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^-COMMUTATIVE SEMIGROUPS IN WHICH EACH
HOMOMORPHISM IS UNIQUELY DETERMINED

BY ITS KERNEL

EDWARD J. TULLY, JR.

An eqivalence relation σ on a semigroup S is called a
congruence if whenever aσb and cod it follows that acσbd.
There is a natural correspondence between congruences on S
and homomorphic images of S. In this paper semigroups
satisfying the following two conditions are considered.

(1 ) There exists g in S such that, if σ and p are con-
gruences on S and {x e S: xσg} — {x e S: xpg}, then σ and p
coincide.

(2) For all α, b e S, either ab = ba or, for some x and
y in S, abx = ba and ?/<z& = ba.

In § 1, four examples of such semigroups are given. For example,
in Type 1 (which is the most complicated of the four) the method
of construction may be roughly described as follows. Start with an
arbitrary group G, having g as its identity element. Adjoin to G
any number of extra pieces. Each of these must be an interval
which has been cut out from some subgroup of the additive real
number. Each interval must have 0 as one endpoint and (with
possibly one exception) must actually contain 0. The resulting set
is turned into a semigroup by the convention that the extra ele-
ments act, wherever the operation is not already defined, in the
same manner as the group identity g. Finally, one can, optionally,
adjoin a zero element.

In § 3 the following result is obtained.

MAIN THEOREM. Every semigroup satisfying (1) and (2) is iso-
morphic to a semigroup of one of the four types constructed in $1.

The effect of (1) is to assert that each congruence is uniquely
determined by its kernel relative to g (that is, by the equivalence
class to which g belongs). Thus if S is a group with identity
element g, an elementary theorem of group theory states that (1) is
satisfied. Indeed, it is easy to see that g could be taken to be any
element of the group, and (1) would still be true. On the other
hand, (1) does not hold for arbitary semigroups. For example, we
shall see (as a consequence of Lemma 1) that (1) does not hold for
the positive integers, if we take either multiplication or addition as
the semigroup operation.
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(1) can be better understood if we recall that Ljapin [4, 5]
gave a fairly simple condition for a subset of a semigroup to be
a possible congruence class, and called such subsets normal. Thus
(1) states that there is a natural one-to-one correspondence between
homomorphisms of S and those normal subsets which contain g.
Moreover, given a normal subset N of any semigroup, one can con-
struct two particular congruences (defined by Ljapin [4, 5] and
Teissier [9]) which are respectively the smallest and the largest
congruence having N as a class. Thus (1) states that these two
congruences are identical for every normal set N containing g, so
that, in the lattice of congruences on S, the "closed interval" con-
sisting of all those congruences having N as a class reduces to a
single "point."

Our main purpose is to determine all commutative semigroups
satisfying (1). However, it seemed more natural to replace com-
mutativity by (2), which is a slighty weaker condition. Recall that
Green [3] defined an equivalence relation 2ί? on an arbitrary semi-
group by: aSίfb if and only if either a — b or, for some x, y, u, v in
S, ax = ya = b and bu = vb — a. Since (2) is simply commutativity
modulo <%* we might call a semigroup satisfying (2) ^-commutative.
It is easy to see that (2) implies that Sίf is itself a congruence.
In fact, (2) is equivalent to the assertion that £ίf is a congruence and
the homomorphic image determined by £ίf is commutative. Some
examples of ^g^commutative semigroups are furnished by those
semigroups (studied by Clifford [1]) which are unions of groups and
in which the idempotents commute. In fact, if S is a union of
groups, then (2) holds if and only if the idempotents commute.

In § 2 we develop some preliminary results. Some of the methods
and results of this section (for instance, the partition in Lemma 6
of a portion of S into certain equivalence classes each of which is
totally ordered by the divisibility relation) are very similar to those
used by Ljapin [6] in his study of a more restricted class of semi-
groups, viz., commutative semigroups in which the only normal sets
are ideals and single elements. Lemma 8 is a slightly altered ver-
sion of an imbedding theorem due to Clifford [2].

