A NONLINEAR ELLIPTIC BOUNDARY VALUE PROBLEM

S. A. WILLIAMS

This paper proves that there is a (weak) solution u (not necessarily unique) to the generalized Dirichlet problem (with null boundary data) for the equation Au + pu = h. Here A is a strongly and uniformly elliptic operator of order 2m on a bounded open set $\Omega \subseteq \mathbb{R}^n$. Also A is "normal": roughly, $AA^* = A^*A$. The functions p and h are bounded and continuous, but are allowed to depend on $x(x \in \Omega)$, u, and the generalized derivatives of u up to order m. The values of p are restricted to lie in a closed disk of the complex plane which contains the negative of no weak eigenvalue of A.

In [4], E. Landesman and A. Lazer proved that the boundary value problem

$$Lu + p\left(x, u, \frac{\partial u}{\partial x_1}, \dots, \frac{\partial u}{\partial x_n}\right)u = h\left(x, u, \frac{\partial u}{\partial x_1}, \dots, \frac{\partial u}{\partial x_n}\right) \text{ on } D$$

$$u = 0 \text{ on } \partial D$$

has a (not necessarily unique) weak solution u. Here D is any bounded open subset of R^n with boundary ∂D . Here L is any linear, uniformly and strongly elliptic, self-adjoint, second order partial differential operator with only second order terms and with real-valued, bounded measurable coefficients for its corresponding Dirichlet bilinear form. Here p and h are any real-valued, bounded, continuous functions. It is assumed that there exist constants γ_N and γ_{N+1} such that $\alpha_N < \gamma_N \le p(z) \le \gamma_{N+1} < \alpha_{N+1}$ for every z in $D \times R^{n+1}$ (here α_N and α_{N+1} are the negatives of successive weak eigenvalues of L).

The present paper may perhaps best be viewed as a generalization of [4]. Although other generalizations are made, the main result is that the assumption that L is self-adjoint can be replaced by the assumption that L is "normal": roughly, $LL^* = L^*L$. Two examples at the end of the present paper show in what sense the result is best-possible and show that uniqueness can not be expected.

As in [4], the final existence result is proved using Schauder's theorem. In the solving of a preliminary linear problem, a contraction mapping and the fact that the spectral radius of a normal operator is equal to its norm replace the argument in [4] based on the maximum characterization of the eigenvalues and a comparison result for self-adjoint operators.

2. NOTATION. Let Ω be a bounded open subset of \mathbb{R}^n . Let

 $C_0^{\infty}(\Omega)$ denote the set of all infinitely differentiable complex-valued functions with compact support in Ω . Let $L_2(\Omega)$ denote the Hilbert space of all complex-valued square-integrable functions on Ω , with inner product (,) and norm || ||. Let $H^{(m)}(\Omega)$ denote the Hilbert space of all complex-valued functions on Ω whose distribution derivatives (using $C_0^{\infty}(\Omega)$ test functions) of order 0 through m are in $L_2(\Omega)$. The inner product and norm of this space will be denoted by (,), and $|| ||_m$ respectively. A multi-index is an n-tuple of nonnegative integers. If $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n)$ is a multi-index, define

$$|\alpha| = \alpha_1 + \alpha_2 + \cdots + \alpha_n$$

and

$$D^{lpha}u=rac{\partial^{|lpha|}u}{\partial x_{1}^{lpha_{1}}\partial x_{2}^{lpha_{2}}\cdots\partial x_{n}^{lpha_{n}}}$$
 .

Here the indicated derivative is a distribution derivative. It will be used only when u is in $H^{(|\alpha|)}(\Omega)$. Let $H_0^{(m)}(\Omega)$ denote the Hilbert subspace of $H^{(m)}(\Omega)$ obtained by taking the closure of the set $C_0^{\infty}(\Omega)$ in $H^{(m)}(\Omega)$.

