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SUBGRADIENTS OF A CONVEX FUNCTION
OBTAINED FROM A DIRECTIONAL DERIVATIVE

PETER D. TAYLOR

Suppose R is a lower semicontinuous convex function on
a Banach space E. A new result is obtained relating the
directional derivatives of h and its subgradients: if I is a
tangent line at some point z in graph h then a hyperplane
can be found in E X R which supports epigraph h at a point
close to z and almost contains I. This theorem is applied to
get a formula for the directional derivative of h at a point
in terms of the derivatives in the same direction of subgradi-
ents at nearby points. This formula is used to obtain several
known results including the maximal monotonicity of the sub-
differential of h and the uniqueness of h with a given sub-
differential.

The main lemma takes a point n n a closed convex set
C, and a bounded set X, all in a Banach space E, and gives
conditions under which there exists a hyperplane which sup-
ports C a t a point close to z and separates C and X.

A proper convex function on a real Banach space E is a function
h on E with values in (—°°, +°°), not identically +°o, such that

h(Xx + (1 - X)y) ̂  \h(x) + (1 - X)h(y)

for x,y eE and 0 ^ λ <̂  1. A subgradient of h at x e E is an s e E*
such that

h(y) ^ h(x) — s(y — x) for all y eE .

This says that h(x) is finite and the graph of the affine function obtained
by increasing s by h(x) — s(x) is a supporting hyperplane to epigraph
h at (x, h(x)), where epigraph h is the convex subset of E x R con-
sisting of all points on or above graph h.

We let dh(x) denote the set of subgradients of h at x. This is a
weak*-closed convex subset of E* (which may be empty). The sub-
differential of h is the following subset of Ex E*:

dh = {(x, s): SGdh(x)} .

In [2] Rockefellar applied the methods and results of [1] to the
problem of existence of subgradients and showed that a lower semi-
continuous proper convex function on a Banach space has a subgradi-
ent at a dense set of points in its effective domain (the convex set
where it is finite).
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Our purpose in this paper is to obtain a relation between the
subgradients of a lower semicontinuous proper convex function h and
its directional derivatives, A consequence of this will be a formula
for the directional derivative of h at a point, in terms of the slopes
in the same direction of subgradients at nearby points. This formula
will allow us to reduce several questions about lower semicontinuous
convex functions on a Banach space to simple questions about convex
functions on the real line. In particular it will give us a proof of
the maximal monotonicity of the subdifferential of h and of the uni-
queness up to an additive constant of h with a given subdifferential.

The result contained in the following lemma and the method of
proof were inspired by [1, Theorem 2]. Following the notation of
that paper we define for / e # * , | | / | | = 1 and k > 0,

K(f,k)={xeE:\\x\\<kf(x)}.

Then K(f, k) is a closed convex cone and, if k > 1, has nonempty
interior; indeed any x for which ||α?|| < kf(x) is in interior K(f, k).

LEMMA 1. Suppose E is a real Banach space, C is a closed
convex subset of E containing a point z> X is a nonempty bounded
subset of E and N is a number such that

sup{\\z-x\\:xeX} ^N- 1 .

Suppose f eE* and let

δ = inf/(X) - sup/(C)

0 = sup/(C)-/(z).

Suppose

(1) 0<ε^l and Θ< — .

Then there exists w eC and g e E* supporting C at w such that
\\w — z\\ <̂  ε and sup#(C) < inf g(X).

Proof. From (1) δ > 0, so / Φ 0. By dividing / by | | / | | we
may (and will) suppose | | / | | = 1. (This does not affect (1) since both
θ and 3 are divided by | |/ | | .)

Let U be a ball of radius r, 0 < r <; 1, such that if X' = X + U
and δ' = mΐf(X') - sup/(C) then θ < δ'ε/2N. Let k = 2N/B'. We
n o t i c e k > 1 . I n d e e d i f x e X t h e n

δ ' <ς 8 £ f ( x ) - f(z) £ I l / H \\x - z\\ = \ \ x - z \ \ ^ N - l < 2 N .
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Using [1, Lemma 1] choose w e K(f, k) + z so that K(f, k) +w supports
C at w. Then weC and w — zeK(f, k) so that

\w - z\\ ̂  kf(w - z) ̂  kθ ̂ ψ ^ = ε .

