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HAUSDORFF DIMENSIONS FOR COMPACT SETS IN Rn

ROBERT J. BUCK

A general Hausdorff dimension of sets in Rn is studied
by considering the dependence of the dimension upon the
size and shape, relative to the convex measure, of the ele-
ments in the covering family. The Hausdorff dimension of
compact sets is related to the behavior of distribution func-
tions of finite measures of compact support in Rn. A com-
parison of dimensions using diameter and Lebesgue measure
is given in terms of the regularity of the shape of elements
in the covering family.

l Introduction* Eggleston [3] defined the Hausdorff dimension
of sets E in Rn as follows: Let C denote the collection of all convex
sets in Rn; and, for each positive number β, write

C>(E) = inf {ΣMCW: \J C< 2 E, {C,} S C} ,

where δ(A) denotes the diameter of A. The Hausdorff dimension of
E, denoted by C(E), is then the supremum over all values β where
Cβ(E) > 0. This notion of dimension has been generalized in various
ways in R\ e.g., [1], [2], [5], [6]; and it is the intent of this paper
to study the situation in Rn

y where apparently deeper problems are
involved than those studied in [2].

In particular, let τ be a nonnegative, monotone, translation
invariant set function, defined and sub-additive on the convex sub-
sets of Rn in the sense that if {Ai} is a convex covering of the
convex set A, then τ(A) ^ Στ(Ai). If, in addition, τ(A) tends to
zero with δ(A)9 then τ is said to be a convex measure on It*. Let
K be an arbitrary collection of ^-dimensional rectangles (hereafter
referred to as rectangles) which have edges parallel to the coordinate
axes and uniformly bounded diameters. If K is closed under trans-
lations, and contains a sequence of rectangles {i?J for which <5(î )—*0,
then K is called a covering class. If K is a covering class, τ a con-
vex measure on Rn, β a positive number, and E a subset of Rn,
put

Kξ{E) = inf {Στ{A^: \JA^E, {A,} s K) .

The Hausdorff dimension of E relative to the convex measure τ and
the covering class K is the number

The remainder of this work is concerned with the dependence of KT(E)
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upon the choices of K and τ. The nature of this dependence is more
interesting in "Ίt*(n ̂  2) than m R1 for various reasons. One reason
is that the usual choices for the convex measure τ, diameter δ and
Lebesgue measure m, coincide in R\ Another is that covering classes
in R1 are completely determined by the length of their members,
while in higher dimensions, shape as well as size plays a key role.

Theorem 1 relates the Hausdorff dimension of compact subsets of
Rn to the behavior of distribution functions of finite measures sup-
ported by such sets. The theorem yields a sufficient condition for
the relation

Kτ{E) ^ Mτ{E)

for all compact sets E, in terms of the shape and size of elements
in the covering classes K and M. A second result, Theorem 2, relates
the dimensions Kδ(E) and Km{E) by establishing a necessary and suffi-
cient condition for the relation

Km(E) = ± K,(E)
n

to hold for all compact sets E.

2* The Hausdorff dimension of compact sets* If K is a cover-
ing class, then K can be completely described by a set of points in
Rn; namely by those points x whose ith component, xi9 is the length
of the edge of the given rectangle which is parallel to the ίth coordi-
nate axis. Accordingly, a set of points K in Rn, with positive coor-
dinates, is a covering class, if and only if it is bounded and contains
a sequence converging to the origin. In the following, elements of
a covering class will be referred to either as points or as rectangles,
as convenience dictates. Now let E be a compact subset of Rn, and
denote by ^(E)9 the class of all positive finite measures μ sup-
ported in E. If Fμ is the distribution function of μ, write for a in
K,

AFμ{a)=\f μ(Ra + y), {y e R")

where Ra = {x: 0 ^ xt < a^ i = 1, 2, , n). Finally put

Kr(μ) - lim inf (log JFμ(a)/log τ{Ra)) ,

as τ(Ra) —• 0, a e K. The number Kτ{μ) is called the Hausdorff dimen-
sion of the measure μ with respect to K and τ. The connection be-
tween the Hausdorff dimension of E and the Hausdorff dimension of
the measures it supports is given by
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THEOREM 1. For all compact sets E, covering classes K, and
convex measures τ,

KT(E) = sup {KT(μ):μ

Proof. The inequality

KT{E)Z>sup{Kr(μ):μe

is immediate. Indeed, if μe^t(E) and 0 < β < Kk(μ), then there
is δ > 0 for which τ(Ra) < δ implies τ(Ray > ΔFμ{a), for all aeK.
Hence if j ^ is a countable covering of E by rectangles of if, then

Σ^(τ(A))β ^ μ(E) Λ δ? .

