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ON THE RELATIONSHIP OF A RING AND THE
SUBRING GENERATED BY ITS SYMMETRIC ELEMENTS

CHARLES LANSKI

Let R be a ring with involution, and S the subring
generated by the symmetric elements of R. By placing various
conditions on the elements of S, it is shown that the same
conditions are forced on R. For example, if S is nil or
algebraic, then so is R. Also^ if R is assumed to be simple,
prime, or semi-prime, then S satisfies the same property.
Lastly, each of these three conditions on 5 implies the same
property for R, modulo a nilpotent ideal of R.

I* R will always denote an associative ring with involution,
*. Thus, * is an anti-automorphism of R of period 2. Let S(R) —
{r 6 jβ I r* = r} denote the set of symmetric elements of R. When there
can be no confusion, we write S in place of S(R). The symbol S
will represent the subring generated by S, and Z will represent the
center of R. For x,yeR, let [x, y] — xy — yx. An additive subgroup
U of R is called a Lie ideal of R if [u, r]e U for all u e U and r e
R.

It will be necessary to refer frequently to some well-known results,
most of which can be found in [3]. For the sake of completeness
and convenience, we present these results in a form more useful for
our purposes. The first two tell us when S contains an ideal of R.

LEMMA 1.1. S is a Lie ideal of R.

Proof. We use the proof of Lemma 1 of [5] Suppose seSand
r 6 R. Then sr — rs = sr + r*s — (r + r*)s e S. If we assume that
for Si, , Sfc_i e S and r e R that [s^ sk_u r] e S, then by induction
we have [s^ sk, r] = sLs2 sfc_1[sA;, r] + [sLs2 sk^l9 r]sk e S for all
fc. Since every element of S is a sum of such terms, the lemma is
proved.

LEMMA 1.2. If U is a noncommutative subring and Lie ideal of
R, then U contains a nonzero ideal of R.

Proof. This is essentially Lemma 1.3 of [3]. Let a9beU so

t h a t [α, 6 ] ^ 0 . Let reR. Then [α, rb] =r[a, b] + [ α , r]b. Since [α, r] e

U and U is a subring, we have r[a, b] e U. For t e R [r[a, 6], t] e U.

Thus r[a, b]t — tr[ay b] e U, and so r[a, b]te U. Consequently, U con-
tains the ideal generated by [a, b] Φ 0.
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The next lemma, together with Lemma 1.1, gives us information
when S is commutative. The lemma is essentially the first half of
Lemma 1.3 of [3].

LEMMA 1.3. Suppose U is a Lie ideal of R with [U, U] = 0. //
2R = 0 and x e U then x2 eZ. If R is semi-prime and 2-torsion-free,
then Ud Z.

Proof. If 2JB = 0 then xeU says [x, [x, r]] = x2r + rx2 = 0 for
all reR. Thus xz e Z.

Suppose that R is semi-prime and 2-torsion free. For ue U and
x,yeR, we have [u, xy] e U, so 0 = [u, [u, xy]] = [u, x[u, y]\ + [u, [u, x]y].
Thus 2[u, x][u, y] = 0, and so [u, x][u, y] — 0. Letting y — rx for
reR gives [u, x]R[u, x] = 0. Since R is semi-prime, [u, x] = 0, so
ueZ.

In the study of rings with involution, often one can prove certain
facts if either 2R = 0, or if R is 2-torsίon free. This situation arises
in considering those properties in which we are interested, namely,
the properties of being nil, locally nilpotent, algebraic, and locally
algebraic. To enable us to reduce the general case to one of the two
special situations of 2R = 0 or R 2-torsion free, we introduce the
following formalization:

Given a ring A, let F(A) denote the set of finite subsets of A.
Let P be a property of the elements of F(A), satisfying:

(1) If {At} is a collection of rings and the elements of F(At)
satisfy P for each i, then the elements of F ( φ At) satisfy P, where
0 Ai is the direct sum of the A4.

