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ABEL SUMMABILITY OF CONJUGATE INTEGRALS

STANTON PHILIPP

It is proved here that the conjugate Fourier-Stieltjes
integral of a finite-valued Borel measure μ on Euclidean k
space, k ^ 1, taken with respect to a Calderon-Zygmund kernel
in Lip α, 0 < a < 1, is almost everywhere (with respect to
Lebesgue measure) Abel summable to the conjugate function
of μ taken with respect to the above mentioned kernel. This
has been already established for k ^ 3 and for k even.

We make the following assumptions: k is a positive integer; 0 <
a < 1; Ω e Lip a(S), where S denotes the (k — l)-sphere in Λ-dimen-

sional Euclidean 'space Ek; \ Ω(y)dS(y) = 0, where dS refers to the

natural measure on S; and μ is a real Borel measure on Ek as defined
in [3].

Let K{x) = Ω(x/\x\)\x\~k for each nonzero x in Ek (we use \x\ for

the usual norm and x y for the usual dot product and dx for Lebesgue

measure, all in Ek). For y in Ek, set μ(y) = (2π)"k \ e~ix'ydμ(x) and

K(y) = (2π)~k lim (
0e-»0

R-*oo

It is known [5, p. 69] that K is bounded on Ek. We define, for t > 0
and x in Ek>

f ~
J f(#) = (27r)&\ e~~tlylk(y)μ(y)etx'ydy .

We shall prove the

THEOREM. lim It(x) - I ίΓ(α; — y)dμ{y)\ = 0
ί-»o L J\y-χ\>t J

except on a set of Lebesgue measure zero in Ek.

If k = 1, the theorem is classical (see [8, p. 103] for the essence
of the matter). The case k = 2 and 1/2 < a < 1 was treated in [4].
The cases in which 0 < a < 1 and k ..= 3 or A; is even were handled
in [2]. Further references and motivation for the theorem are given
in [2] and [4]. The proof given in the present paper covers all cases
with 0 < a < 1 and k ^ 3; modifications could be made in the proof
to cover the cases k = 2, 0 < a < 1 and k = 1, but this seems point-
less.
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Proof of the theorem. Assume k 2g 3. Define, for t > 0 and n =
1,2, ••-,

( 1 ) Hi(t) =

where JM_1+i/2(s) denotes a standard Bessel function of first kind. We
assume throughout that t > 0. It follows from (1) and [6, p. 385]
and [7, p. 282] that for n = 1, 2, ••-,

0 52 H*(ί)

JiίW

-j- — )(ί2 + iyn+k)/2 \ Δ Δ Δ

Here and throughout JF\a, 6; c; a?) refers to Gauss' hypergeometric
series. Let the series of spherical harmonics associated with Ω(ξ) be
Σ?=i Yn(ζ)> Let ω denote the (k — l)-dimensional volume of S and
let ξ be a point of S. We shall use the symbol A generically to
denote any positive constant which depends only on Ω and k. Let
λ = (k — 2)/2. The Gegenbauer polynomials Pi(cos Θ) are defined in
[5]. By (2) and the boundedness of Ω and the fact [1, p. 245] that

(3) Pi(cos θ) I S Pi

for n — 0, 1, 2, and 0 fg θ ^ π, we may write

Σ Ή(t)Y.® = Σ flίίίj^

By the concluding argument given in [2], we see that in order to
prove the theorem it suffices to prove that

( 5 )

So we define a kernel Kt{&)

( 6) Kt(θ) = ]

At* .
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for 0 ̂  θ ̂  π. Now

(7) i Kt(ξ-y)dS(y) = l,

as may be seen from (4). It follows from (4), (6), and (7) that

(8) Σ Ή(t) Yn(ζ) - Ω(ξ) = ̂ \[Ω{y) ~ Ω(ξ)]Kt(ξ.y)dS(y) .

Notice that if we can establish that

for 0 <£ θ ̂  7Γ, then it will follow from (8), (9), and the Lipschitz con-
dition on Ω that

- Ω(ζ) \Kt(ξ.y)\-\y- ξ\βS(y)\
S

< A t

That is, once we prove (9), then (5) follows and we are done.
Now define

(10) P»(s, t) = [*e-tyys^Jv{sy)Uy)dy
Jo

for v > -(1/2) and s > 0. The relations

(11) JXx) - 0(x~112) as x -> oo, JΓv(aj) = O(^) as a; -> 0+ ,

which are valid for each v > —(1/2) and are proved in [6], will be
useful to us. Using (10), (11), Fubini's theorem, the change of vari-
able sy = r and [6, p. 391], we obtain that

ί V- 3 ' 2P% +,(s, t)ds
(12) J° f . f .