Let A be the formal differential operator given by

$$Au = \sum_{\substack{|\alpha| \leq m \ |\beta| \leq m}} (-1)^{|\alpha|} D^{\alpha}(a_{\alpha\beta}D^{\beta}u)$$
,

where the complex-valued functions $a_{\alpha\beta}$ are uniformly continuous in Ω for $|\alpha| = |\beta| = m$ and bounded and measurable otherwise. We assume that A is uniformly strongly elliptic and normalized, i.e., that there exists a constant $E_0 > 0$ such that for all vectors $\xi = (\xi_1, \dots, \xi_n)$ with real entries, and for all x in Ω ,

$$\operatorname{Re}\left\{\sum_{|lpha|=mtop mlpha_{lphaeta}(x)\xi_1^{lpha_1+eta_1}\xi_2^{lpha_2+eta_2}\cdots\xi_n^{lpha_n+eta_n}
ight\}\geqq E_{\scriptscriptstyle 0}|\,\xi\,|^{2m}$$

where Re takes the real part of any complex number and where $|\xi|$ denotes the length of ξ in \mathbb{R}^n .

For any φ and ψ in $H_0^{(m)}(\Omega)$, define

$$B[arphi,\,\psi] = \sum_{\substack{|lpha| \leq m \ |eta| \leq m}} (D^lpha arphi,\,a_{lphaeta}D^eta \psi)$$
 .

We say that u is a solution of the generalized Dirichlet problem for Au = f if and only if f is in $L_2(\Omega)$, u is in $H_0^{(m)}(\Omega)$, and

$$B[\varphi, u] = (\varphi, f)$$
 for every φ in $H_0^{(m)}(\Omega)$.

We say that λ is a weak eigenvalue for A corresponding to weak eigenfunction u if $u \neq 0$ is a solution of the generalized Dirichlet problem for $Au = \lambda u$.

With the assumptions on A made above, Garding's inequality holds (see S. Agmon [1], p. 102):

(1)
$$\operatorname{Re} B[\phi, \phi] + \lambda_0(\phi, \phi) \ge c_0 ||\phi||_m^2.$$

Here λ_0 and c_0 are real constants with $c_0 > 0$. The inequality holds for each ϕ in $C_0^{\infty}(\Omega)$ and hence (taking limits in $H^{(m)}(\Omega)$) for each ϕ in $H_0^{(m)}(\Omega)$. For each u in $H_0^{(m)}(\Omega)$, define

$$||u||_B = [\text{Re } B(u, u) + \lambda_0(u, u)]^{1/2}$$
.

An easy calculation shows that $|| \ ||_B$ is bounded above by a multiple of the $|| \ ||_m$ norm. Since Garding's inequality shows that it is also bounded below, these two norms on $H_0^{(m)}(\Omega)$ are equivalent.

We are assured by [1; p. 102] that the generalized Dirichlet problem for $Au = f - \lambda_0 u$ has for each f in $L_2(\Omega)$ a unique solution $T_0 f$ in $H_0^{(m)}(\Omega)$. The mapping $T_0: L_2(\Omega) \to H_0^{(m)}(\Omega)$ is linear and continuous.

Let $\mathscr{I}: H_0^{(m)}(\Omega) \to L_2(\Omega)$ denote the inclusion map and let $I: L_2(\Omega) \to L_2(\Omega)$ denote the identity map.

3. Preliminary lemmas. Lemma 1, of interest in itself, greatly simplifies the proof of Theorem 2. Lemma 2 gives an elementary proof of the fact that the operator norm of a normal operator is equal to its spectral radius. Lemma 3 gives conditions under which a differential operator is "normal" in the sense required by this paper. Lemma 4 introduces an operator T and Lemma 5 finds an upper bound for $||\mathscr{I}||$. These last two lemmas will be used immediately in Theorem 1.

LEMMA 1. T_0 is compact as a map from $L_2(\Omega)$ to $H_0^{(m)}(\Omega)$.