(2) If B is an ideal of A and the elements of both F{B) and
F(A/B) satisfy P, then so do the elements of F(A).

Note that the four properties mentioned above are properties of
finite subsets, and satisfy the two conditions stated.

Now we can state the lemma which will enable us to reduce the
general case to the special cases cited above.

LEMMA 1.4. For all rings B with either 2B = 0, or B 2-torsion
free, let P be a property of the elements of F(B) satisfying the two
conditions above. Then P is a property of the elements of F(A) for
any ring A.

Proof. Let A be a ring, T(A) the torsion ideal of A, and TP(A)
the p-primary component of T(A). Since A/T2(A) is 2-torsion free, P
is a property of the elements of F(A/T2(A)). Thus, it suffices to show
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that P is a property of the elements of F(T2(A)). Let B = Tt(A), and
Bk = {xeB\2kx = 0}. Now 2B, = 0 and 2(B2/B,) = 0, so P i s a property
of the elements of F{B2). By induction, P is a property of the ele-
ments of F(Bk) for any k. Hence, P is a property of the elements
of F(B), for F(B) is the union of the F{Bk) for all k.

II In this section we consider the situation when S is nil,
locally nilpotent, algebraic, locally finite, and nilpotent. Clearly, if
R satisfies any of these conditions, then so does S. The converse
holds, except for S nilpotent and 2R = O

One technique that we shall use often in this section involves
considering certain homomorphic images of R. In general, a homo-
morphic image of a ring with involution need not have an involution
itself. However, if A is an ideal of R and A* = A, then the
quotient R/A inherits an involution from R by defining (r + Ay =
r* + A. It is this involution on R/A to which we shall refer in this
section.

We begin by eliminating the trivial case.

LEMMA 2.1. If S = 0 then Rz = 0.

Proof. Let I = {r e R\2r = 0}. / is an ideal of R and /* = /.
If x e I then x + x* eS, so x + x* = 0. But 2x = 0, so x = x*. Thus
1 = 0 and R is 2-torsion free. For x e R x + x*9 xx* e S so 0 = ra* =
—x2. But if iϋ is 2-torsion free and nil of index 2, we must have

Our first main result is a complete answer when S is nil.

THEOREM 2.2. If S is nil then R is nil.

Proof. By Lemma 1.4, it suffices to assume that either R is 2-
torsion free or 2R = 0. In either case, let N be the sum of all nil
ideals of R. Clearly JV* = N, so R/N has an induced involution, and
further, contains no nonzero nil ideals. Also, if R is 2-torsion free
then so is RjN, for T = {x e R\2x eN} is a nil ideal of R, so is con-
tained in N. If p: R~* R/N is the natural homomorphism, then p(S)
is a subring and Lie ideal of R/N. Suppose that p(S) is not com-
mutative. By Lemma 1.2 p(S) would contain a nonzero ideal of R/N,
which is impossible since p(S) is nil. Thus p(S) is commutative.
Whether R is 2-torsion free or 2R = 0, we can conclude, using Lemma
1.3, that ρ(x)2eZ(R/N) for xeS. But a nil element in the center
of any ring generates a nilpotent ideal. Hence ρ(x)2 = 0. Thus
[ρ(x), p(r)]2ρ(x) = 0 for all r e R and any xeS. This implies that
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p{xR) is nil of index 3. Since RjN is semi-prime we m u s t have p(x) —

0, using Levitzki 's theorem [3, Lemma 1.1]. But then if reR we

have 0 = ρ{rr*) = p(r)p(r*) and 0 = p(r + r*) = ρ(r) + ρ(r*). Thus
R/N is nil of index 2, so R must be nil.

Using the same technique but assuming a bit more gives

THEOREM 2.3. If S is locally nilpotent, so is R.