= e-tyy^Jn+λ(y)dy\ r"^Jn+λ(r)dr = Hi(t)
Jo Jo

for n ^ 1. It follows from (6) and (12) that

(13) Kt{θ) = 1 + Σ ^ - ^ -
l λ

for 0 ̂  β ̂  π. By Gegenbauer's addition theorem [6, p 363] we may
write
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(14)

! - 2s cos 0 + 1) sx+ll2yx+1e~ty

(s2 -2s cos θ + l)λl22λΓ(X + 1)

= Σ

for y > 0, s > 0, 0 ^ θ ̂  π. Because of (3) and the inequality [6, p.
49]

Ax ,n+λ

" Γ(n + λ)

valid for x > 0 and n ^ 0, we may integrate the right member of
(14) term by term with respect to y over (0, oo). So, by integrating
both sides of (14) with respect to y over (0, oo) and then using (10)
in the right member and [6, p. 391] in the left member, we obtain
that

(15)
, + Άλt(z - cos θ)-χ~3!2

2 i + 1 / 2 Γ(λ + l)ττ ι/2s

for 0 S θ ^ 7Γ, s > o» where

(16) 2 = + 1
2s

for s > 0. We shall adhere to the notation (16). It follows from [6,
p. 389] and [7, pp. 317 and 281] that

.-•,-3/2

(17)
1)"

2"+3/2ττI/2Γ(y + 2)

+ 1;

: y + 2; z~

for y > 1/2 and s > 0. Proceeding formally, we multiply both sides
of (15) by s~J~s/2 and integrate with respect to $ over (0, oo) term by
term in the left member; using (13), the result is that

(18)

a-l-tl%

A ) ί ( 2 - COS θ).—Λ—3/2

l )π" 2 s
ds
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for 0 ^ θ Ss π. To justify this formal procedure, we observe that, by
(17), Pn+z(s, t) ^ 0 for n ^ 1, $ > 0; therefore, by (3), (15) and Fubini's
theorem, we can be sure that (18) holds if the integral in the right
member of (18) is a finite Lebesgue integral when θ = 0. But it fol-
lows from (17) that for fixed t and θ — 0, the integrand in the right
member of (18) is 0(1) as s~*0; and by (10) and (11), this same
integrand is O(s~λ~m) as s—>°o. Therefore (18) holds.

We proceed to estimate the right member of (18) by using the
expression for Pλ(s, t) given by (17). Observe that if s>0 and \s — 1| ^
1/2, then z ^ 13/12; and recall that the radius of convergence of the
hypergeometric series is at least one. Therefore, using [7, p. 299,
Ex. 18], we may write

(19) F\—2^' —2^' X + 1; ZJ = X + Ψ{Z) '

where

(20) \φ(z)\^Az-* for I s - l U - l , s > 0 ,
Li

and

(21) \φ(z)\ ^ A log (1 - z~Tι for | 8 - 1 |< i .
Δ

It follows from (20) and (21) that

(22) [ V ^ ί r ^ r W ώ = 0(ί) as t -> 0 .
Jo

We conclude from (17), (18), (19), and (22) that, as ί~>0,

(3) Kt{θ) = O(t) + B(t, θ)

for 0 ^ θ ^ 7Γ, where we have set

( 1 > r
(24) B(t>θ) = &+» w ( f + 1 ) L s~'~m[{z ~cos

f or 0 ^ θ ^ 7Γ and

2)

x 8-i- / a r ^ / ^ £, £, x + 2;



698 S. PHILIPP

By the mean value theorem we may write, for 0 ^ θ ^ π,

B(t, θ) =

(26)

dS)

o z(z — cos θ)

where w lies between 2Γ1 and (2 — cos 0)"1. If π/2 <̂  0 <̂  7Γ, we obtain
from (26) that

^-i-f—)
0 zr \ z J

If 0 s; 0 ^ π/2, we obtain from (26) that

I B(t, θ) I ^ o z(z —

J-~Γ(s -
ds

[(s - cos (9)2 + ί2 + si

(f + sin2 Θ)kl2

It follows from these estimates that

3\ I JΆΛ/

(27)
((- + s t a . | ) '

for 0 £Ξ (9 ̂  π. Now we wish to estimate ψ(t). It is shown in [7,
pp. 286 and 282] that

_JL,__A
(28) * x + λ λ + 4

/•« 2\—1 jp\ " £_• Λ I O . -—2

and

(29) lim λ—^ , —^ λ + 2; J =
«—o \ 2 2 /

where
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Γ(X + 2)

699

L =
+ 5/2Wλ + l/2\

2 / V 2 /

So, by (25) and (28), we have that

1 -
2).

(30)
I { λ + •—

2*+3/V/2Γ(λ + 2) Jo

x

+l/2X+3/2.
. λ

1 - z~
ds

Using (29), [7, p. 281], the mean value theorem, and then estimates
of the type (20) and (21), all in the second term of the right member
of (30), we obtain after simplifying the gamma functions which occur
in the first term of the right member of (30) that

(31)
7Γ Jo

as t—>0. It follows from (31) and (16) and the change of variable
s = 1 + xt that

ψ(t) = O(t)
π

x iγ + A

(32) = O(t) + 1 - 2*+3'2-i
π Jo

+ tz +

s

- I)2 + ί^cfe

/• Γ3/2

= O(ί) + 1 - 2^+3/2— (s2 + ί2 + l)- ;-3/2[(s - I) 2 + tT'ds
π Ji/2

= o(t)
7Γ J-1/2 1 + α;2

as ί —* 0. So, assuming as we may that 0 < t < 1/4 and using the
binomial theorem, we obtain from (32) that

(33)
7Γ J - :

(λ + 3/2) f ̂  f + α?2f + ^ r f g

27Γ J-i/2* 1 + α;2
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+ U"' O((f + xΨ + 2xtγ)dχ

π J-i/2ί 1 -f x2

= O(t) + 0{t) + O(t) + O(ί) = O(ί)

as £->0 Finally, (9) follows from (23), (27), and (33).
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