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FACTIONS IN ,4*-ALGEBRAS

PAK-KEN WONG

Let U be the open unit disk in the complex plane and /
a function defined on U. We show that if A is an infinite
dimensional dual i?*-algebra, then / defines a *-action in A if
and only if / is continuous at zero and /(0) = 0. We also
obtain that if A is commutative, then / defines a continuous
action in A if and only if / is continuous on U and /(0) = 0.

Actions in Banach algebras were introduced and studied recently
by Gulick in [1]. Most of her main results were obtained for certain
subalgebras of the algebra of all completely continuous operators on
a Hubert space. By using a different approach, we generalize some
results in [1].

2* Preliminaries and notation. For any set S in an algebra
A, let LA(S) and RA(S) denote the left and right annihilators of S in
A. A Banach algebra A is called a dual algebra if, for every closed
left ideal / and every closed right ideal J, we have / = LA{RA{I)) and
J= RA(LA(J)). For each element xeA, SpA(x) will denote the spec-
trum of x in A.

Let B be a commutative Banach algebra and XB its carrier space.
For each x e B, we let x —>x be the Gelfand map on B defined by
x(a) = a(x) for all a e XB.

All algebras under consideration are over the complex field C.
Definitions not explicitly given are taken from Rickart's book [5].

3* Lemmas* In this section, we give two lemmas which are
useful in §4.

LEMMA 3.1. Let A be an A*'-algebra. If there exists a maximal
commutative *-subalgebra B of A which is finite dimensional, then
A is finite dimensional.

Proof. Since B is finite dimensional, B has an identity ele-
ment e such that e = Σ?=i ei9 where {ei9 i = 1, , n) is the maximal
orthogonal family of hermitian minimal idempotents in B. We claim
that e is an identity element of A. In fact, for each aeA, let
b = a(l — e). It is straightforward to show that b*beB and 6*6 = 0.
Therefore 6 = 0 and so a = ae. Similarly we can show that a = ea.
Hence e is an identity element of A. Clearly A = Σ?= 1 Σ?=i ^Ae^
To complete the proof, it suffices now to show that e{Ae5 is one
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dimensional. We may assume e^Aβj Φ (0). Then there exists an ele-
ment xeA such that e{xej Φ 0 and so

0 Φ

where λ e C. Now for each ye A, we have

βiyβj — X^eiXe^βiyej — λ~1eiα?(λ'ei) = X'We&ej ,

where λ' e C. Hence βiAes is one dimensional and this completes the
proof.

LEMMA 3.2. Let A be an A*-algebra. If the spectrum of every
hermitian element of A is finite, then A is finite dimensional.

Proof. Let B be a maximal commutative *-subalgebra of A. It
follows easily from [5, p. I l l , Theorem (3.1.6)] that every element
of B has a finite spectrum and therefore B is finite dimensional (see
[3, p. 376, Lemma 7]). Hence by Lemma 3.1, A is finite dimensional.

4* 4*-algebras and factions* In this section, the symbol U
denotes the open unit disk in the complex. For a given Banach
*-algebra A, we let A* be the set {xeAixx* = x*x and SpA(x) c U).
A function / o n U is said to define a *-action in A if there exists
a mapping x—*f'(x) of A? into A such that whenever B is a maximal
commutative *-subalgebra of A and x e B Γ) At, then /'(a?) e B and

/ ^ on the carrier space XB of B.

THEOREM 4.1. Let A be an A*-algebra. Then A is finite dimen-
sional if and only if any function f on U defines a ""-action in A.

Proof. Suppose A is finite dimensional. Let x e A* and let B
be a maximal commutative *-subalgebra of A containing x. Then B
is a finite dimensional dual B*-algebra. Hence the carrier space XB

of B consists of a finite number of elements, say al9 , a%. Let et

be the element of B corresponding to the characteristic function of the
point aCi(i = 1, •••, n). Then for each xeB, we have x = X?=1 a^βi
(see [4, p. 21]). By [5, p. I l l , Theorem (3.1.6.)],

SpB(x) = {α<(a); ΐ = 1, , n} .

Let / be any function on U. Define

fix) = Σ/(αi(*))β,.
i = l

Then it is easy to see that f'(x)eB and f(x) = fox. Therefore /
defines a *-action in A.
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Conversely suppose that any function f on U defines a *-action
in A. If A were not finite dimentional, then by Lemma 3.2 there
would exist an element x in A* such that SpA(x) is infinite. Let B
be a maximal commutative *-subalgebra of A containing x. Choose
λ» e SpA(x) such that \n Φ 0 (n = 1,2, •)• Let / be any function on
U such that /(λj = n. Since / defines a *-action, there exists some

f(x) e J? such that /'(&)"= fox. But this means n = f(Xn) e SpA(f'(x))>
contradicting the boundedness of SpA(f'(x)). Hence A is finite dimen-
sional and the proof is complete.

THEOREM 4.2. Let A be an infinite dimensional dual A*-algebra
which is a dense two-sided ideal of a B*-algebra. If a function f on
U defines a ^-action in A, then f is continuous at 0 and /(0) = 0.