Proof. Proceed exactly as in Theorem 2.2 using ^f(R), the sum
of all locally nilpotent ideals [4, p. 197], in place of N.

As we have mentioned, S nilpotent does not in general imply
that R is nilpotent. However, when R is 2-torsion free it is nilpotent,
and we can obtain a bound on the index of nilpotence.

THEOREM 2.4. If R is 2-torsion free and Sn = 0, then R3n = 0.

Proof. By Lemma 1.1 S is a Lie ideal of R. Let tm = S A sm

for SieS. Then for reR

[<», r] = Σ * β<-i[*<,

since [β,, r j ^ r + r ^ - ί r + r * ) ^ e S + S 2 . Thus [«„, r]^_ m -ί w r^_ T O -0.
Repeating the argument on tm and tn_m gives s^Sa rn_ιsn = 0 for
fy e S and r^R or r4 formally equal to 1. Therefore, the ideal I
generated by S in nilpotent of index n. If reR then rr*, r + r* 6
S c L This gives 2i23 c I or 2%i23?ι = 0. Since R is 2-torsion free,
R*n = 0.

The proof of Theorem 2.4 fails in the case where 2R = 0 at the
point where we obtain iϋ// is a nil ring of index 2. Of course, one
can have such a non-nilpotent ring in the characteristic 2 case. An
example would be a polynomial ring in infinitely many indeterminate^
over GF(2)9 modulo all squares. We present such an example with
involution which will show that Theorem 2.4 is false if 2R = 0.
Thanks are due to Dennis Estes for conversations regarding the
existence of an example and particularly for his suggestion to view
the involution as we will, which makes verification of the example
relatively simple.

Let X — {Xi\ and Y = {y^ be countable sets of indeterminates
indexed by positive integers, and set T equal to the ring of poly-
nomials in X and Y with coefficients in GF(2) whose constant terms
are zero. Let I be the ideal of T generated by all x\ and ytyjf and
let R = T/I. Denote the image of α?* by xt and of y{ by yt. Lastly,
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denote by Dt the formal partial derivative on R with respect to #{.
R has an involution defined by x* = x* + Vi and y? = y^ If f(Ϋ) is
a polynomial in the {yt} alone, then clearly /(Γ)* = / ( Γ ) . If /(Jf) is
a polynomial in the {άj4} then since f/47/ = 0, we have f(X)* — f(X) +
Σ ViPJiX). Thus (/(Xm>* = (/(X) + Σ vJ)if(X))Vι = f{X)v» and
so JS contains the ideal generated by all yim Suppose that f(X) e S.
Then by above we must have Σ ViDif(X) = 0, and so, if we take a
polynomial f(X) e T which maps to our element f(X) e R we have
Σ yiDif(X) = Σ P<(-3Γ, 3T)a?i 4- Σ QuiX, YtyiVj where we may assume
that Dif(X) has no monomials containing any x)9 and where pt and
i<y may have a nonzero constant term. By looking at degrees of
elements of T in each yi9 and then in the other yj9 we obtain
yiDif(X) — Σ Pi(Xt Y)%\ Now consider the degrees of both sides
with respect to the xs. The result is that y^fiX) — 0. Since T is
a domain we must have DJiX) = 0. But then no xt appears in any
monomial of f(X); that is, f(X) = 0. This shows that in R,S= (yt)9

the ideal generated by the {yf}. Clearly S2 = 0 but R is not nilpotent,
since R/S = GF{2)'[X]\(x$, where GF{2)'[X] are the polynomials in X
without constant terms.

To obtain a noncommutative counterexample to Theorem 2.4 take
Rn, the complete n x n matrix ring over R, the commutative example
above, and consider the subring W — {(<%) e Rn \ aiS e S for i Φ j}. Define
(α<y)* = (α*i). Thus, the involution on W takes transposes and applies
* from i?. Again, W is not nilpotent but since S(W) a (S(R))n we
have S(W)2 = 0.