Since the right-hand side is positive and independent of the covering,
it follows that β ^ Kτ{E). To establish the reverse inequality,
assume that the points of K have all coordinates of the form 2~m,
m integral. It will be shown later that this assumption is not re-
strictive. Let {a(m)} be a sequence in K tending to the origin. Fix-
ing m, let K{m) denote the points of K in {x: Xi ̂  aim)^. If β is a
positive number and β < KT(E), then a measure vm can be associated
with E as follows. Each K(m) contains a finite number of points
wτhich are taken to be lexicographicallv ordered, say

6(1) > 6(2) > > b(p) ,

with b(p) = a(m). For each j = 1,2, , p, let AΛ denote the partition
of Rn induced by the rectangle RbU). If Q is a subrectangle of Aj9

write δ(E, Q) = sup {χ*nβ(*): x e R*},

A(x) = Σ τ(Qyδ(E, Q)χQ(x)

For each index j = 0,1, , p — 2 write

Λ+i(*) - Σ (l/A

allowing τ(Q)^ /\ Λ(jc)cίjc to take the value + oo, when I f Λx)dx is
/ JQ JQ

zero. Finally, the measure vm is defined to be

LEMMA 1. For all R in UjU Ah vm(R) ^ (R)β. Moreover, for each
x in E, there is Q in U?=i Ah containing x and such that vm{Q) =
τ(Qy. This rectangle Q can be selected so that QeAp^j implies
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\Qfi-λx)dx > τ(Qy, while ^Mx)dx = τ(QY (j > 0).

Proof. The first assertion follows immediately from the fact that
for all ΛΓ, f3 +1(x) ^f3-(x). For the second part, let x e E and xePe Ap.
If vm{P) = τ(P)β there would be nothing to prove. Otherwise, let j
be such that

and

ί fό{x)dx = vm(P) .
Jp

It would then follow that

/y(x)dΛΓ = [ l Λ

where Q is that unique element of Ap^ containing P. Hence,

?(QY < \ fo-ι(x)dx, and so \ fΛx)dx — τ(QY. If there were an index

I with j ^ I and

( /,(x)dx > \ fι+1(x)dx ,

it would follow that ft(x) > fϊ+1(x) for all Λ: in P, which in turn would
imply that

contradicting the choice of j . Hence vm(Q) = τ(QY and the lemma
is proved.

Returning to the proof of the theorem, it follows trivially from
the first assertion of Lemma 1, that Jthere is a positive constant A,
independent of m, such that vm{Rn) ^ A. Less trivial is the fact
that there is another positive constant B, for which vm(Rn) ^ B for
all m. Indeed, let j y be a covering of E by the rectangles of
(JίAπ distinguished by Lemma 1, and with the property that no
element of j%f contains another element of Jzf. Let P, Qe Jzf,
P{\QΦ 0 , PeAp_J9 Q e Ap_k, 1 ^ j < k, and R an arbitrary element
of Ap contained in P Π Q. The rectangles P and Q satisfy

vm(P) = τ(Pγ = \ fj(x)dx < \ fU
JP JP

and
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vm{Q) = τ(Q)' - ( fk(x) [

If x belongs to R and fj(x) > 0, then

fu(x) =fk-i(xMQ)β/\QfUx)dx <Mx) .

Hence

( fk(x)dx< \ Mx)dx = τ(Py,
JP JP

contradicting the choice of P and k. Thus f3 (x) = 0 on R, which
shows P Π Q Π S = 0 , for every SeAp intersecting E. If D denotes
the union of all S in Ap, intersecting E, then sf* = {P Π D: P e J^f)
is a disjoint covering of E. Since β < KT(E), there is a positive
constant JB, such that

»ΛRn) = Σ MA) - Σ »

= Σ
P

It follows that the sequence of measures {vm}, has a subsequence
which is weakly convergent to a measure v for which A ^ ι>(i2w) ̂  i?
Since E is compact and α(m)—•(), it follows that ve^(E). If Q
is a rectangle in K, then Q can be covered by 2n of its translates,
Q\ for which vw(Q') g r(Q')^, provided m is sufficiently large. Since
T is translation invariant and sub-additive on convex sets, it follows
that

v(Q) ^ 2nτ(Qy .

