
PACIFIC JOURNAL OF MATHEMATICS
Vol. 44, No. 2, 1973

INVERSE SYSTEMS OF GROUP-VALUED MEASURES

HUGH MILLINGTON AND MAURICE SION

In this paper a basic theory is developed for inverse (or
projective) systems of group-valued measures. This theory
parallels the one for nonnegative measures. However, many
of the results are new even in the real case.

The main tools for dealing with group-valued measures
are the concepts and results given by Sion in "Outer measures
with values in a topological group", Proc. London Math.
Soc, 19 (1969), 89-106. When dealing with inverse systems
the point of view adopted is that of Mallory and Sion,
"Limits of inverse systems of measures". Ann. Inst. Fourier,
Tome 21, Fasc. 1 (1971) 25-57. This viewpoint involves find-
ing a limit measure first on a large space A and then studying
conditions under which this will yield a limit measure on some
subset of Λ, By introducing the concept of almost-sequential
maximality, this paper not only extends known results but is
also able to indicate a connection between "abstract" and
"topological" methods for producing a limit measure.

In the last section the results obtained are applied to
cylinder measures. Here again the viewpoint adopted differs
somewhat from the usual one, even for nonnegative measures,
and enables one to study a variety of possibilities for a
target space on which to place a limit measure.

O* Notat ion and basic notions* Throughout this paper, ω is

the set of nonnegative integers, R is the real line, Γ is a com-
mutative, complete, Hausdorff, topological group with identity o under
the operations + and —.

For any sets A and B,

A ~ B = {x: x e A and x ί B}

For any subsets A and B of Γ and new,

A + B = {x + y: x e A and yeB},

nA = A + + A (n terms) .

DEFINITION 0.1. For any family £ίf of sets, Sίf is ω-compact
iff every countable subfamily of 3$f with the finite intersection pro-
perty has a nonempty intersection.

DEFINITIONS 0.2. For any function ξ on the family of all sub-
sets of some space Ω to Γ,
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(1) A is ξ-measurable iff A c Ω and, for every

Γ c Ω, ξ(T) = ξ(TΠ A) + ( Γ ~ A) .

(2) Mξ = {A: A is ξ-measurable}.
(3) A is ξ-null iff A c Ω and, for every α c i , ζ (a) = o.
(4) ξ is an obiter measure on 42 iff.

( i ) jflfe is a σ-field and £ is σ-additive on Mξ,
(ii) for any A c 42, ξ(A) — limit ξ(a) as α runs over

{aeMξ: A c α } directed by 3 .

DEFINITION 0.3. For any function τ on a family s*f of sets to
Γ and SίfCLSsf, <§ίf is an inner family for τ iff, for every Aejzf
and neighborhood £7 of τ(A), there exists He<^ such that i J c A
and, for every α e j ^

i ϊ c α c A = > τ(α) e C7 .

DEFINITION 0.4. For any topological space Ω, ξ is a Radon outer
measures on 42 iff £ is an outer measure on 42 such that

( i ) closed sets are f-measurable,
(ii) the closed, compact sets form an inner family for (ζ/Mξ).
In the sequel, we shall need the following theorems which gener-

alize well-known results for real-valued measures.

THEOREM 0.5. Let J^ be a field of subsets of a space Ω and T

be a σ-additive function on Ssf to Γ such that, for any monotone
sequencea) a in jzf, \\mn τ(an) e Γ. If

τ'{ U an) = limΛ τ(an) for an c an+1 e

and, for any Ad Ω, τ*(A) = limit τ'(β) as β runs over

{β e J%fo: A c β} directed by 3

then T* is an outer measure on Ω such that jzfaMτ* and τ%lj^f— r.

Proof. See Sion [11] Theorem 3.3.

THEOREM 0.6. Let Ω be a regular topological space, 3ίΓ be the
family of closed, compact subsets of Ω, and τ be a σ-additive function
on <5Γ to Γ such that

( i ) for any ascending sequence C in J^7 limw(CΛ) eΓ,
(ii) for any neighborhood U of o and C e J%^ there exists an

open G such that CaG and, for every C'e

1 Depending on context, letters (a, E, etc.) may denote a single set or a sequence
({an}, {En}) of sets.
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CcC'cG=-r(C) - τ(C')e U.

