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* ACTIONS IN A*-ALGEBRAS

PAk-KEN WoONG

Let U be the open unit disk in the complex plane and f
a function defined on U. We show that if A is an infinite
dimensional dual B*-algebra, then f defines a *-action in A if
and only if f is continuous at zero and f(0) = 0. We also
obtain that if A is commutative, then f defines a continuous
action in A if and only if f is continuous on U and f(0) = 0.

Actions in Banach algebras were introduced and studied recently
by Gulick in [1]. Most of her main results were obtained for certain
subalgebras of the algebra of all completely continuous operators on
a Hilbert space. By using a different approach, we generalize some
results in [1].

2. Preliminaries and notation. For any set S in an algebra
A, let L,(S) and R,(S) denote the left and right annihilators of S in
A. A Banach algebra A is called a dual algebra if, for every closed
left ideal I and every closed right ideal J, we have I = L,(R,(I)) and
J = R,(L,J)). For each element xe A, Sp,(x) will denote the spec-
trum of x in A. -

Let B be a commutative Banach algebra and X its carrier space.
For each x€ B, we let #+ —% be the Gelfand map on B defined by
%(a) = a(x) for all e X,.

All algebras under consideration are over the complex field C.
Definitions not explicitly given are taken from Rickart’s book [5].

3. Lemmas. In this section, we give two lemmas which are
useful in §4.

LEMMA 3.1. Let A be an A*-algebra. If there exists a maximal
commutative *-subalgebra B of A which is finite dimensional, then
A is finite dimensional.

Proof. Since B is finite dimensional, B has an identity ele-
ment e such that e = >}, e;, where {e;,7 =1, .-+, n} is the maximal
orthogonal family of hermitian minimal idempotents in B. We claim
that e is an identity element of A. In fact, for each ac A4, let
b =a(l —e). Itis straightforward to show that b*be B and b5*b = 0.
Therefore b = 0 and so @ = ae. Similarly we can show that a = ea.
Hence ¢ is an identity element of A. Clearly A = 32, 312, e;Ae;.
To complete the proof, it suffices now to show that e;Ae; is one
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dimensional. We may assume e¢;Ae; # (0). Then there exists an ele-
ment x€ A such that exe; + 0 and so

0 = (exe;)(exe;)* = exex*e; = e,
where v e C. Now for each y€ A, we have
eye; = N'ewe;w e ye; = N lew(Ne;) = NN ewe;

where M € C. Hence ¢;Ae; is one dimensional and this completes the
proof.

LEMMA 3.2. Let A be an A*-algebra. If the spectrum of every
hermitian element of A 1is finite, then A is finite dimensional.

Proof. Let B be a maximal commutative *-subalgebra of A. It
follows easily from [5, p. 111, Theorem (3.1.6)] that every element
of B has a finite spectrum and therefore B is finite dimensional (see
[3, p. 376, Lemma 7]). Hence by Lemma 3.1, A is finite dimensional.

4. A*.algebras and *-actions. In this section, the symbol U
denotes the open unit disk in the complex. For a given Banach
*-algebra A, we let A* be the set {xc A: xa* = 2*x and Sp,(x) C U}.
A function f on U is said to define a *-action in A if there exists
a mapping x — f'(x) of A* into A such that whenever B is a maximal
commutative *-subalgebra of A and xze BN A%, then f’(x)e B and

f’/(;) = foZ on the carrier space X, of B.

THEOREM 4.1. Let A be an A*-algebra. Then A is finite dimen-
stonal if and only if any function f on U defines a *-action in A.

Proof. Suppose A is finite dimensional. Let xze A} and let B
be a maximal commutative *-subalgebra of A containing z. Then B
is a finite dimensional dual B*-algebra. Hence the carrier space X,
of B consists of a finite number of elements, say «,, .-+, a,. Let ¢;
be the element of B corresponding to the characteristic function of the
point a;(¢ =1, ..., n). Then for each z € B, we have ©z = >, a;(x)e;
(see [4, p. 21]). By [5, p. 111, Theorem (3.1.6.)],

SpB(m) = {az(w); 1= 1, °c n} .
Let f be any function on U. Define
F@) = 3 f@@)e -

Then it is easy to see that f’(x) e B and f{(;) = foZX. Therefore f
defines a *-action in A.
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Conversely suppose that any function f on U defines a *-action
in A. If A were not finite dimentional, then by Lemma 3.2 there
would exist an element & in A% such that Sp,(x) is infinite. Let B
be a maximal commutative *-subalgebra of A containing x. Choose
. € Spu(x) such that A, # 0 (n = 1,2, -..). Let f be any function on
U such that f(A,) = n. Since f defines a *-action, there exists some

f'(x) € B such that f’(g)\= fo%. But this means n = f(\,) € Sp.(f'(x)),
contradicting the boundedness of Sp,(f'(x)). Hence A is finite dimen-
sional and the proof is complete.