Now we notice that X' c K{f, k) + w. Indeed if x e Xf then

\\x - w\\ g \\x - z\\ + \\z- w\\

<k N + kθ (r <̂  1) + (above calculation)

2 2N

< kδ' (since ε/N < 1)

Since k > 1, we have interior (ίΓ(/, Λ) 4- ^ ^ ^ and we can, by [3,
14.2], choose geE* with \\g\\ =1 and sup#(C) ^ inf g(K(f, k) + w).
Then

sup^(C) ^ inf g(K(f, k) + w) ^ ivfg(X') < infg(X) ,

the second inequality since Xr c K{fy k) + w and the third since
= 1 and r > 0.
If h is a proper convex function on E, and y, ue E, u Φ 0 and
< co, we define the derivative of h at y along u to be

h'(y; u) = lim [/ι(i/ + λu) — h(y)]/X .
no

Since Λ is convex the limit always exists.

THOREM 1. Suppose h is a proper convex lower semίcontinuous
function on a real Banach space E. Suppose ueE, uΦθ,yeE and
h(y) < oo. Suppose — oo < d <̂  oo and

( 2 ) h(y + tu) ^ λ(i/) + td for all t Φ 0 .

particular this is the case if h'(y; u) = d.) If ε > 0 then there
exists v e E and a subgradient s of h at v such that

(3)

(4)

and

(5.1)

(5.2)

\s(u)

s(u)

\\v-

\s(v -

-d\<

= e

υ)\£

ί ε (d

(d

ε

< oo)

= 0 0 ) .
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Proof. By translating h and adding a constant we may clearly
suppose y = 0 and h(y) = 0. Then we will be assuming

(2) ' h(tu) ^td for ί Φ 0

and trying to prove

(3) ' I M I ^ e

(4) ' I Φ ) l ^ ε

and either (5.1) or (5.2). Finally we observe that since u Φ 0 it is
enough to prove the theorem when | |u | | = 1. We also assume ε < 1.

We begin by assuming d — 0. In the Banach space E x R with
sup norm, let C = epigraph h, e = (0,1), u — (u, 0), X" = {tΰ: — l<^t^l}9

X' = X" - ε2e/24 and X = X" - εe/2. By (2)' the line {tΰ: t e R) lies
under C, so the convex hull C" of C and ^ is disjoint from X'. Since
X' is compact convex, and C is closed we can, by [3, 14.4], choose
fe(E x R)* such that sup/(C") < inf/(X')

We will verify the hypotheses of Lemma 1 for C, X and /, with
z = (0, 0), N = 2 and ε/2 instead of ε. Certainly since z = 0, ε <; 1
a n d l l^ l l = ||%|| = 1,

sup - x\\:xeX} = sup{| |α| |:a?eX} < sup j — , | | S | | | = 1 .j

Also if δ = inf/(X) - sup/(C) then

δ ^ inf/(X) - sup/(C")

> inf f(X) - inif(X') (by choice of /)

Hence

θ = sup/(C) - f(z) = sup/(C)

< i - = A_ (by above calculation) .
8 4iV

So by Lemma 1 we can choose weC and g e(E x J?)* supporting
C at w such that | |w| | = \\w — z\\ ^ ε/2 and

(6) suptf(C) <inίg(X) .

Let veE be the first coordinate of w; then | |t; | | g ]|w|| ^ ε/2 giving
us (3)'. From (6) g(e) Φ 0 and so {g = 0} is the graph of a linear
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function s on E. Since g is continuous the nullspace {g — 0} Π E of
s is closed and s is continuous by [3, 5.4]. So seE* and is a sub-
gradient of k at v. Let p be the function on E whose graph is
{g = g(w)}. Then s = p — p(0). Since graph p separates C and X,
it lies below (0, 0) but above the points (±u, — ε/2). Thus \s(u)\ —
Ip(v) — p(0) I ̂  ε/2, giving us (5.1). Finally we deduce (4)': since
p(V) is the second coordinate of w, \p{v)\ < \\w\\ ̂  ε/2. Since graph
p separates (0, 0) and (0, -ε/2), we have, 0 ^ p(0) ^ —ε/2 and there-
fore

\8(v)\ = \p(v) - p(0)| ^ |p(v)| + |p(0)| ^ e .