If, for any open G, p'{G) = limit τ(C) as C runs over

{CeJ??~: CaG} directed by c and, for any A c ί 3 ,

p(A) — limit ρ'(G) as G runs over

{G: G is open and AaG} directed by Z) ,

then p is a Radon outer measure on Ω and (p/J%^) = τ.

Proof. See Sion [11] Theorem 6.3.

LEMMA 0.7. For any outer measure ξ, Ae Mζ iff, for every
neighborhood U of o, there exist AT, A" e Mζ such that i ' c i c A!f and
{a(zA"~ A'=>ζ(a)e U).

1. Inverse systems of abstract measures. Throughout this paper,
^ is an index set directed by a relation <;
(S, r) is an inverse system of spaces indexed by ( ^ <)> ί e >

SE is an abstract space for Ee^ί
rE,F- SF —> SE is sur jective for E < F,
rΈiΈ is the identity map,
rEG = rEF°rFG for E < F < G;

{A, p) is a limit of (S, r), i.e.,
A is an abstract space,
pE: Λ—>SE is sur jective for E e ̂ 7
VE = rEFopF for E < F;

μ is a system of outer measures on S, i.e., for each Eej^,
μE is a .Γ-valued outer measure on SE and M^ = MμE*

DEFINITIONS 1.1. (1) μ is an inverse system of measures over
(S, r) iff, for E, FeJ^ w i th # < F and 4Gikf^,

r ^ [A] e MF and /^^(rii [A]) = μE{A) .

(2) μ is monotone iff, for any ascending sequence £7 in ̂ ~ and
any sequence A with

An G ME% and r^^ [An] c Aw+1 for n e ω ,

we have lim% μEn(A) e Γ.

Note: Any inverse system of nonnegative measures is monotone.

DEFINITION 1,2. For any ΩaA,

(1) ξ is a Zΐmiί of μ on ί2 iff f is a /"-valued outer measure on
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Ω such that, for every Eej^ and AeME,

(Ω n pΫ [A]) € Mξ and ξ(Ω n PΫ [A]) =

(2) Cylfl= {ΩΠPE1[A\; EeJ^ and
(3) τΩ is the function r on Cyl £? such that

Π Pi1 [A]) = μE{A) for # e j ^ " and AeME .

(4) τ^ is the outer measure on Ω generated by τΩ as in
Theorem 0.5.

REMARKS. (1) Cyl Ω is a field of subsets of Ω.
(2) τΩ is well defined iff, for every ί ? G ^ and 4eJlί£,

β Π PE'IA] = ψ ™ /^(A) - o

(This will clearly be the case if pE[Ω] = SE for
(3) When τΩ is well defined, it is finitely additive. Moreover,

if μ is a monotone inverse system of measures then, for any monotone
sequence a in Cyl Ω, lim% τΩ (an) e Γ\ For such a μ therefore, by
Theorem 0.5, we see that τ% is well defined iff τΩ is σ-additive, in
which case τΩ is an outer measure on Ω which extends τΩ.

Assumption 1.3. For the remainder of this section, we suppose
μ is a monotone inverse system of measures over (S, r).

Remark (3) above then yields immediately the basic result.

LEMMA 1.4. For any ΩaΛ9 there exists a limit of μ on Ω iff
τΩ is σ-additive, in which case r j is such a limit.

In view of the above lemma, all the known theorems about the
existence of a limit of μ on Λ when Γ — R can be extended to the
general situation discussed here with little or no difficulty. For the
remainder of this section, we consider a problem which has received
little attention in the literature, except in special cases, namely that
of finding conditions under which the existence of a limit of μ on Λ
implies the existence of a limit of μ on a subset of A.

We first note the following key lemma.

LEMMA 1.5. Suppose τΛ is σ-additive, λ = r* and Ω c A. Then
τΩ is σ-additive iff X(Ω Π B) = X(B) for B e Cyl A.

Proof. (1) Suppose τΩ is σ-additive and Be Cyl A.
For any ascending sequence β in Cyl A with
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since Ω Π βn e Cyl £?, we have

limnτA(βn) - lim.τ^Ω n βn) = τΩ(Ω f] B) = τΛ{B) = \(B) .

We conclude therefore λ(β Π B) = X(B).