Hence, for each aeK, ΔFv{a) ^ 2nτ(Ray, which shows Kτ{v) ^ β,
and thus

iΓr(^) ^ sup {Kτ(μ)\ μ € ̂ T(^)} .

Finally, it must be shown that the assumption that K consists only
of points having all coordinates of the form 2~w, can be eliminated.
Let K be an arbitrary covering class, and let Kf be obtained from
K by stipulating that α' 6 K', if and only if, there is a in K such
that for each j ,

for some integer m. By what has already been shown, it is sufficient
to prove that for each compact set Et and each finite measure μ of
compact support
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KV(E) < K'τ{E)

and

K'v(μ) £ Kτ{μ) .

To establish the first of these relations, let β < Kτ{E) and let
be a covering of Έ by rectangles of Kf. If P'ej^ then Pf can be
covered by 2n rectangles of K, from which P' was formed. The col-
lection of such rectangles & is again a covering of E. It follows
that there is a positive number B such that

P J 1

and so β^K'τ{E), which entails Kτ{E) ^ K'τ{E). By the sub-
additivity of r on convex sets,

τ{Ra,) £ 2«τ(Ra)

for each ae K, and so

\ogAFμ{a') ^ logτ(Ra) m \ogAFμ{a)
\ogτ{Ra,) ~ nlog2 + logτ(Ra) * Iogτ(i2α) '

which implies that K'τ{μ) ^ Kτ(μ). The proof of Theorem 1 is now
complete.

The following illustrates the usefulness of Theorem 1 in questions
dealing with the dimension of compact sets. Since dimension is
monotone with respect to covering classes, i.e., Kγ £ K2 implies
K^E) Ξ> K2(E) for all E, it is natural to consider the following
question. Suppose two covering classes, K and M, are given and are
related by a map φ: K—+M. What conditions on φ will guarantee
Kτ{E) ^ Mτ{E) for all compact £7? It would be difficult to guess
such conditions using only the definitions of § 1. By Theorem 1,
however, it is sufficient to obtain conditions on ψ implying Kτ{μ) ^
Mτ{μ) for all finite measures of compact support in Rn. Since ΔFμ

is sub-additive in each component, it follows that

AFμ{x) ^ 2 ( Σ [1 V (xjsύί) ΔFμ(s) ,

and so

\ogΔFμ{x)
logτ(Rx)

,) log AFμ{φ{x)) f log (1 V (xjφ(x)i>) , log 2"
\ogτ(RΨW) ί=ί \ogτ(Rx) logτ(Rx)'

Hence the following
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COROLLARY. Given covering classes K and M, and the convex-
measure τ, Mτ(E) ^ Kτ(E) for all compact E, provided there is a
map φ: K~+M with the properties:

( i ) Mm (logτ(Rφ(x))/logτ{Rx)) = 1 , xeK
r(ϋ»)->0

and

(ii) For j = l,2, " ,n,

Km (log (%M»)i)/logτ(Rx)) = 0 , xeK.
τ(Bx)-*0

REMARK 1. The preceding corollary shows that φ(K)T(E) ^ Kτ{E)
for all compact E and for φ satisfying (i) and (ii). If, in addition,
φ has the property that τ(Rx) —> 0 as τ(Rφ{x)) —> 0, then it is clear that
φ{K)v{E) = Kτ{E) for all compact E. This fact will be used without
explicit mention in § 3 below.

REMARK 2. The function φ defined by φ(x)i = #; Λ α* for a with
α* > 0, ί = 1, 2, , n, maps any covering class K into the rectangle
Ra. Since K is bounded and

τ{Rx) Π ( ^ +

it follows that <p satisfies conditions (i) and (ii), and the property
mentioned in Remark 1. Thus in the following it will be assumed
that covering classes are contained in a rectangle Ra for convenient
choice of α

REMARK 3. In § 3, the conditions (i) and (ii) are shown to be
necessary for MJJS) ^ Km{E), in the special case that M consists
entirely of cubes. For n — 1, the conditions are known to be neces-
sary [2], but complete results are not known at present for n ^ 2.