This completes the proof for d — 0. Now for arbitrary finite d,
choose 7 G £ * such that Ύ(U) =d and | |γ|i = d, (use Hahn-Banach).
Let h' = h-v. Then

h'(tu) = Λ(ίu) - 7(ίu) = fc(t^) - id ^ 0

by (2) ' . We can apply the theorem for d = 0 to /*/ and choose ve
E and s' e £7* such that s'(α? - v) ^ λ'(a?) - h'(v), and

\8'(u)\ £ ε .

Then sett ing s = s' + 7 we have

s(a? — v) — s'(cc — v) + y(x — v) ^ λ'(a;) — fc'('y)

also 11 v\\ g ε and

) | = \s'(v) + y(v)\ ^ \s'(v)\

and

\s(u) -d\ = \s'{u) + 7(w) - d\ = \8'(u)\ ̂  ε .

Finally we assume d — oo. Again we take the Banach space
E x R with sup norm and let C = epigraph h, e = (0, 1), u = (u, 0),
X " = {£e + ίε^/2: 0 ^ ί ^ 1}, X f = X " - ε2e/24 and X = X" - εβ/2. By
(2)' &(ίtt) - co for ί > 0, so the convex hull C" of C and X" is disjoint
from X'. Since X' is compact convex, and C is closed we can, by
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[3, 14.4], choose fe(ExR)* such that sup/(C") < inf/(X')
Just as in the case d — 0, we verify the hypotheses of Lemma 1

for C, X and /, with z = (0, 0), N = 2 and e/2 instead of ε. Certainly

sup{|| x\\:xeX} = max{|^£||, | ( l - ±)e + | | | } ^ 1

since ε < 1 and | |β| | = \\ΰ\\ = 1. The computation that 0 < de/AN
is identical with that for the case d = 0. Therefore by Lemma 1 we
have weC and ge(E x ϋ?)* supporting C at w such that ||w|| ^ e/2
and

(6) sup^(C) <mΐg(X) .

Let ve E be the first coordinate of w; then \\v\\ ^ ||w|| ^ e/2 giving
us (3)'. From. (6) and the fact that -ee/2 e X and (0, 0) e C, we deduce
g(e) Φ 0 and so {g = 0} is the graph of a linear function s on E.
Since # is continuous, the nullspace {g — 0} Π E of s is closed and s
is continuous [3, 5.4]. So seE* and is a subgradient of /& at v. Let
p the function on E whose graph is {g = g{w)}. Then s = p — p(0).
Since graph p separates C and X, graph p lies below (0, 0) but above
(eu/2,1 - e/2). Thus p(eu/2) - p(0) ^ 1 - e/2. We deduce

giving us (5.2). Finally we deduce (4) ' by an argument identical to
that for the case d — 0. This completes the proof of Theorem 1.

If h'(y; u) = d then Theorem 1 gives us a subgradient s at a point
close to y whose derivative s(u) along u is arbitrarily close to d. It
is natural to ask whether the value of h'(y; u) is determined by the
derivatives along u of subgradients of h at points close to y. In
case h is finite and continuous one has the following simple formula
[7, p. 65]:

(7) h'(y; u) = max {s(u): s e dh(y)} .

One can deduce this formula by noticing that the convex hull of
epigraph h and the tangent line through (y, h(y)) in direction u with
slope h'(yy u) is a convex body with boundary point {y, h(y)), hence
by [6, p. 72, Prop. 3], has a hyperplane of support at (y, h(y)).

If h is only lower semicontinuous, (7) makes no sense since dh(y)
may be empty. But one can still try to get a formula by using some
notation of "approximate subgradient". This general idea and our
notation are from Rockafellar [2, 3.3]. (But our dεh is not the same
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as his,) For yeE and ε > 0 we define

{s£E*:lxeE with s edh(x), \\x — y\\<ε and \s(x-y)\<ε} .

