H) such that D is *-
anti-isomorphic to D’ and such that (z(B))” is *-isomorphic to D by
a *-isomorphism S. Now *-anti-isomorphisms are clearly order isomor-
phisms and hence are ultraweakly continuous [2, A27]. Thus the
image of w(B) under the *-anti-isomorphism is weakly dense in D’.
It was proven in [5, Section 7] that the weak closure of any *-
representation of a strongly amenable C*-algebra has Schwartz’s
Property P [10, Definition 1]; essentially the same proof shows that
the weak closure of any *-anti-representation of a strongly amenable
C*-algebra has Property P. Hence, the von Neumann algebra D’ has
Property P. Thus by [10, Lemma 5] there is a linear norm-decreasing
map P from B(H) onto D which is the identity on D. Now consider
S as a *-representation of (7(B))” on H, then by [2, 2.10.2], there is
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a Hilbert space K containing H and a *-representation T of (z(A4))”
on K such that S(x) = T(x)| H for all ze (n(B))”’. Let p be the
projection of K onto H, and define a linear norm-decreasing map R
from B(K) onto B(H) by Ry = py|H for all ye B(K). Then S™'oPcRoT
is a linear norm-decreasing map from (7(A))” onto (w(B))” which is
the identity on (w(B))”’. Then by [8, Theorem 1], we have that
(ST oPoRoT)x = 2 for all x e (w(A))”’. Hence (n(A))” = (w(B))”. This
contradiction shows that 4 = B.

We remark that Sakai [9, 4.7.8] has proved Proposition 3 in the
case when B is the uniform closure of an increasing directed set of
Type I C*-subalgebras. The author does not know of an example of
a strongly amenable C*-algebra which is not the uniform closure
of an increasing directed set of Type I C*-subalgebras.
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