After proving the main theorem, we derive some corollaries in
§ 4. For example, in the finite case the construction becomes parti-
cularly simple (Corollary 1). Corollary 2 specializes to the class of
semigroups studied by Ljapin [6]. Our results are similar to his
but more explicit because of our use of subgroups of real numbers.
Finally, if (2) is strengthened by requiring g to be an identity element,
S must be either a group or a group with a zero element adjoined
(Corollary 3).
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1* E x a m p l e s •

Type 1. Let G be an arbitrary group, and g its identity
element. Let GQ, Gl9 be any (finite or finite) number of multi-
plicative subgroup of the positive real numbers. (Since the multi-
plicative positive reals are isomorphic to the additive reals, we could
justas well take Go, Gu to be additive groups, and make a few
small changes in what follows. We choose multiplication mainly to
agree with our use elsewhere in this paper of multiplicative nota-
tion.) Let 70 be optionally either the interval (1/2, 1) or the interval
[1/2, 1). For each i Φ 0, let 7* be optionally either (1/2, 1] or [1/2,
1]. For each i, let T, = Gt Π U Let S = (\Ji Tt) U G. (In the for-
mation of S, we regard all the T{ and G as mutually disjoint.
Formally, this involves replacing each Ti by another set in one-to-
one correspondence with I7*.) We define multiplication o in S by:
a°b = ab, the group product, if α, be G; aob = boa = α, if ae G,
be Ti; aob = ab, the numerical product, if a, be T{ and αί>e TV, aob =
g, the group identity, in all other cases. Finally, we adjoin to S
an optional zero element.

Type 2. Let G be an arbitrary group, and g any element of G.
Adjoin to G an optional zero element and an optional element α.
Define a2 = g2, ah — gh, ha = hg, for all he G.

Type 3. Let G be a multiplicative subgroup, containing 1/2, of
the positive real numbers. Let S be the intersection of G with
either the interval [1/2, 1) or the interval [1/2, 1], with an extra
element 0 adjoined. Let g be the number 1/2. Define: aob = ab,
the numerical product, if a Φ 0 Φ b and ab ^ 1/2; aob — 0, in all
other caseso

Type 4. Let G be as in Type 3. Let S be Gn [1/2, 1], with
two extra elements, 0 and h, adjoined. Define the operation as in
Type 3, with the additional provision that h<>l = loh = 1/2, and
hoa — aoh = 0, if a Φ 1.

It is fairly straightforward to check that semigroups of these
four types satisfy (1) and (2). For (2), one needs only note that
Types 3 and 4 are actually commutative, while in Types 1 and 2
the only non-commutativity which exists is that arising from the
group G. Thus in Types 1 and 2, ab and ba are always either
equal or both in G, so that (2) holds.

For (1), the best procedure is to determine all the congruences.
For example, suppose σ is any congruence on a semigroup of Type 1
(with the zero element adjoined). The σ-class containing 0 must be
an ideal, 7. If I Φ {0}, then 7 contains G, and every other σ-class
must be a single element. On the other hand, suppose 7 = {0}.
Then σ restricted to G gives a congruence on G, which can be ex-
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pressed as the partition of G into the cosets of some normal sub-
group H. Finally, each element of the 2\ must be either alone in
its σ-class, or identified with H. The situation with the other types
is similar but easier.

2 Preliminary results. We now assume that S is a semigroup
satisfying (1) and (2). By (2), left and right divisibility coincide,
that is, if ax = b then ya = b for some y. Thus we shall say simply
that a divides b, and write alb, if either a = b or ax = b for some
xe S. The divisibility relation thus defined is reflexive and transi-
tive, but it may happen that each of two distinct elements divides
the other.

LEMMA 1. At most one element of S (which is necessarily a zero
element) fails to divide g.

Proof. Let A — {xe S: x)( g} If A Φ 0 , A is an ideal. Hence
we can consider the Rees congruence modulo A (introduced by Rees
[8]), that is, the congruence having A as one class, every other
class being a single element. This congruence and the identity con-
gruence (in which each class consists of a single element) both have
{g} as their kernel. Hence they coincide, so that A consists of a
single element, which must be a zero element.

Now let I = {xe S: g\ x). Let G be the Jg^-class containing g,
that is G = {xeS:g\x and x\g}. Then I is G together with a
possible zero element.

L E M M A 2 . If x, y$G and xέ%fy, then x — y.

Proof. Let σ be the congruence having G as one class, every
other class being a single element. Then σ and £ίf are congruences
with the same kernel, G. Hence σ and 3ίf coincide.

LEMMA 3. Suppose J is an ideal containing g, and a and b
are distinct elements of S not in J. Then for some xe S either
axeJ, bxgj or axg J, bx e J.

Proof. Define (following Teissier [9] and Pierce [7]) a congruence
σ by: xσy if and only if every multiple of the pair x, y (including
the pair x, y itself) consists of elements x(a), y(a) either both belong-
ing to J, or neither belonging to J. Then σ has the same kernel
as the Rees congruence modulo J. Hence σ coincides with the Rees
congruence.
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LEMMA 4. Let x e S. Then either xn e I, for some positive
integer n, or else x2 = x and x is maximal relative to \ (i.e., has no
divisors except itself).