(2) If X(ΩΠ B) = λ(5) for .BeCylΛ then the restriction of λ
to the subsets of Ω is clearly a limit of μ on 42 and hence τβ is σ-
additive.

We then have the following.

THEOREM 1.6 Suppose τΛ is σ-additive, λ = τf αmZ Ω a Λ. If,
for any ascending sequence E in ^ 7 the set

N{E)

= {f eΛ: There does not exist geΩ with pEn(g) = Pnn(f) for all neω}

is X-null then τΩ is σ-additive.

Proof. We shall show that the hypothesis implies that any
sequence β in Cyl Λ which covers Ω must cover almost all of Λ.
Indeed, let βn = p^\[An] with En < En+ι and AneMEn for neω and

βClJ .eA
Then we must have

Λ~ U βndN(E)
neω

for, if feΛ and there exists geΩ wi th pE%(g) — Ί>En{f) ^ o r a ^ nεω

then, since g e βm for some me a), we have

PEJJ) = PEJQ) e A w , so fep-E\ [Am] = βm

Since iV^) is λ-null, we conclude

and therefore, for any BeCylΛ, X(Ω Π B) = λ(J3). Application of
Lemma 1.5. then yields the desired conclusion.

We now state conditions on Ω in terms of the system μ, rather
than in terms of the limit λ, which guarantee the existence of a
limit of μ on Ω.

DEFINITION 1.7. For any neighborhood U of o, Ee^" and
AdSE, A is U-small iff, for every FeJ^ with E < F,

a c rEl

F [A] = > μF(a) e U.

DEFINITIONS 1.8. For any ΩaΛ,
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(1) Ω is sequentially maximal iff, for every ascending sequence
E in ^ and sequence / with

fn e SEn and rEnEn+ί(f»+d = /» ΐoτ neω ,

thers exists a g e Ω with pEn(Q) = /» for all τι e ω.
(2) β is almost sequentially maximal iff, for every neighborhood

U oΐ o and ascending sequence i? in _^7 there exists a sequence A
such that

( i ) Λ, e ME%, r^nEn+ι [An] c An+1 and AΛ is tZ-small for n e ω,
(ii) for any sequence / with

fn eS*w - An and rEnE%+ι(fn+1) = Λ for weω,

there exists s, geΩ with p^(^) = /» for all neω,

DEFINITIONS 1.9. For any family ^ of subsets of Λ,
(1) μ is ^-tight iff, for every neighborhood £7 of o, there exists

C e ί f such that (SE ~ pE[C\) is C7-small for every Ee^.{2)

(2) μ is sequentially ^-tight iff, for every nighborhood U of o
and ascending sequence ϋ7 in /, there exists C e ^ such that (SE% ~

is [/"-small for every neω.

REMARK. The condition of sequential maximality is extensively
used in the literature in connection with finding a limit of μ,
especially when dealing with abstract measures, (see, e.g. 2, 3, 4, 5).

However, as the observation at the end of § 3 shows, such a
condition is much too strong to be useful in many applications. Hence,
when dealing with topological measures, one finds the condition of
tightness frequently used (see, e.g. 7, 8, 9, 10).

No relation seems to exist between the two approaches. By using
the weaker concepts of almost sequential maximality and of sequential
tightness, introduced above, we show the connection between the
two notions while extending known results even when Γ = R.

THEOREM 1.10. If μ has a limit on A and Ω c A is almost
sequentially maximal then μ has a limit on Ω.

Proof. We shall show that the hypothesis of Theorem 1.6 is
satisfied. Let λ = τj, E be an ascending sequence in j ^ ~ and

βa{f G A: there does not exist g eΩ with pEn(g) = PεJLf) ̂ o r a ^ n e ω)

To see that X{0) = o, given any neighborhood U of o, let A be
2 See Ch. I of the forthcoming book by Laurent Schwartz "Radon measures on

topological spaces." Tata Institute, Bombay.
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a sequence satisfying Conditions (i) and (ii) of Definition 1.8.2. Then

for any keω,

k

U PE\ [An] = pγk [Ak]

and for any a e Cyl Λ,

a c pE\ [Ak] = > τ^ (α) G U .

Hence λ(/S) e closure U. Since ί7 is arbitrary, we conclude λ(/9) — o.