Proof. Let $\{f_k\}$ be a sequence in $L_2(\Omega)$ with $||f_k|| \leq r$. Since Ω is bounded, N. Dunford and J. Schwartz [3; p. 1693] assure us that $\mathscr I$ is compact. There is therefore a subsequence $\{g_i\}$ of $\{f_k\}$ such that $\{\mathscr I_0g_i\}$ converges in $L_2(\Omega)$. Use $f=g_i-g_k$ and $\phi=T_0g_i-T_0g_k$ and the definition of T_0 to obtain

$$egin{aligned} || T_0 g_i - T_0 g_k ||_B^2 &= \operatorname{Re} B[\phi, T_0 f] + \lambda_0 (\phi, \phi) \ & \leq |B[\phi, T_0 f] + \lambda_0 (\phi, \phi)| \ &= |(\phi, f) - \lambda_0 (\phi, T_0 f) + \lambda_0 (\phi, \phi)| \ &= |(\phi, f)| \leq ||f|| \, ||\phi|| \ & \leq 2r \, ||T_0 g_i - T_0 g_k|| \, . \end{aligned}$$

Since $\{T_0g_i\}$ is a Cauchy sequence in $L_2(\Omega)$, $\{T_0g_i\}$ is a Cauchy sequency

in $H_0^{(m)}(\Omega)$ with the $||\ ||_B$ norm. Therefore it is Cauchy under the $||\ ||_m$ norm.

LEMMA 2. If N is a normal operator in a Hilbert space with inner product (,) and norm || ||, then ||N||, the operator norm of N, is equal to its spectral radius.

Proof. For any x in the Hilbert space, $(N^2x, N^2x) = (N^*Nx, N^*Nx)$ and thus $||N^2|| = ||N^*N||$. But for any operator in a Hilbert space, $||N^*N|| = ||N||^2$ (see [3], p. 874). Thus $||N^2|| = ||N||^2$. By induction $||N^p|| = ||N||^p$ whenever p is a power of 2. The spectral radius of N is given by the expression

$$\lim_{n\to\infty} ||N^p||^{1/p}$$
 (see [3], p. 864).

Considering the subsequence involving only those p which are powers of 2, the result follows.²

LEMMA 3. Let A be a differential operator with coefficients having enough continuous derivatives so that A^* , AA^* , and A^*A make sense classically on $C_0^{\circ}(\Omega)$. Suppose that $AA^* = A^*A$. Then $\mathscr{I}T_0$ is a normal operator.

Proof. The discussion in [1; pp. 97-103] shows that the generalized Dirichlet problem for $A^*u = f - \lambda_0 u$ has for every f in $L_2(\Omega)$ a unique solution T_0^*f in $H_0^{(m)}(\Omega)$, where λ_0 is the same constant as was used to define T_0 . For φ and ψ in $C_0^{\infty}(\Omega)$ the Dirichlet form for A is given by $B[\varphi, \psi] = B_A[\varphi, \psi] = (\varphi, A\psi)$. Similarly $B_A [\varphi, \psi] = (\varphi, A^*\psi)$. It follows easily that \mathscr{I}_0^* is the adjoint of \mathscr{I}_0 .

The Dirichlet form for $(A + \lambda_0)^*(A + \lambda_0)$ is given by

$$B_{(A+\lambda_0)^*(A+\lambda_0)}[\varphi,\psi] = (\varphi,(A+\lambda_0)^*(A+\lambda_0)\psi) = ([A+\lambda_0]\varphi,[A+\lambda_0]\psi).$$

An easy calculation shows that the Dirichlet form for $(A + \lambda_0)(A + \lambda_0)^*$ is the same since $AA^* = A^*A$. If u is a solution of the generalized Dirichlet problem for $(A + \lambda_0)^*(A + \lambda_0)u = 0$, then

$$([A + \lambda_0]u, [A + \lambda_0]u) = 0$$
,

so $(A + \lambda_0)u = 0$ and hence finally u = 0. By the Fredholm alternative the generalized Dirichlet problem for $(A + \lambda_0)^*(A + \lambda_0)u = f$ has a unique solution u in $H_0^{(2m)}(\Omega)$. It is easy to see that $\mathcal{I} T_0^* \mathcal{I} T_0 f = u = \mathcal{I} T_0 \mathcal{I} T_0^* f$. Thus $\mathcal{I} T_0^* \mathcal{I} T_0 = \mathcal{I} T_0 \mathcal{I} T_0^*$.

¹ The proof of this lemma is motivated by a similar calculation in [4; pp. 321, 322].

² The author wishes to thank Dr. S. Ebenstein for his elementary proof of Lemma 2.