Proof. Suppose that, for all n, xnΦl. Let J={y: for all n, y | xn}.
If x2 had a proper divisor, a, we could apply Lemma 3 to the pair
a, x2, to obtain z such that exactly one of the pair az, x2z is in J.
But this is impossible. For a \ x2 implies az \ x2z, so that if azeJ
then so is x2z. On the other hand, if az $ J, then az \ xn for some
n, and hence z \ xn, so that x2z \ xn+2, and hence x2z £ J. Thus we have
shown that x2 is maximal relative to |, and in particular that x2 = x.

Now let T be the complement of I in S.

LEMMA 5. Suppose a, be T, and a and b are incomparable
relative to | (that is aJfb and b\a). Then there exists an idempotent
e which is maximal relative to \ and which divides exactly one of a, b.

Proof. Let J = {xe S: xJ( a and x \ b}. Then J 2 / . Apply
Lemma 3, to obtain x e S with exactly one of ax, bx (say bx) in J.
Then ax & J. Hence ax = a. Hence, for all n, axn = a. Hence, for
all n, xn £ I. By Lemma 4, x is a maximal idempotent. x \ a since
ax = a. Finally, x\b, for if x\b then b = xy for some yeS, and
hence xb — x(xy) — x2y — xy — b^J, so that xb $ J and by Jg^-com-
mutativity bx£j, contradicting our earlier assumption.

Now we define a relation π on T by: απδ if and only if either
a\b or b\ a.

LEMMA 6. π is an equivalence relation on T.

Proof. Clearly, π is reflexive and symmetric. We must show
that π is transitive. Thus suppose that aπb and bπc. There are
four cases:

Case 1: a\b and b \ c. Here, clearly a\c, so that aπc.
Case 2: b \ a and c \ b. Here, clearly c | α, so that απc.
Case 3: a I 5 and c | b. Suppose aπc does not hold. By Lemma 5,

obtain a maximal idempotent e with, say, e\c, e\ a. Since α | δ,
αe I 6c. But since e is an idempotent dividing b, we have be — b.
Hence aeb, so that ae e T. Now let J = {x: x \ ae. Then J 3 -f•
Moreover αe ̂  α, for otherwise e \ a. Apply Lemma 3 to obtain x
with exactly one of ax, aex in / . If ax e J, then, since ax | aex, we
have aex e J. Hence we must have aex ej, axί J. Hence ax \ ae,
and so axe \ ae2 = ae. But axe = aex by Jg^-commutativity and
Lemma 2. Hence aex £ J, a contradiction.

4: δ | a and b \ c. Suppose aπc does not hold. By Lemma 5
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let e be a maximal idempotent with, say, e | c, e\c. Then, since
b I c and e | c, we have 6τre by Case 3. But since e is maximal this
implies e | b. Hence # | a.

Let the 7Γ-classes be called So, Si, . Clearly each St U / is an
ideal. Let JK̂  be the homomorphic image of the semigroup St\J I
determined by the Rees congruence modulo I. Let T- be jβ4 with
the maximal idempotent of i2€ (if there is one) removed.

LEMMA 7. Each T{ is a commutative semigroup with zero
element 0, satisfying:

(3 ) T[ is naturally totally ordered (in the sense of Clifford
[2]), that is for all distinct a, be T[ either a\b or b\a but not both.

(4 ) Every a e T[ is nilpotent, that is an — 0 for some positive
integer n.

Proof. T[ is commutative because it is essentially part of an
Jg^-commutative semigroup, considered modulo the relation έ%f. The
zero element is simply I collapsed to a single point. To prove (3),
let distinct a and b be given. If one is 0, the other divides it, but
not conversely. If neither is 0, then a, be S<. But S< is a π-class.
Hence one divides the other. By Lemma 2, it is impossible for each
to divide the other. To prove (4), let a Φ 0 be given. Since
ae SiξΞ: S, and a is not a maximal idempotent, we conclude by
Lemma 4, that, in S, an e I for some n. But this means that, in
27, an = 0.

LEMMA 8. Suppose T is any commutative semigroup with zero
satisfying (3) and (4). Then T is isomorphic to the intersection with
the interval (0,1) of some subgroup of the positive real numbers,
with either the interval (0,1/2) or the interval (0, 1/2] collapsed to a
point.