REMARK 4. The idea for the construction of the measure v in
the proof of Theorem 1 is due to 0. Frostman [4], although his
construction is carried out in Rι, and for the covering class consist-
ing of all intervals. It seems to be difficult to prove a version of
Theorem 1 when covering classes are presumed closed under all rigid
transformations.

3* Dimension as a function of the convex-measure τ» If E
is a compact subset of Rn, let Km{E) and Kδ(E) denote, respectively,
the dimension of E relative to K and Lebesgue measure m, and the
dimension of E relative to K and diameter δ. In general,
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nKJJE) ^ Kδ(E) ,

since m(R) <̂  δ(R)n for rectangles in Rn. The results of this section
establish a necessary and sufficient condition for equality to hold in
the above relation.

THEOREM 2. Given a covering class K,

nKm(E) = Kδ{E)

for all compact subsets E of Rn, if and only if, there is a covering
class S, consisting of cubes, for which Sm(E) = Km(E) for all compact
E.

Proof. Suppose nKm(E) = Kδ(E) holds for all compact E. Let
K* be the covering class of cubes obtained from K by writing a* eK*
if and only if there is a in K such that

af = max α* for j = 1, 2, , n .
i

If β > Kδ(E) and e > 0, then there is a covering, {ΛJ, of E in K
such that

ε > Σ diR.y .

If R* denotes the cube of iΓ* corresponding to, and concentric with
Rif then U R? 3 E and

^Σδ(Bi*y .

It follows that β ^ Kδ*{E) and so Kδ(E) ^ Kδ*(E). Consequently,

?*iU#) = Kδ(E) ^ #,*(#) = Λ * ( # ) ,

the last equality arising from the fact that

m(R) = n~n'2 d(R)n

for cubes R. Hence KJβ) ^ K£(E) for all compact sets E. Before
proceeding, it will be convenient to introduce some notation and new
concepts. Let &~ denote the collection of all real-valued function /
defined on R1 and unbounded on the positive portion of R1 with the
properties that /(0) ^ 0 and that x ^ y implies

0 ^ f ( y ) - f ( x ) ^ y - x .

With each such function / associate a compact set E = E(f) in R1

as follows. Let {ξ(j)} be a positive, decreasing sequence for which
/(—logξ(j)) = j log 2. Since f(x) — x is nonincreasing, it follows
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that Σξ{j) ^ 1, and so the set

E={ξ:ξ = ΣεjξiJ), εj = 0 or 1}

is compact. Moreover, the function

Fμ{x) = sup {ΣefiS: x ^ Σeάζ(j)}

is sub-additive and is the distribution function of a finite measure μy

supported on E. Now let <& be the collection of all functions g on
Rn which are of the form g(x) = ΣΓ/*(»<) for fiβjK With each
such g, associate the compact set

Eg = E{fx) x . - . x E(fn) .

If Fi and μt denote, respectively, the distribution function and finite
measure associated with E(fi), then

Fμ(x) = flFtiXt)

is the distribution function of the product measure μ = μ1 x . . . x μn

supported on Eg. Since each Ft is sub-additive, it follows that
ΔFμ = Fμ. Finally, if g e & and K is a covering class, define

Km(g) = \im'mΐ(g(x)/Σxi) ,

taken as Σxt —> oo over points Λ: for which there is a in K with x{ =
— logα^, i — 1, 2, •••, n. The relationship between g and Eg is given
by

LEMMA 2. For all g e ^ and all covering classes K,

KJg) = Km(Eg) .

Proof. Assuming that g(x) = Σfifc), let {ξi(j)}, satisfy

/.(-log UJ)) = 3 tog 2 (i = 1, ., n; i = 1, 2, •) .

Given the point c, there are indices klf , klf for which

- l o g ξ ^ k t ) £xt£ - l o g ξ t ( k t + l ) , (i = l,2,'",n).

It follows that

-log2 - log^ίexpί-a?,)) ^/«(»,) ^ log2 - logF{(exp{-xύ) .

Thus, if α satisfies a?{ = — log a{ (i = 1, 2, , %), then

n log 2 ^ log Λ.Fg(q) ^ g(jf) | - n log 2 | log ΔFμ{a)
log m(i2β) ~ Σxt log m(i?o) log m
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which implies Km(g) = Km(μ). If Xe^(Eg) and aeK, with, say,
ξi(ki + 1) ^ α* ̂  ζi{ki) {% = 1, 2, , ri), then clearly,

log zίF,(α) ^ - Σ (&, + 1) log 2 ^ - w log 2 + log ΔFμ{a) .