LEMMA 4. If γ_0 is a complex number such that $-\gamma_0$ is not a weak eigenvalue of A, then we may set $T = T_0[(\gamma_0 - \lambda_0) \mathcal{J} T_0 + I]^{-1}$ and have for every f in $L_2(\Omega)$ and every φ in $H_0^{(m)}(\Omega)$ that

$$B[\varphi, Tf] + \overline{\gamma_0}(\varphi, Tf) = (\varphi, f)$$
.

(Thus If is the unique weak solution of $Au + \gamma_0 u = f$.)

Proof. Since $-\gamma_0$ is not a weak eigenvalue of A, $(\lambda_0 - \gamma_0)^{-1}$ is not an eigenvalue of $\mathcal{J}T_0$. Since $\mathcal{J}T_0$ is compact, every nonzero complex number in its spectrum must be an eigenvalue. Therefore $(\lambda_0 - \gamma_0)^{-1}$ is not in the spectrum of $\mathcal{J}T_0$, so $[\mathcal{J}T_0 - (\lambda_0 - \gamma_0)^{-1}I]^{-1}$ (and hence $[(\gamma_0 - \lambda_0)\mathcal{J}T_0 + I]^{-1}$) exists and is continuous.

$$\begin{split} B[\varphi, Tf] + \bar{\gamma}_{0}(\varphi, Tf) \\ &= -\lambda_{0}(\varphi, T_{0}[(\gamma_{0} - \lambda_{0}) \mathscr{I} T_{0} + I]^{-1}f) + (\varphi, [(\gamma_{0} - \lambda_{0}) \mathscr{I} T_{0} + I]^{-1}f) \\ &+ \bar{\gamma}_{0}(\varphi, T_{0}[(\gamma_{0} - \lambda_{0}) \mathscr{I} T_{0} + I]^{-1}f) \\ &= (\varphi, [(\gamma_{0} - \lambda_{0}) \mathscr{I} T_{0} + I][(\gamma_{0} - \lambda_{0}) \mathscr{I} T_{0} + I]^{-1}f) = (\varphi, f) . \end{split}$$

LEMMA 5. Assume that $\mathcal{J}T_0$ is a normal operator and that $|z-\gamma_0| \leq c$ is a disk in the complex plane which contains the negative of no weak eigenvalue of A. Then $||\mathcal{J}T||c < 1$, where T is the map of the above lemma.

Proof. Since $\mathscr{I} T_0$ is a normal operator, so is $[(\gamma_0 - \lambda_0) \mathscr{I} T_0 + I]^{-1}$. Since $\mathscr{I} T_0$ and this operator commute,

$$\mathscr{I} T = \mathscr{I} T_0 [(\gamma_0 - \lambda_0) \mathscr{I} T_0 + I]^{-1}$$

is normal. Therefore $||\mathscr{I}T||$ is the same as the spectral radius of $\mathscr{I}T$. Since $\mathscr{I}T$ is compact, the spectral radius is the supremum of the norms of the eigenvalues of $\mathscr{I}T$. But λ is a weak eigenvalue of A if and only if $(\lambda + \gamma_0)^{-1}$ is an eigenvalue of $\mathscr{I}T$. Thus the weak eigenvalues of A have no accumulation point in the (finite) complex plane. Since $|-\lambda - \gamma_0| \ge c + \varepsilon$ for some $\varepsilon > 0$ and every weak eigenvalue λ of A, $|(\lambda + \gamma_0)^{-1}| \le (c + \varepsilon)^{-1}$ so that every eigenvalue of $\mathscr{I}T$ has norm $\le (c + \varepsilon)^{-1}$. Thus $||\mathscr{I}T||c < 1$ as claimed.

4. The preliminary linear problem.

THEOREM 1. Let D be a closed disk $\{z \in C; |z - \gamma_0| \leq c\}$ in the complex plane which contains the negative of no weak eigenvalue of A. Let h be in $L_2(\Omega)$ and let p be a measurable function on Ω whose values lie in the disk D. Suppose that the operator $\mathcal{I}T_0$ associated with A is normal. Then the generalized Dirichlet problem

for Au + pu = h has a unique solution u in $H_0^{(m)}(\Omega)$. Moreover, there exists a constant M independent of p such that

Re
$$B[u, u] + \lambda_0(u, u) \leq M(h, h)$$
.