Proof. Clifford [2, especially Theorem 4, page 642] showed
essentially that every such semigroup can be imbedded in the addi-
tive positive reals with either the interval (1, °°) or the interval
[1, oo) collapsed to a point. Thus, in our multiplicative notation, we
have T imbedded in (0,1) with either (0,1/2) or (0, 1/2] collapsed to a
point. Let / be that portion of (0, 1) which is not collapsed, so that /
is either [1/2, 1) or (1/2, 1). By virtue of the imbedding, we can regard
the set U of nonzero elements of T as a subset of J. Let G be
the multiplicative group of real numbers generated by U, that is
let G = {u, - umvτι- v~ι: uif vt e U). We shall show that GΠJ = U.
Clearly G ί l J i U. Suppose x e G Γ) J. Then x = uγ umvτι vή1,
for some uif v{ e U. If m + n — 1, we are finished, because then
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either x = uL e U or x = v^1, and the second case cannot arise since
xej. Thus we can proceed by induction on m + n. If uγ = vl9 we
can write x = u2 umv^1 v~\ so that by induction x e U. On
the other hand, suppose uλ Φ vx. By (3) we have, for some p Γ ,
either vγy = uγ or u^y = vγ. Since y cannot be the zero element of
T, we have yeU, where either y — uxvτι or y = v^1. Thus we can
write either x — yu2 umv^1 v"1 or x — u2 umy~~ιv^1 v~ι.
Thus by induction xe U. It is now clear, that, if we start with
G and perform the construction stated in the lemma, we obtain U
together with the collapsed interval, that is, we essentially obtain T.

3. Proof of the main theorem. We divide the proof into four
cases.

Case I: / e G , and there exists ae T such that a2e T.
Case II: g2 e G, and, for all a e T, a2 g T.
Case III: g2 £ G, and there is none or one 7Γ-class.
Case IV: g2 £ G, and there is more than one ττ-class.

Note first that, in Cases I and II, G is a group. This follows from
the known fact (Green [3]) that an ^g^-class containing two elements
and their product must be a group.

LEMMA 9. In Cases I and II, if e is the identity of the group
G, and a is any element of T, we have ae = ea = g.

Proof. If 0 Φ s e S, then es and se are in G. Thus es — ese =
se. Thus, e commutes with every element of S. Define congruences
σ and p on S by: xσy if and only if either x = y, or xe = ye and a
properly divides x and y; xpy if and only if either x = y, or xe = ye,
a I x, a I y. The kernel of σ is {xe S: xe ~ g, a properly divides x},
and the kernel of p is {xe S: xe = g, a\ x}. But σ and p are
distinct (since a and ae are in the same p-class but not in the same
cr-elass). Hence their kernels are distinct. Hence ae = g.

Now in Case I, we show that S must be isomorphic to a semi-
group of Type 1. By Lemmas 7 and 8, we have a one-to-one corre-
spondence between each T{ and the intersection with either (1/2, 1)
or [1/2, 1) of a suitable subgroup G* of the positive reals. By
Lemma 5, each of the T{, with one possible exception, consists of
the corresponding T with a maximal idempotent e{ adjoined. We
can handle this by numbering in such a way that Go gives rise to
the exception. (If there is no exception, let Go — {1}.) Then for
ί Φ 0, intersecting G< with (1/2, 1] or [1/2, 1] gives Ti9 since the
number 1 can correspond to e^ Finally we saw that G is a group.
Thus we have a one-to-one correspondence between S and a Type 1
semigroup.
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Next, we show that g is the identity element of G. Since we
are in Case I, let a be such that a2 e T. Then, using Lemma 9,
we have g = a2e = αV = a(ae)e = α(βα)β = (ae)(ae) = g2. Thus g is an
idempotent in G, and hence is the group identity.

It remains to check that the one-to-one correspondence preserves
the semigroup operation. If x, y, xy e T, we must have x and y in
the same S{ (for if xe Si, ye Sj with i Φ j , then xy would be in
the ideal S3- U / and also in the ideal S3 U I and hence in /) . There-
fore x and y can be regarded as elements of some 27 so that the
operation is preserved by virtue of the isomorphism stated in
Lemma 8. If x, ye T and xye I, we have xy = xye = xey = xeye —
e2 — e. If x e T and ye I, we have xy e I. Hence xy = xye = xey —
ey = y. Similarly, if x e I and yeT, we have xy — x. Finally, if
x, ye I, the operation is preserved, since we used G as the arbitrary
group in the construction, and we saw by Lemma 1 that / is either
G or G with a zero element adjointed.