It follows that Km(X) ^ iΓw(^) so that by Theorem 1,

Km(g) = #„(/£) - J

and the lemma is proved.
At this point it is necessary to establish the fact that, in so far

as compact sets are concerned, covering classes K can be assumed to
have the property that if {Rn} is a sequence of rectangles for_which
m(Rn) -H. 0, then δ(Rn) -+ 0 as n -+ oo.

LEMMA 3. Given a covering class K, there is a covering class
Kr such that

( i ) KJE) = K'm{E) for all compact sets E,
and

(ii) If {Rn} £ K' with m{Rn) -> 0, then d(Rn) -> 0l(n - o o ) .

Proof. Let p be a permutation of the first n I
and write

K(p) = {aeK: apω ^ ^ apM} .

Define

- I/log t; 0 < ί ^ 1/e

Then φ is nondecreasing and ?>(ί) ̂  t for ί ^ 1/e. If x belongs'to
K{p), define

ψ(x) = ΛΓ ,

in the case that xp{i) < φ(xPii+1)) for i = 1, 2, •••, w — 1. Otherwise
define ψ*(x) by

, ^ + l ^ t ^ w,

where j is the largest integer k f^ n — 1 for which

Consider the set ϋC(l), 1 denoting the identity permutation. The fol-
lowing remarks will apply to K{p) for arbitrary p, by replacing
every index j by its image p(j). If xeK(l), then
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log m{Rf{x)) = ί χ + j logy(a?i+i) \ /Λ + log xx

log m(R9) V log xj+ι xn 11 V log χi+ι

and, by Remark 2 of § 2 with Ra = ΠΓ(0,1/e),

0 < log x,. - - x,. ^ .̂

xx x5 \
χi+ι . xn )

log xi+1 xn ~~ log a?i+1 a* ~ (w - i) log xj

j+1

Suppose that K(l) contains rectangles of arbitrarily small measure.
Let ε > 0 and δ > 0 be such that 0 < t < δ implies

0 < log φ(t)flog t < ε/(n - 1) .

Select 7 > 0 so that 0 < t < Ί implies 0 < φn(t) < δ. Now if
#i »« < yn, then xn < Ί and so ?>*($») < δ. Now ^(ί) ^ φh{t) if
ΐ ^ fc, and so

α?i+1 < ^(%+2) g ^ 9w-^1(α;w) < δ .

It follows that log φ(xs+ι)βog xs+ί < ε/(n — 1), and so

1 ^ log m{RΨ{x)) ^ χ

1 + ε log m(JBx)

Since K- \JpK(p), it now follows that

Km i ^ % ) , i (ajeJΓ).
«(Λ»)-O log m{Rx)

A similar analysis shows that condition (ii) of the corollary to Theorem
1 also holds, with τ = m. If K' = φ(K), then KJE) = Zi(S) for
all compact sets i?. For the second assertion of the lemma, consider
again JSΓ'(I), this set being typical of the general case. Let ε > 0,
and δ > 0 such that 0 < t < δ implies φn{t) < ε. As before, if
#i x« < δn, then φn(xn) < ε and so,

H S ^ ̂ "" i" i(^) < ε .

Hence

(ψ(x)\ + + ?Ks)i)1'f ^ OXe)1 + (w - i)ε2)1 / 2.

Since ψ(x)x ψ{x)n —* 0 implies ^ xn —> 0, the second assertion is
proved.

Since Km{E) ^ K£(E) for all compact E, by Lemma 3, the same
relation holds for K', i.e., K'n(E) ^ K£(E). The proof of the first
part of Theorem 2 will be concluded with

LEMMA 4. Let K be a covering class with the property that if
{Rn} <Ξ K and m(Rn)—>0, then δ(Rn)-+0 (n—+oo). If S is a covering
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class consisting of cubes and Km(E) ^ Sm(E) for all compact E, then
the map ψ defined on K by ψ{a)3*=±- max 1 : δ i s ί Λ ai9 (j = 1, 2, •••, n) has
the properties (i) and (ii) listed in the corollary to Theorem 1 for
τ — m.