COROLLARY 1. If h is a proper convex lower semicontinuous
function on a real Banach space E and if y,ueE,u Φ 0 and h(y) <
oo then

(8) h'(y; u) = lim sup {s(u): s e dεh{y)} .
ε->0

Proof. Theorem 1 tells us that the limit is at least as big as
h'(y;u). In case h'(y;u) = oo we are finished. In case d = h'(y;u)
is finite, we get the reverse inequality by choosing any ε > 0. Then
we can find t > 0 such that

h(y + tu) < h(y) + t(d + e)

and we can choose λ such that 0 < λ < tε and

\\x - y\\ < λ = — h(x) > h{y) - tε

(by the lower semicontinuity of h). Then if \\x — y\\ < λ and se

dh(x) wi th I s(x — y) \ < λ we have

h(y +• tu) ^ h(x) + s(# + ίw — x)

= h(x) + ts(u) + s(y - x)

> h(y) - is + ts(u) - λ

> λ(i/ + tu) - ί(d + ε) - tε + ίβ(w) - λ

> h(y + tu) - td + ts(u) - Stε .

Since t > 0, s(w) < d + 3ε, and since ε is arbitrary the limit is less
than or equal to d.

Several known results follow easily from Corollary 1. In parti-
cular two of the results of [2] about lower semicontinuous proper
convex functions on Banach spaces are obvious corollaries. The first
of these results is that the set of points where such a function has
subgradients is dense in its effective domain; the second [2, condition
(B)] is that such a function is the supremum of the supporting affine
functions determined by its subgradients. To get the second, one
must use again the lower semicontinuity of h.

The following corollaries were first announced in [4] but as was
pointed out in [5], the proofs given were incomplete. The proofs
given in [5, Theorem A and Theorem B] depend upon results about
conjugate convex functions.

It is easy to show that the subdifferential of a convex function
h is a monotone relation i.e.,
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(x, a) and (y, β) e dh -=> (a - β)(x - y) ̂  0 .

COROLLARY 2. [5, Theorem A]. If h is a lower semicontinuous
proper convex function on a Banach space E then dh is a maximal
monotone relation on E x.E*.

Proof. We follow the argument of [4, Theorem 4] up to (5.6).
The argument first observes that it suffices to show that if (0, 0) g dh
then there is (x} s) e dh such that s(x) < 0. It then shows that (0, 0) g
dh implies the existence of y e E, y Φ 0 such that h(y) < oo and d =
h'{y, —y)>0. Using (8) we choose x e E and s e dh(x) such that
J Φ - y)\ < d/2 and s(-y) > d/2. Then

8(α?) = s(x -y) + s(y) < - | - j£ = 0 .
Δ Δ

COROLLARY 3. [5, Theorem B]. If f and h are lower semicon-
tinuous proper convex functions on a Banach space E and if df =
dh then f and h differ by a constant.

Proof. If df = dh then first of all / and h have the same effec-
tive domain. Indeed, by the result of [2] previously quoted, the set
where / (or h) has subgradients is dense in its effective domain;
since the effective domains are closed (lower semicontinuity), we con-
clude they are equal. Since df = dh, dεf(x) = dεh(x) for all x e E and
ε > 0. Hence by Corollary 1, if u Φ 0 then f'(y; u) = h'(y; u) when-
ever / and h are finite at y. Suppose x Φ y. and / and h are finite
at x and y. Let u = x — y. Then the convex functions f(t)—f(y + tu)
and h(t) •= h(y + tu) are finite and lower semicontinuous on [0,1] and
have the same right derivative. Hence

/(I) -7(0) = [H)dt = [H)dt - Ml) -
Jo Jo

and so f(x) — f(y) = h(x) — h(y). (It is not hard to prove the above
"Fundamental Theorem of Calculus" for finite lower semicontinuous
(hence continuous) convex functions on a closed interval. The super-
script r means right derivative).

REMARKS. I am grateful to Professor Rockafeller for his interest
in this paper. He supplied the simple proof of Corollary 1 and pointed
out the possibility of applying Theorem 1 to get the results of [2].

I am also grateful to the referee for pointing out several places
where the results could be expanded or where the style could be
improved.
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