Assume for the remainder of this section that R is an algebra
over a field î , and that * is compatible with the action of F in that
(ar)* = αr* for aeF.

THEOREM 2.5. // S is algebraic over F, so is R.

Proof. Let A be the algebraic kernel of R; that is, the sum of
all algebraic ideals of R. Clearly A* = A, so R/A inherits the involu-
tion from R and contains no algebraic ideals. If p: R—»R/A is the
natural homomorphism, we have, as in Theorem 2.2, that p(S) is a
Lie ideal and subring of R/A. If p(S) is not commutative it must
contain a nonzero ideal of R/A by Lemma 1.2. But this ideal would
be algebraic over F9 which is impossible. Hence p(S) is commutative.
Given any x e R we have p(x)2 — p(x + %*)p(x) + p(x*x) = 0, where
p(x + x*) and p(x*x) are algebraic over F. Thus to show that R/A,
and so R is algebraic over F9 it is enough to do so for an algebra B
with the property that for each x e B, x2 + bx + c = 0 for some 6, c e
B with b and c commuting with each other and each algebraic over
F. Let F[b, c] = C and [C: F] = w. Since #2 = — bx — c we have
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# 3 = — bx2 — cx — — b(— bx — c) — cx, and so x* = b2x + c2 for 62, c2 e C.

Similarly one obtains xk = bk^x + ck_x for all k ^ 2. Now the collec-
tion {δj is linearly dependent over F. Let ΣίU/A = 0 be a non-
trivial dependence relation, and set g(F) = ΣJUΛΪ"*"*"1* Then r̂(a?) =
Σ/<c* = deC. Let A(F) be a nontrivial polynomial satisfied by d.
Then 0 = &(eZ) = h(g(x)), and so a? is algebraic over F.

In the same way that we went from nil to locally nilpotent, we
may now consider the property of local finiteness, although here we
need the result in Theorem 2.5 as well as the method of proof.

THEOREM 2.6. // S is locally finite, then so is R.

Proof. The argument is the same as in Theorem 2.5 using L,
the sum of all the locally finite ideals in place of the sum of all
algebraic ideals [2]. Again we may assume that p(S) is commutative
and obtain that R/L is algebraic. Since ρ(S) is commutative, the set
of elements of the form ρ(x) + p(%)* satisfy a polynomial identity
over F [2]. By a theorem of Amitsur [1], R/L itself satisfies a poly-
nomial identity. Since R\L is algebraic, it must be locally finite by
Theorem 6.4.3 of [2]. Hence R = L, so is locally finite.

We mention two examples relevant to the theorems proved in
this section. First, if B is any ring and BOp its opposite ring, then
BφBOp has an involution defined by (6^ &2)* = (62, bt). Clearly,
S(B0BOp) = {(6, b)\beB}. This example shows that if S satisfies one
of the properties we have considered, one cannot hope to force R to
satisfy a stronger property, in the sense, for example, that nilpotence
is a stronger property than local nilpotence.

The second example concerns the following situation. If R is 2-
torsion free and k = {r e E|r* = -r} then 2R S S +_K and S Π K = 0.
One might ask whether imposing conditions on K as we did on S
will also force these conditions on R. In this case the answer is no
Let A be a commutative ring and N an ideal of A. If An is the
complete n x n matrix ring over A, consider R = {{ai3) e An \ ai5 e N for
iΦj). Let (α<y)* = (%<). If A is 2-torsion free then K a Nn. In
particular, N may be nil, nilpotent, or algebraic, and so K has the
same property, but R may fail to. Specifically, let A — F[x, y]/(xt)
and N = (x). Then K is nilpotent but R is not even nil, or algebraic.
One would like to have such examples which do not satisfy some
polynomial identity. This can be accomplished by considering matrix
rings described above and then taking direct sums of such rings with
the size of the matrices becoming arbitrarily large.