Proof. Let ε > 0 and let p be a permutat ion of {1,2, •••, %}.
Write

K(p, e) = \ae K: ap{1) <: . . . <: αp(β> and
logm(Ra) n

Suppose that K(p, ε) contains rectangles of arbitrarily small measure.
Let 7i, , 7» be selected so that 0 < 7< < 1 and for all a in K(p, ε),

/1
i

log m(icβ)

and

Σ I 7P(i, - 7P(Λ, I ̂  e/4 .

For each i, (i = 1, 2, , n), define

fS) = V (-% log βj Λ (ί + (1 - 7,) log 8i)) .
seS

Then ft e J^ (i = 1, 2, , n) and hence consider g(x) = Σf^) in ^ .
Clearly Sm(g) = 1/n Σf 7*. On the other hand, for a in iΓ(p, ε) and
Λ: with Xi = — log α* (i — 1, , ri),

g(χ) _ ^ ^ ^ . Xi

< Σ 7.^ < Σ 7
Σxt Xi ΣXi ~~ * log m(Ra)

It follows that

SJg) - Km(p, ε)(g) ̂  ± Σ % ~ Σ %
Iogra(i2α)

n

If Km(p, ε) is a covering class, Lemma 2 implies that there is a com-
pact set E for which

Since iΓ(p, ε) g iΓ, K{p, ε) cannot contain rectangles of arbitrarily
small measure, and thus

lim ( max Ί

 l o g α * ) = 1/w (m(Λ.) > 0, α e K) .
\ i^i^n log m(Ra)/
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Since ΣΓ log ajlog m(Ra) = 1, it also follows that

lim ( min Ί

 l o g \ ) = 1/w, (m(Λ.) > 0, a'eK) ,
\ i logm(R)/

n Ί \
^n logm(Ra)

and so,

Moreover, for each j ,

H / l o g α y - l o g ^ ( α ) Λ = l i m / _ l o g _ % _ ^ J Λ = 0

V logwfcCB.) / \logm(Ra) n)logm(Ra)

(m(Ra) > 0, a e K)

and the lemma is proved.

It now follows that K'm{E) = ψ(K')m(E) for all compact sets E, and
so Km{E) — ψ{K')m{E), which concludes the proof of the first part of
Theorem 2 For the second part, assume that Km{E) — Sm(E) for all
compact E and some covering class of cubes S. Observe that this con-
dition implies that §(Rj) —> 0 whenever m{R5) —> 0, {R5} S K. Indeed,
if lim sup δ(Rk) = b > 0, while m(Rk)—+0, then extract a subsequence,
say {Pj}, from {Rk} for which d(Pj) ̂  6/2, and such that there is £.,
(1 ^ ϊ ^ w) for which the edges of the rectangles Pk, parallel to the
Zth. coordinate axis have length at least bfeVn. Then the set

E = {ΛΓ: xt = 1/2, i Φ I, and 0 ̂  xι ^ 62/2^}

is such that Sm(E) = 1/n, while KJJS) — 0, which contradicts the
assumption. Now, by Lemma 4 and the corollary to Theorem 1,

^ ψ(K)JE) for all compact £7. Since

it is sufficient to establish the relation ψ{K)δ{E) ^ Kδ{E) for all com-
pact E. For this purpose, let φ be defined on ψ(K) by writing
<P(ΛΓ) = z, for some z in K for which ^(z) = ΛΓ. For x in

log % -

logδ(Rx)

= ί log ̂ (g)y - log zλ ί \ogm(R3) \ ί log m(R+la))\
V log m(R3) ) \ log m(Rir{z))/ \ log ί(2^ ( β )) / '

Now log m(Rψ(s))/log δ(Rir{s)) is bounded for all z, since jβ^(a) is a cube.
Moreover, since τn(Rz) —•> 0 as 5(72*) —+ 0, the expressions

a n d log m{R2)
l {R) 'a n d

log m(J?,) log
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approach 0 and 1 respectively as δ(Rx) approaches 0. It follows that

_ 0 χ

Also, since Rx 3 RΨM,

χ ^ \ogδ(RφM) ^.logjmaxφWt) = log δ(Rx) - 1/2 log n
= logδ(Rx) ~ \ogδ(Rx) logδ(Rx)

and thus

—> 0 , x e ψ{K)) .
1 ^

log δ(Rx)
The map ?>: ψ(K)-+K thus satisfies the conditions listed in the corol-
lary to Theorem 1 for τ = δ, and the desired inequality, ψ(K)δ(E) ^
Kδ{E) is established; and the proof of Theorem 2 is complete.
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