THEOREM 4.2. Let A be an infinite dimensional dual A*-algebra
which 1s a dense two-sided ideal of a B*-algebra. If a function f on
U defines a *-action in A, then f is continuous at 0 and f(0) = 0.

Rroof. Let B be a maximal commutative *-subalgebra of A. By
[4, p. 31, Theorem 19], B is a dual algebra and so its carrier space
X, is discrete. For each a € X, let e, be the element of B correspond-
ing to the characteristic function of @. Then {e,: @ € X;} is a maximal
orthogonal family of hermitian minimal idempotents in A. By Lemma
3.1, B is infinite dimensional and so X, is infinite. Therefore we can
choose a countable subset {«,} of X, such that the complement {«,}’ of
{a,} in X, is infinite.

Let {a,} be a sequence in U such that a,—0. We want to show
f(a,) — f(0) = 0. By passing to a subsequence, we can assume that
la,| < (#]| e, |)7". Then z =3 e.e, is defined in B. Clearly
x€ A*. Hence there exists some f'(x) € B such that f/'(\x) = foZ on
Xz. By [4, p. 30, Theorem 16], we have

(4.1) f@) = Sef @)e. = Sia(f'(z))e -

Therefore a(f’(x)) — 0. Since «,(z) = a,, we have f(a,) = a,(f'@)).
Thus it follows that f(a,) — 0 as n— . For each a€{a,}’, a(x) =0
and so a(f'(x)) = fla(x)) = f(0). Since {a,) is infinite, it follows easily
from (4.1) that a(f’(z)) = 0 for all «e{a,}. Hence f(0) = 0 and so f
is continuous at 0. This completes the proof.

Theorem 4.2 is a generalization of [1, p. 668, Proposition 5.1],
since Cp(1 £ p < =) and their *-subalgebras are dual A*-algebras
which are dense two-sided ideals of their completions in the auxiliary
norm (see [6]).

We remark that the converse of Theorem 4.2 does not hold as is
shown by the following example.

EXAMPLE. Let A be an infinite dimensional proper H*-algebra.
Then A is a dual A*-algebra which is a dense two-sided ideal of its
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completion in an auxiliary norm (see [4, p. 81]). Let B be a maximal
commutative *-subalgebra of A and let {e,: @€ X,;} be the maximal
orthogonal family of hermitian minimal idempotents given in the proof
of Theorem 4.2. Let {¢,: a, € X;} be a countable subset of {e,;a € X}
and let a, = (nlle, |)™". Then « = 37 a,e,, is defined in B and
l#]* = 32, n® Define a function f on U by f(z) = V' n ||e,, ||)7* if
z = a, and f(?) = 0 otherwise. Then f is continuous at 0. If f defines
a *-action in A, then there exists an element f’(x) e B such that

N\
f'(x) = fo%. But
1P @1F =3 1 @) lleq, I = S0
This is a contradiction. Therefore f does not define a *-action in 4.

THEOREM 4.3. Let A be an infinite dimensional dual B*-algebra.
Then a function f on U defines a *-action in A if and only if f is
continuous at 0 and f(0) = 0.

Proof. Suppose f is continuous at 0 and f(0) = 0. Let zec A%
and let B be a maximal commutative *-subalgebra of A containing z.
By the proof of Theorem 4.2, = 3.7, a,(%)e,,, where a, € X; and e,,
is the element of B corresponding to the characteristic function of «,.
Since a,(x) — 0, f(a,(x)) — 0. For any two positive integers m, n(m = n),
it follows easily from the commutativity of B that

| £ fesen| = max (| f@@) i = m, <o )
Therefore 37, f(@,(%))e,, is defined in B. Now let f'(x) = 37_ fla.(¥))e.,-
Then f'(x) = foZ. Hence f defines a *-action in A. The converse of
the theorem follows from Theorem 4.2 and the proof is complete.

Since the algebra of all completely continuous operators on a
Hilbert space is a dual B*-algebra, Theorem 4.3 generalizes [1, p. 668,
Theorem 5.2].

THEOREM 4.4. Let A be an infinite dimensional commutative
dual B*-algebra and f a function on U. Then f defines a continuous
action in A (see [2, p. 109, Definition 5.1]) if and only if f is a
continuous function on U and f(0) = 0.

Proof. Suppose f is continuous and f(0) = 0. Then by Theorem
4.3, f defines an action in A. Let x, and z € A% such that z, —x in
A. By the proof of Theorem 4.2, we have

x =, ak,)e. and 2z = >, a@®e,,
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where {e,:ae X,} is the maximal orthogonal family of hermitian
minimal idempotents in A. Since A is commutative, we have

@, — || = sup{|a(@,) — a@)|: ae X,}

and

| f@,) — fl@) || = sup{| fla(x,) — fla@) [ ae X} .
Therefore it is now easy to see that f(x,) —f(®) in A. Hence f
defines a continuous action in A. The converse of the theorem follows

from [2, p. 109, Proposition 5.2] and Theorem 4.3.

REMARK. If A is noncommutative, then Theorem 4.4 is not true
as is shown in [2, p. 110, Example 5.3].
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