THEOREM 1.11. Suppose ΩczΛ and ^ is an co-compact fa,mily
of subsets of Ω such that, for Ce ̂  Eo.JF' and feSE, pE[C]eME

and (C f] pΫlf]) e ^ . // μ is sequentially ^-tight then Ω is almost
sequentially maximal.

Proof. Given a neighborhood U of o and an ascending sequence
E in ^ 7 choose C 6 ̂  so that

£2^ ~ P^n [C] is Z7-small for n e ω ,

and let

A n - & M - p E n [C] .

Since

PEJC] =rEnEn+1[pBn+ι[C]]>

we have

rB1

nEn+1lAn] c A w + 1 .

Given any sequence / with

fn e SEn - An and ^ , ^ + 1 (Λ+i) = /» ,

we see that, for any /b e ω,

p~E\[fk\ccn ή p iLΛJ .
t ι 0

Therefore

i.e., there exists geCczΩ with 2^(0) ='/« for all neω.

COROLLARY 1.12. Suppose μ has a limit on Λ, Ω c A and & is
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an ω-compact family of subsets of Ω such that, for Ce ^ Ee
and feSE, pE[C]eME and C Πp^lfje^. If μ is sequentially
tight then μ has a limit on Ω.

2. Radon systems* We suppose now that, for each ί / e X SE

is a topological space and J%E is the family of closed, compact sub-
sets of SE.

DEFINITION 2.1. μ is a Radon system iff, /ί is a monotone,
inverse system of measures such that, for each Ee^,

( i ) closed subsets of SE are /^-measurable and
(ii) for every A e ME and neighborhood U of o, there exists

such that C c A and (A ~ C) is [/-small.

For Radon systems, we have the following fundamental result.

THEOREM 2.2. Let μ be a Radon system and rEF be continuous
for E < F. If A is almost sequentially maximal then τΛ is σ-additive.

Proof. Let β be a descending sequence in Cyl Λ with

lim τΛ (βn) Φ o .

We shall show that ΓLe<A Φ Φ Choose a neighborhood U of o and
Ne ω so that τΛ{βn) <g ZU for n> N and let

βv+» = PEl

n[Bn] wi th En < En+1 and Bn e ME% .

Next, choose a sequence A satisfying Conditions (i) and (ii) of Defini-
tion 1.8.2 of almost sequential maximality. Thus,

μB% (Bn ~ An)$2U and (Bn+ι - An+1) c rγnEn+1 [Bn - An] .

Let V be a sequence of neighborhoods of o with

TjVidU f or n e ω

and, by recursion, choose Cne3fEn so that Cn(~Bn~ An9

Cn+1 c rElEn+l [Cn] ,

μEn(cn) + Σ V* <t u so cn Φ 0 .
£0Σ
£=0

Since {pi^[CJ; tiGO)} forms a filter base, let <%f be the ultra filter
induced by it. Then pEn \^f\ is an ultrafilter in Cn and hence there
exits fneCn with fn = limit pEn\Sίf\. Since rEf|ί.Λ+1 is continuous, we
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have

^EnEn+1 (fn+l) — fn

hence t h e r e exists geΛ such t h a t pEn(g) ==/» for neω, i.e.,

REMARKS. Even when Γ = iί, the above theorem extends known
results in that it uses the weaker hypothesis of almost sequential
maximality instead of sequential maximality. As we shall see, this
is crucial in connecting "topologieal" and "abstract" methods for
getting limits. Variations of it involving weaker conditions on the
rEF and replacing the KE by more general families as in [3], [4], can
also be obtained by using slightly different arguments than those
used in the above proof.

We now turn our attention to some ί 3 c ^ on which a topology
is given and try to determine when μ has a Radon limit measure on
Ω.

Assumptions 2.3 For the remainder of this section, we as-
sume SE is a Hausdorff, regular, topologieal space for Ee^;
rEF is continuous for E < F;

f,geA and f Φ g —> pE(f) Φ pE(g) for some Ee^~\

Ω c A, Ω is a regular topologieal space and pE[Ω is continuous for
Eef; μ is a Radon system.

Thus, Ω is a Hausdorff space and we let J%1 be the family of
compact subsets of Ω.

Our main tool for constructing a Radon measure on Ω is Theorem
0.6. The following lemma enables us to check that the hypotheses
of the theorem are satisfied.