Ill* In this section we consider the situation when either R or
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S is simple, prime, or semi-prime. The first two lemmas give us
information on the "semi-primeness" of S.

LEMMA 3.1. If R is semi-prime and xeS with xSx = 0, then
x = 0.

Proof. For reRwe have x(r + r*)x — 0, so xrx = —xr*x. Hence
xrxrx = —xrxr*x = — x(rxr*)x = 0, since rxr* eS. Thus, xR is a nil
right ideal of R of index 3. By Levitzki's theorem [3, Lemma 1.1] we
must have x — 0.

LEMMA 3.2 // R is semi-prime and xSx = 0, then x + x* = 0.

Proof. For reJ? and s e S, ra*s + s#r* e S. Hence

0 = x(rx*s + sxr*)x — xrx*sx .

Since R is semi-prime, »*£>& = 0. Similarly, 0 — x(sx*r + r*xs)x
implies xSx* = 0. As $*&»* = 0, we have, (x + x*)S(x + x*) = 0. By
Lemma 3.1, x + x* = 0.

The next theorem, that iϋ simple implies that S is simple, is an
easy consequence of any one of several theorems in [3], together
with an examination of the case when R is 4-dimensional over its
center and char R = 2. We prefer to give a proof which depends
only on the results presented thus far.

THEOREM 3.3. // R is simple, then either S = R or S is a field.

Proof. If S is not commutative, then by Lemma 1.1 and Lemma
1.2, S must contain a nonzero ideal of R. Hence S = R. If S is
commutative then S = S and for xeS, x2eZ by Lemma 1.3. If xeS
but x2 — 0, then xSx = 0 so x = 0 by Lemma 3.1. Now S Φ 0 by
Lemma 2.1, so Z is a field. Since every element of S is invertible,
S is a field.

The situation when R is prime follows just as easily.

THEOREM 3.4. // R is prime so is S.

Proof. If S is commutative, proceed as in Theorem 3.3 to obtain
x2 e Z — 0 for all x e S — 0. Since ϋ? is prime, the nonzero elements
of Z are not zero divisors in R. Thus S is a domain, so is prime.
If S is not commutative then S contains I Φ 0 an ideal of R. If A
and I? are ideals of S and AB = 0, then A/2? = 0. Since R is prime,
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either A = 0 or B = 0, proving that S is prime.

The semi-prime case is a bit more complicated. We need first
the following definition.

DEFINITION. If I is an ideal of the semi-prime ring T, then
Ann/ = {xe T\Ix = 0}. An ideal / which has the form J = Ann I
is called an annihilator ideal of T. Note that since R is semi-prime
we have /(Ann I) = (Ann 1)1 = I f] Ann 7 = 0.

THEOREM 3.5. If R is semi-prime then so is S.

Proof. If S is commutative then it can have no nonzero nilpotent
elements by Lemma 3.1, so is semi-prime. If S is not commutative
then by Lemma 1.2 S contains the ideal generated by [a, b] for a, be
S. Let I be the sum of all such ideals, and note that I = /*. If
a,beS then αδ + I = δα + I in R/I, so if x e S then x + I is symmetric
in R/I. Thus x — x* el, for any xeS.

Let AT be an ideal of S with N* = 0. Now NSN c i\P = 0, so
a? + a;* = 0 for all a? e N by Lemma 3.2. Further, since NSN = 0
we have (iV7)2 = 0. Because R is semi-prime, ΛΓ7 = 0 . If x e N,
then we know that x + x* = 0 and x — cc* e J, so 2# e / Π N c
IΠ Ann 1=0. But 2a; = 0 and x + a;* = 0 imply α? = x* e S Π N.
Since NSN = 0, Lemma 3.1 implies that N = 0, and so, S must be
semi-prime.

Although the converses to the last theorems are false, we can
obtain reasonable partial converses modulo the existence of a unique
maximal nilpotent ideal guaranteed by the next Lemma.