Proof. We want Au + pu = h, or equivalently $Au + \gamma_0 u = h - (p - \gamma_0)u$. Thus we want $u = T(h - (p - \gamma_0)u)$, where T is the map of Lemmas 4 and 5. We prove that the map from $L_2(\Omega)$ into itself given by $u \to \mathcal{I}[h - (p - \gamma_0)u]$ is a contraction map.

For any u_1 and u_2 in $L_2(\Omega)$,

$$\mathscr{I}T[h - (p - \gamma_0)u_1] - \mathscr{I}T[h - (p - \gamma_0)u_2]||$$

= $||\mathscr{I}T(p - \gamma_0)(u_1 - u_2)|| \le ||\mathscr{I}T||c||u_1 - u_2||$.

Since $||\mathscr{I}T||c < 1$ by Lemma 5, the map is a contraction as claimed. Thus there exists a unique v in $L_2(\Omega)$ such that $v = \mathscr{I}T[h - (p - \gamma_0)v]$.

Let $Q = ||\mathscr{I}T||(1-||\mathscr{I}T||c)^{-1}$. Then $Q = ||\mathscr{I}T|| + ||\mathscr{I}T||cQ$. Since $||u|| \leq Q||h||$ implies that

$$egin{aligned} \|\mathscr{I}T[h-(p-\gamma_{\scriptscriptstyle{0}})u]\| &\leq \|\mathscr{I}T\|\,\|h\|+c\|\mathscr{I}T\|\,\|u\| \ &\leq \|\mathscr{I}T\|\,\|h\|+c\|\mathscr{I}T\|Q\|h\| \ &= Q\|h\|\,, \end{aligned}$$

it follows that for fixed h the ball $\{u \in L_2(\Omega); ||u|| \leq Q||h||\}$ is mapped into itself by our contraction map. Therefore the fixed point v satisfies $||v|| \leq Q||h||$. Since the $||\cdot||_m$ norm and the $||\cdot||_B$ norm are equivalent, and since

$$||v||_{m} = ||T[h - (p - \gamma_{0})v]||_{m} \leq ||T|| ||h - (p - \gamma_{0})v||,$$

(here ||T|| is the operator norm of $T: L_2(\Omega) \to H_0^{(m)}(\Omega)$) it follows easily that there exists an M such that $||v||_B^2 \leq M||h||^2$.

5. The nonlinear problem.

THEOREM 2. Let D be a closed disk in the complex plane which contains the negative of no weak eigenvalue of A. Let $h(x, u, \partial u/\partial x_1, \cdots)$ and $p(x, u, \partial u/\partial x_1, \cdots)$ be continuous functions of their arguments, allowed to involve derivatives of u up to order m. Let $|h(x, u, \cdots)| \leq r$ and assume that the values of p are always in the disk p. Assume that the operator $\mathcal{I} T_0$ associated with p is normal. Then the generalized Dirichlet problem for

(3)
$$Au + p\left(x, u, \frac{\partial u}{\partial x_1}, \cdots\right)u = h\left(x, u, \frac{\partial u}{\partial x_1}, \cdots\right)$$

has a (not necessarily unique) solution u in $H_0^{(m)}(\Omega)$.

Proof. Define a map $G: H_0^{(m)}(\Omega) \to H_0^{(m)}(\Omega)$ as follows: for every u in $H_0^{(m)}(\Omega)$, let G(u) be the unique solution v in $H_0^{(m)}(\Omega)$ of

$$v = \mathscr{I}T\Big[h\Big(x,u,\frac{\partial u}{\partial x_1},\cdots\Big) - \Big(p\Big(x,u,\frac{\partial u}{\partial x_1},\cdots\Big) - \gamma_0\Big)v\Big],$$

where γ_0 is the center of the disk D and T is the operator of Lemmas 4 and 5. It is clear that a fixed point of G would furnish a solution for the generalized Dirichlet problem for (3). We will show that G is continuous and compact from a bounded, closed, convex subset S of $H_0^{(m)}(\Omega)$ into itself. Schauder's theorem (see, for example, J. Cronin [2], p. 131) then assures us a fixed point.