LEMMA 2.4. Suppose τΛ is σ-additive and λ = τj . Then
(1) λ is σ-additive on 3ίΓQ.
(2) for any C e J%2 and neighborhood U of o, there exists an

open G e Cyl Ω such that CaG and

- X(A)e U,

(3) for any Ce^TΩ,

λ(C) = limit μF(pF[C]) as F runs over

Proof. Let ^ denote the family of subsets of A which are
compact in the weakest topology on A under which pE is continuous
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for all Ezjr. Then ^
(1) We first check that λ is finitely additive on <g" Indeed,

given disjoint C, C'e^, since the open elements in CylΛ form a
base for the topology on Λ, we can find a J?eCylΛί with CaB and
C n B= 0 . Since B e Mλ, we get λ(C U C) = λ(C) + λ(C'). The σ-
additivity of λ on KQ then follows from the fact that, for any ascending
sequence a, MUneω^n) = limwλ(αn) (see Sion [11] Th. 3.3]).

(2) Given C G ^ and neighborhood U of o, from the definition
of λ, there exists a sequence B in Cyl A which covers C and such
that

c U ^ = - \{A) - λ(C) G U.

Let F be a sequence of neighborhoods of o with

Σ^cί/ for i e α ) ,

B» = VΊ\[βn] with Ene^r a n d βneMSn.
Since /̂  is a Radon system, for each neco, there exists an open

7nczSEn such that βnd7n and (Ύn~βn) is V^-small. Since Ce^
there exists fc e ω such that if

then CaG. Moreover G is open, G e Cyl yl and

C c A c G = > λ ( A ) - λ(C)G2 U.

Note that if C c β t h e n C c (G Π β), (G Π Ω) is open in Ω, and

(3) Choose any E G &~ with En < E for n = o, * , k and let

7 - U r U t7-]
Λ=0

Then G = pΐ 1 ^] and, for any FeJ?~~ with E < F and any αGikfF

MctfM = G
M) -λ(C)G2?7

—=> jMF(α) - λ(C) G 2 ?7.

and therefore

REMARKS. When τΛ is σ-additive and λ = rί, (1) in view of]
Lemma 2.4 and theorem 0.6, we see that (λ/J^) generates a Radon



INVERSE SYSTEMS OF GROUP-VALUED MEASURES 647

outer measure p on Ω.

(2) Lemma 2.4.3 gives a characterization of (λ/J^) directly in
terms of μ, which poins out that, when Γ = R, the processes for
constructing a Radon limit measure followed respectively by Mallory
and Sion in [4] and by C. Scheffer in [9] are essentially the same.

Putting all the pieces together, we get the following.

THEOREM 2.5. μ has a Radon limit on Ω iff μ is J^ -tight.(3)

Proof. (1) Suppose μ has a Radon limit p on Ω. Then, for
any neighborhood U of o, there exists C e Sΐl such that

a c Ω ~ C ===> ρ(a) e U.

For any Ee^, since

flΠp^ίS*- PE[C]]<ZΩ~ C,

we see that (SE ~ pE[C\) is ZJ-small. Thus, μ is St^-tight.
(2) Suppose μ is ^ - t i g h t . Then, by Theorem 1.11, Ω and

hence a fortiori Λ is almost sequentially maximal so, by Theorem 2.2,
τΛ is σ-additive. Let λ = τj and, using Lemma 2.4 and Theorem 0.6,
let /? be the Radon outer measure on Ω generated by (λ/^%ί). We
shall check that p is a limit of // on Ω. Let Ee^Γ, AeME and

(2a) To see that a e Mp, given any neighborhood U of o, choose
a compact A' and open A!f such that A' c A c A" and (A" ~ A') is
Z7-small and let a' = Ωf) p^ [A'] and cί' = ^ίτ [A"]. Then α', α" 6 Λf̂ ,
af<za<za" and, for any Ce 3ΓQ, by Lemma 2.4.3, Caa"~a' => ρ{C) ~
λ(C) G ί7. Hence, for any β c α" ~ a\ we have ρ(/S) e 2Z7. Thus, by
Lemma 0.7, α € Af̂ .