LEMMA 3.6. If S is semi-prime then R contains an ideal N with
(1) N is 2-torsion free
(2) N is nil of index 2
(3) N3 = 0
(4) xe N implies x + x* = 0
(5 ) N contains all nilpotent ideals of R.

Proof. Suppose that m is a nilpotent ideal of R. Since S is
semi-prime m Π S = 0. Also, since m + m* is nilpotent we have
(m + m*) Π S = 0. For x e m, x + x* e (m + m*) Π S = 0 and a a;* e
m Π S ^ O . Now if 2a; = 0 then since x + a;* = 0, x = a;* e S Π m = 0.
Hence m is 2-torsion free, and since ##* = a? + x* = 0, we have x2 = 0
for all a; G m. Thus m3 = 0. Let iSΓ be the sum of all the nilpotent
ideals of R. N is easily seen to satisfy the conditions of the Lemma.
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Let us note that if 2i2 == 0 and S is semi-prime, then the Lemma
implies that R is semi-prime. Also, the same proof can be used to
show more. For example, if we assume that S intersects nil ideals,
or locally nilpotent ideals, only in zero, then N still exists as indicated
and contains all ideals of the type being considered, so they would
be nilpotent as well.

Using Lemma 3.6 we can reduce to the situation in which R is
semi-prime. To do this consider R/N which is semi-prime and has
an induced involution, since N* = N. Now by Theorem 3.5 we know
that S(R/N) is still semi-prime. Unfortunately, even when we can
assume that R is semi-prime, S prime does not force R to be prime.
However, we do have the following theorem.

THEOREM 3.7. // S is prime and R is semi-prime, then either
R is prime, or R is a subring of A 0 AOp, where A = R/P is a prime
ring, AOp is the opposite ring of A,P{jP* contains every annihi-
lator ideal of R, and * in R is induced by interchanging co-ordinates
in A® AOp.

Proof. Suppose that for every ideal I Φ 0 in R we have IΠ S Φ
0. If BC = 0 forjB and C ideals of R, then (B f] S)(C Π S) = 0,
forcing either Bf)S = 0orCnS = 0. Thus either B = 0 or C = 0,
so R is prime.

Assume now that R is not prime. Let P be an ideal of R maximal
with respect to the property that Pf) S = 0. Since S is prime, we
have by the usual arguments that P is a prime ideal, and so, P Φ 0.
If x e P n P * then xx* and x + x* are in P Π S = 0. Now if 2x = 0,
then x = x*ePf)S = 0. Hence P Π P* is 2-torsion free. But then
x2 = o for every x e P Π P*, so (P Π P*)3 = 0. Since R is semi-prime,
Pf] p * = 0. Thus R is a subdirect sum of R/P and R/P*. Further
J?/P* is naturally isomorphic to (R/P)Op via r + P*t->r* + P. We can
embed R into R/P 0 (R/P)Op by the map r H* (r + P, r* + P). Clearly,
interchanging co-ordinates in JB/P 0 (R/P)Op is an involution which
restricts to * on R. Lastly, suppose BC = 0 for ideals B and C of
i2. If J5 ς£ P U P* then since P and P* are prime ideals, C c P Π P* =
0. Thus every annihilator ideal of i? is contained in P U P*.

As an illustration of Theorem 3.7, consider the ring A = F[x, y]/(xy)
where F[x, y] is the full polynomial ring in x and y over an arbitrary
field F. If A{wu w2, w3} is the free algebra with 1 over A and I is the
ideal in this ring generated by w\, w\, and w\, let B = A{wu w2, wz}/I.
We extend the involution from A to B in the following way. If

tn is a monomial in B with α 6 A and each ί* some wjy let
•• ίΛ)* = α*^ίw_! ίlβ One can show that B is a semi-prime
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ring, basically because bwfi Φ 0 for each i and b Φ 0, but B is not
prime since (x)(y) = 0. Further, since each wt is in S and x and y must
both appear in an element of S if either one does, it can be shown
that S is prime but not a domain. Let P = (x). Then B is a sub-
direct sum of B/P and (B/P)Op, but not a direct sum since (a?) + (y) Φ
B. Also B/P is neither commutative nor a domain.