Since $|h(x, u, \dots)| \leq r$, $(h, h) \leq R = r^2 \max(\Omega) < \infty$. Using the constant M of Theorem 1, $||G(u)||_B^2 \leq MR$ for all u in $H_0^{(m)}(\Omega)$. Thus if we take $S = \{u \in H_0^{(m)}(\Omega); ||u||_B^2 \leq MR\}$, S is a bounded, closed, convex set of $H_0^{(m)}(\Omega)$ and $G(S) \subseteq S$.

Now we show that G is continuous. Let $\{u_k\}$ be a sequence in $H_0^{(m)}(\Omega)$ converging to u. The sequence $\{h(x,u_k,\cdots)-(p(x,u_k,\cdots)-\gamma_0)G(u_k)\}$ is clearly bounded in $L_2(\Omega)$, so since T is compact (Lemma 1 shows that T_0 is compact, and T is T_0 composed with a continuous map) there is a subsequence of $\{G(u_k)\}$ which converges in $H_0^{(m)}(\Omega)$ to a limit v. Then taking limits with the corresponding subsequence of $\{u_k\}$,

$$v = \mathscr{I} T[h(x, u, \cdots) - (p(x, u, \cdots) - \gamma_0)v],$$

so that v=G(u). Since any subsequence of $\{G(u_k)\}$ has a subsequence converging in $H_0^{(m)}(\Omega)$ to G(u), $\{G(u_k)\}$ itself converges in $H_0^{(m)}(\Omega)$ to G(u), proving continuity.

Now we show that G is compact. Let $\{u_k\}$ be a bounded sequence in $H_0^{(m)}(\Omega)$. Then the sequence $\{h(x, u_k, \cdots) - (p(x, u_k, \cdots) - \gamma_0)G(u_k)\}$ is bounded in $L_2(\Omega)$, so the fact that T is compact assures us a subsequence of $\{G(u_k)\}$ which converges in $H_0^{(m)}(\Omega)$.

6. Examples and a remark.

EXAMPLE 1. If the disk D includes the negative of a weak eigenvalue λ of A, let v be a weak eigenfunction of A^* corresponding to the weak eigenvalue $\overline{\lambda}$. If h(x) is any bounded continuous function on Ω such that $(h, v) \neq 0$, then the generalized Dirichlet problem for $Au + \lambda u = h$ has no solution, since the Fredholm alternative applies [1, p. 102]. It is in this sense that Theorem 2 is best possible.

EXAMPLE 2. Suppose that there is a weak eigenvalue λ of A which corresponds to a continuous weak eigenfunction v with $|v(x)| \leq 1$ for every x in Ω . Let γ_0 be the center of the disk D and let $p = \gamma_0$

identically. Let h = h(u) be a bounded C^{∞} function of u with $h(u) = \gamma_0 u + \lambda u$ for $|u| \leq 1$. Then v and v/2 are two distinct solutions of the generalized Dirichlet problem for Au + pu = h. This shows that we cannot expect a unique solution to problems of the type discussed in this paper.

REMARK. Consider the generalized Dirichlet problem for $Au = f(x, u, \partial u/\partial x_1, \cdots)$, where f is a continuous function of its arguments, involving derivatives of u up to order m. Under what circumstances can we write f = -pu + h, where $|h| \leq r$ and the values of p lie in a closed disk D with center γ_0 and radius c? Clearly $|f + \gamma_0 u| \leq c|u| + r$ is a necessary condition. It is interesting to note that this condition is also sufficient. To see this, given an f satisfying this growth condition, define p to be the closest point in D to -f/u for any values of the arguments with $|u| \geq 1$. Then extend p so as to be defined also for |u| < 1, so as to be continuous overall, and so as to have each of its values in p. Then set p is p in the above construction is bounded, we are not assured that $|h| \leq r$.

REFERENCES

- 1. S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand, New York, 1965.
- 2. J. Cronin, Fixed points and topological degree in nonlinear analysis, Math. Surveys, No. 11, A.M.S., Providence, 1964.
- 3. N. Dunford and J. Schwartz, Linear Operators, Part 2, John Wiley, New York, 1963.
- 4. E. Landesman and A. Lazer, Linear eigenvalues and a nonlinear boundary value problem, Pacific J. of Math., 33 (1970), 311-328.

Received September 13, 1971.

WAYNE STATE UNIVERSITY