(2b) To see that p(a) = μE{A), given any neighborhood ?7 of o,
choose d, C2 6 3ΐl and J5Γ e ^ ς such that

( i ) (SF~ pF[Cι]) is U-small for all
(ii) daa and βca ~ C2=>p(β)eU,
(iii) i ί c A and ( A - Z") is C7-small,

and let

c= (dπp

Then C e ^ , C 2 c C c α , so ρ(a) - ρ(C) e U and, for any
with £7 < F,

3 The case of real-valued measures is treated in the forthcoming " Radon measures
on topological spaces/' (Tata Institute, Bombay) by Laurent Schwartz, Thms. I. 20,
I. 21.
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rγF[K\ ~ VF[C]C:SF ~ pF[Cι]

PrlC]~ r£[K]<zrA[A~ K]

so

and

By Lemma 2.4.3 therefore, p(C) — μE(A) e4?7 and so

p(a) - μE(A)e5U.

REMARK. For Γ — R, the above theorem was first given by
Mourier [7] and later extended by Prohorov [8J. Minlos [6] attributes
a similar theorem to V. Erohin.

3* Cylinder measures* We shall now apply the ideas of the
previous sections to the study of cylinder measures.

Given any vector spaces X, Y over a field Φ, let ^ be the
family of all finite dimensional subspaces of X directed by c

SE be the set of all linear functions on E to Y for

rEF: fe SF > (f/E) e SE for E, Fe j ^ with EczF .

DEFINITIONS 3.1. (1) μ is a cylinder measure over (X, Y) iff μ
is a monotone, inverse system of measures over (S, r).

(2) When the SE are topological spaces for E e ^\ μ is a Radon
cylinder measure over (X, Y) iff μ is a Radon system of measures
over (S, r).

When Φ = Y = R, the £^ are finite dimensional spaces for E e JF*
and hence have a canonical locally convex topology with respect to
which the rEF are obviously continuous.

If, in addition, we let Γ = iϊ, μ be a Radon system, X be a
topological vector space, β be the topological dual of X, and pE: fe Ω —*
(//i£) e iŜ  for £7 e ^ ^ then, in our terminology, τβ is the function
referred to as a cylinder measure by most workers. Even when the
definition of cylinder measure is formulated as an inverse system
of measures, the system is given in terms of Ω (see e.g., Minlos [6],
Schwartz [10])

Thus, besides allowing more general sets for Φ, Γ and Y, our
definition of cylinder measure is free of any a priori choice of a
target space Ω on which to place a limit measure and permits us
therefore to consider a variety of sets Ω. Let Λ be the set of all
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linear functions om X to Y and pE: feΛ -*(f/.E)e§>>E: for
One justification for the choice of (Λ,p) a limit for (S, r) is that

it can be identified in an obvious way with the canonical inverse
limit (L, π) where

L =- If 6 Π SE: rEF(fF} = fE for E,Fef with
I EeJΓ

and

πE{f) = fE for / G £ and

Assumptions 3.2. For. the remainder of this section, we assume
SE is a Hausdorίf, regular topological space for Ee^ΐ rEF is con-
tinuous for E,Fe\^ with EaF\ μ is a Radon cylinder measure
over (X, Y))Ω(zΛ.

The results of the previous sections then yield.

THEOREM 3.3. μ has a limit on Λ.

Proof. A is clearly sequentially maximal so Theorem 2.2 applies.

THEOREM 3.4* If Ω is almost sequentially maximal then μ has,
a limit on Ω.

Proof. Apply Theorem 1.10.

THEOREM 3.5. If Ω is a regular topological space, {pEjΏ) is con-
tinuous for Ez^ and SΓ is the family of compact subsets of Ω
then

(1) μ has a Radon limit on Ω iff μ is J3Γ-tight.
(2) If μ has a Radon limit on Ω then Ω is almost sequentially

maximal.

Proof. Apply Theorems 2.5 and 1.11.

We should point out that Theorem 3.4 would have very limited
applicability if we replaced "almost sequential maximality" by
"sequential maximality" in view of Theorem 3.5 and the following.

Observation. If X is a topological vector space over R with an
infinite bounded linearly independent subset, Y — R and Ω is the
topological dual of X then Ω is not sequentially maximal.

Proof. Let {en; ne ώ] be a bounded linearly independent subset
of X, let Xo denote its span and / be the linear functional on JΓ0

with f(en) = n for n e ω. If Ω were sequentially maximal, there
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wouM exist g e Ω with g/XQ = /, which is impossible since / is not
continuous on Xo.
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