For an example which is not semi-prime, but where S is still
prime, let char F Φ 2, and let H be the free semi-group with unit
generated by {zj containing more than one indeterminate. Consider
the semigroup ring B[H], which can be viewed as the ring of non-
commutative polynomials in the {zt} with coefficients in B. If J is
the ideal of B[H] generated by {z\, ZiZ5 + z3 zi9 wkziy xzu yzt}9 let C =
B[H]/J. Our involution on B can be extended to C by defining
(fzd* — —fZi for fe F. Now since each z4 annihilates "almost every-
thing" in C, fails to be symmetric, and since (fZiZ3-)* = fz3 Zi = —fZiZ3-9

we have S(C) = S(B). Thus S(C) is prime, but the ideal generated
by {Zi} is the nonzero ideal N of Lemma 3.6.

Lastly, we examine the situation when S is simple. It will be
convenient to consider separately the cases where S is commutative
or not Since the second case is more straightforward, we consider
it first.

THEOREM 3.8. If S is simple and not commutative, and R is
semi-prime, then R = S or R is prime with S is unique minimal
ideal, r2eS for all reR and Z(R) = 0.

Proof. By Lemma 1.2, S contains a nonzero ideal of R. Since S
is simple, it is an ideal of R. Consequently, r2 = (r + r*)r — r*r e S
for all reR. Suppose I Π S = 0 for an ideal I of R. Since x2eS for
xel, J is nil of index 2, contradicting R semi-prime, unless 1 = 0.
Hence S is the intersection of all nonzero ideals of R, so is the unique
minimal ideal. It follows that R is prime. Lastly, let x e Z{R). Then
x2eZ(S), so S has an identity if x Φ 0. But the identity of S is a
central idempotent in the prime ring R. Thus 1 e R, so S = R unless
Z{R) = 0.

To see that the second possibility of the theorem can occur, let
B = Q{x, y}/(xy — yx — 1), where Q{x, y] is the free algebra with identity
over the rational numbers. B is well known to be a simple domain.
Let R = Qx + xBx. Since B is simple, xBx is simple and an ideal in
R. Consequently, since R is a domain, xBx is the unique minimal
nonzero ideal of R. Define * by setting #* = — x and y* = y. Clearly
S contains xBx, since it contains some ideal. If ax + t e S for t e xBx,
then ax e S. But f(x, y)eS implies deg* / Φ 1, so a = 0 and S =
xBx.
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If S is commutative, then S = S is a field. In this case, as the
next lemma will show, it is always possible to reduce to the situa-
tion where R has an identity, a well-defined prime characteristic,
and the nonzero elements of S are units in R.

LEMMA 3.9. If S is α field then R = eR@ (1 - e)R where e is
the identity of S and a central idempotent in R. Further, (1 — e)R
is a 2-torsion free ideal, nil of index 2.

Proof. Let e be the identity of S. Since S is a Lie ideal of R,
for any x e R, ex — xe e S, and so, e(ex — xe) = ex — xe = (ex — xe)e.
These equalities imply that ex = exe = xe, or eeZ. Hence eR ©
(1 — e)R = R. Suppose a = (1 — e)a. Then α* = (1 — e)a*, so a, α* e
(1 - e)R. But eS = S c βJ?, so αα* = α + α* = 0, and (α + α*)α =
α2 = 0. Further, if 2a = 0 then α + α* = 0 implies α = α * e S c eϋϊ.
Thus (1 — e)R is a 2-torsion free nil ideal of index 2.

As a result of Lemma 3.9 there is no great loss in assuming that
S consists of units of R and that the identity of S is the identity
of R. Henceforth we shall make this assumption.