Rroof. Let B be a maximal commutative *-subalgebra of A. By
[4, p. 31, Theorem 19], B is a dual algebra and so its carrier space
XB is discrete. For each a e XB> let ea be the element of B correspond-
ing to the characteristic function of a. Then {ea: a e XB) is a maximal
orthogonal family of hermitian minimal idempotents in A. By Lemma
3.1, B is infinite dimensional and so XB is infinite. Therefore we can
choose a countable subset {an} of XB such that the complement {an}

f of
{an} in XB is infinite.

Let {an} be a sequence in U such that an —• 0. We want to show
/(G») —*/(0) = 0. By passing to a subsequence, we can assume that
\a»\ ^ (n2\\ean\\)-\ Then α; = Σ~= 1 βneβn is defined in 5. Clearly
ceeAΐ. Hence there exists some f'(x)eB such that f'(x) = fox on
JSL*. By [4, p. 30, Theorem 16], we have

(4.1) f(χ) = Σβα/'ίaK = Σα(/'(*)K

Therefore a(f(x)) —> 0. Since αw(#) = an, we have /(αΛ) — an{f'{x)).
Thus it follows that f(an) ^ 0 a s ? j ^ o o , For each α e {an}', a(x) = 0
and so a(f(x)) = f(a(x)) = /(0). Since {̂ %}' is infinite, it follows easily
from (4.1) that a(f(x)) = 0 for all α e {αn}'. Hence /(0) - 0 and so /
is continuous at 0. This completes the proof.

Theorem 4.2 is a generalization of [1, p. 668, Proposition 5.1],
since Cp(l ^ p < ©o) and their *-subalgebras are dual A*-algebras
which are dense two-sided ideals of their completions in the auxiliary
norm (see [6]).

We remark that the converse of Theorem 4.2 does not hold as is
shown by the following example.

EXAMPLE. Let A be an infinite dimensional proper iϊ*-algebra.
Then A is a dual A*-algebra which is a dense two-sided ideal of its
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completion in an auxiliary norm (see [4, p. 31]). Let 5 b e a maximal
commutative *-subalgebra of A and let {ea: a e XB) be the maximal
orthogonal family of hermitian minimal idempotents given in the proof
of Theorem 4.2. Let {ean: an e XB) be a countable subset of {ea:a e XB}
and let an = (n\\ean H)"1. Then x = Σ?=i^βα w is defined in B and
IN II2 = ΣϊU ™~2 Define a function / on tf by /(*) = (Vn || eαn | |)-1 if
z — an and /(s) = 0 otherwise. Then / is continuous at 0. If / defines
a *-action in A, then there exists an element f\x) e B such that
/ /oί. But

This is a contradiction. Therefore / does not define a *-action in A.

THEOREM 4.3. Le£ A &# an infinite dimensional dual B*-algebra.
Then a function f on U defines a *-action in A if and only if f is
continuous at 0 and /(0) = 0.

Proof. Suppose / is continuous at 0 and /(())•= 0. Let xeA*
and let B be a maximal commutative *-subalgebra of A containing x.
By the proof of Theorem 4.2, x = Σ~=i an(%)eanj where an e XB and ean

is the element of B corresponding to the characteristic function of an.
Since an(x) —* 0, f(an(x)) —> 0. For any two positive integers m, n(m ^ ri),
it follows easily from the commutativity of B that

Σ f(0Ci(x))eai I = max {!/(«<(&)) |: i = m, . . , n} .
* = w II

Therefore ΣΓ«i/(α (»))e«» is defined in 5. Now let /'(a?) = Σr=i

Then /'(a?) = fox. Hence / defines a *-action in A. The converse of
the theorem follows from Theorem 4.2 and the proof is complete.

Since the algebra of all completely continuous operators on a
Hubert space is a dual B*-algebra, Theorem 4.3 generalizes [1, p. 668,
Theorem 5.2].

THEOREM 4.4. Let A be an infinite dimensional commutative
dual B*-algebra and f a function on U. Then f defines a continuous
action in A (see [2, p. 109, Definition 5.1]) if and only if f is a
continuous function on U and /(0) = 0.

Proof. Suppose / is continuous and /(0) = 0. Then by Theorem
4.3, / defines an action in A. Let xn and x e A* such that xn —> x in
A. By the proof of Theorem 4.2, we have

ea and x = Σ &(x)ea ,
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where {ea: a e XA) is the maximal orthogonal family of hermitian
minimal idempotents in A. Since A is commutative, we have

|| xn - x || = sup{| a{xn) - a{x) \:ae XA]

and

11/(0?.) - f(x) || - sup{|/(α(aθ) - f(a(x)) |: α 6 X J .

Therefore it is now easy to see that f(xn) —•/(#) in A. Hence /
defines a continuous action in A. The converse of the theorem follows
from [2, p. 109, Proposition 5.2] and Theorem 4.3.

REMARK. If A is noncommutative, then Theorem 4.4 is not true
as is shown in [2, p. 110, Example 5.3].
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