We claim that we also may as well assume that R is semi-prime.
If 2R = 0, then by Lemma 3.6 R is semi-prime. Assume that char <S Φ
2 but 2r = 0 for some r e R. Then 2(r + r*) = 0, so r + r* = 0.
Since 2r = 0 we have r = r* eS, s o r = 0. Therefore R is 2-torsion
free, and so, R/N is semi-prime and 2-torsion free, where JV is the
ideal of Lemma 3.6. Consider x + NeS(R/N). Thus x + N = #* + N,
and so, a? — x* e iV. Hence 2x — (α? + a?*) = x — x* G iSΓ. We may con-
clude that 2x + JV is the image of a? + x* e S. Since 2 e 5>, it is a
unit in R, and we have S(R/N) ~ S. Thus in all cases we can reduce
to R semi-prime. With this assumption, we come to our last result.

THEOREM 3.10. If S is a field, * is not the identity map, and
R is semi-prime, then one of the following must hold:

(1) R is a field and [R: S] = 2
( 2 ) R = S © S and * interchanges co-ordinates
(3) R is a division ring with [R: Z] — 4
(4) R = S2 and char S =£ 2.

Proof. If JS is not simple let m be a maximal ideal in ϋJ.
Because nonzero elements of S are units in R, m Π S = 0. As we have
seen before, xem f) m* implies %x*, x + a;* 6 m Π S = 0, so &2 = 0.
Further, m Π m* must be 2-torsion free, so (m Π m*)3 = 0. But R is
semi-prime, so m Π m* = 0. Since m is maximal m + m* = R. Thus
ϋί = .B/m © R/m*. If a? 6 ra* then a? + m = (x + a;*) + m, so jR/m =
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(S + ra)/m = S. Hence R/m is a field isomorphic to S. Since R/m* is
anti-isomorphic to R/m, as in Theorem 3 7, we have possibility (2) of
the theorem.

Assume now that R is simple. Suppose first that S 3> Z and let
ceZ with c — c* Φ 0. For any reR,(c — c*)r = c(r+r*) — (c*r + r*c) e
cS + S. Since c - c* G ^ we have that R is commutative, so a field.
As * is not the identity map, S is its fixed field and [R: S] = 2,
giving possibility (1) of the theorem.

Since S is a Lie ideal of R, by Theorem 1.5 of [3], either S c Z
or char R=2 and dimzR^4. Even if Scif, since x2— (x+x*)x + x*x = 0
for any xeR, R is quadratic over ^, so dimz i? ^ 4 by Kaplansky's
Theorem [2, p. 157]. Hence we may assume that R is simple of
dimension 4 over its center, for otherwise R is commutative and we
have case (1) as before. If char R Φ 2, then S = Z, so (3) or (4) holds.
Lastly, if char R = 2, then if α? 6 i2 and #2 = 0 we have xx* = x*x — 0,
since they are not units, and so (x + x*)2 — 0. Thus x + #* = 0,
which implies a ^ ^ e S . Therefore, we may conclude that R has
no nilpotent elements, and so, (4) can hold only if char R Φ 2.

Examples similar to those after Theorem 3.7 show that in case
char SΦ2, R may have nilpotent ideals which are not direct summands
even though S is a field. Specifically, take F[x]/(x2) with x* = — x.
For a noncommutative example start with T — xF[x, y] + yF[x, y].
Let I be the ideal generated by x2 — x, y2 — yf and xy. Set W = T/I
with * interchanging x and y. Let i? = IF{zJ the free algebra with
constants over W in more than two indeterminates {zj. Let J be
the ideal of R generated by all xzif y%i and all squares in the ring
generated by {zj. Extend * to R/J by setting zϊ = —z^ Then the
ideal N of Lemma 3.6 is the ideal generated by {zj and S = F (x + y)^
F.
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