LEMMA 10. In Case II, T contains at most one element.

Proof. Suppose a, be T and a Φ b. If a and b are incomparable,
then by Lemma 5 T contains an idempotent, contradicting Case II.
Thus we can assume, say, a \ b. Then b = ac for some ce T. If a
and c were incomparable, we could apply Lemma 5 again, contradict-
ing Case II. Let d be either a or c, whichever divides the other.
Then d \ a and d | c. Hence d2 \ ac. Hence d2 e T, contradicting
Case II.

Thus we can assume that either T = 0 or T — {h}. In both
cases, the isomorphism with a Type II semigroup is clear. For
h2 e I, and hence h2 = h2e = hehe = g2, by Lemma 9. On the other
hand, hxel for all xel. Hence hx = hxe — hexe — gx. Similarly,
xh = xg for xel.

LEMMA 11. In Case III and IV, S contains a zero element 0,
g2 — 0, every element of S (except maximal idempotents) is nilpotent,
and G — {g}.

Proof. The first two statements are clear, since g2 &G. Suppose
x is not a maximal idempotent. By Lemma 4, xn e I for some n, so
that g I xn. Hence 0 = g2 \ x2n, so that x2n — 0. Finally, suppose
ae G. Then we have ax — g and gy — a, for some x, yeS. Hence
axy = a, and, by induction on n, a(xy)n — a for all n. Thus xy is
not nilpotent. Hence xy is a maximal idempotent, and so is x which
divides it. Hence ax = α, so that g — a.

In Case III, there is at most one τr-class, so that S itself (with



^-COMMUTATIVE SEMIGROUPS 677

the maximal idempotent, if one is present, removed) satisfies (3) and
(4). Thus, by Lemma 8, there is an isomorphism between S and a
Type 3 semigroup. (By Lemma 1, g = 1/2.)

LEMMA 12. In Case IV there are exactly two π-classesy one of
which consists of a single element.

Proof. Suppose there were three π-classes, Si, S2 and Ss. By
Lemma 5, at least two of these (say Si and S2) contain maximal
idempotent s (eι and e2). Then e21 g, and hence e^e^g — g. Hence
βA — g. S i m i l a r l y e2eγ = g. H e n c e g2 — eγe2eγe2 — e1e1e2e2 = eγe2 — g,
contradicting Case IV. Thus, there are exactly two π-classes, S1

and S2. Now suppose each of these contained more than one element,
so that a, be Sly c, de S2, a Φ b, c Φ d. By Lemma 5, we can assume
that one of a, b, c, d (say a) is a maximal idempotent. Since c | g
and d \ g, we have ca\ ga = g and da\ ga = g. Hence ca — da — g.
Since cπd, one must divide the other (say c\d). Write d = xc for
some xeS. Then g = da — xca = xg, and, by induction on n, xn £ I
for all n. Hence by Lemma 4 x is a maximal idempotent. But
x e S2 implies x Φ a. Thus we have two maximal idempotents. As
in the first part of the proof, their product must be g, and hence
g2 = g, contradicting Case IV.

For Case IV, we now set up an isomorphism with a Type IV
semigroup. Let the one-element ττ-class be the h of type IV. The
rest of S, by Lemma 8, is isomorphic to G Π [1/2, 1] with 0 adjoined,
for some subgroup G of the positive reals. (By Lemma 1, g = 1/2.)
It remains only to check that h multiplies in the right may. Since
h I g, Ihlg — g, and hence Ih = g. Similarly, hi = g. Now suppose
x Φ 1, Since h\g, xh\ xg. But xg = 0, for otherwise xg = g and
hence xng ~ g for all n; since x is not a maximal idempotent, this
would contradict Lemma 11. Note first that gx = 0 (since otherwise
gx = g, and hence gxn = g for all n, so that x would not be nilpotent).
Moreover hx Φ h, since h is a maximal element not an idempotent.
Hence 1 | hx, so that l(hx) — hx. On the other hand (lh)x = gx = 0,
so that hx = 0. Similarly xh = 0.

4. Corollaries* We say that a semigroup S satisfies maximal
condition on principal ideals if every family of principal ideals con-
tains a maximal member, or equivalently if there is no infinite
sequence of principal ideals each of which properly contains its pre-
decessor. It is easy to see that this is equivalent to the assertion
that there is no infinite sequence of elements of S each of which
properly divides its predecessor.
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COROLLARY 1. Suppose S is a semigroup with maximal condi-
tion on principal ideals which satisfies (1) and (2). Then S is iso-
morphic to a semigroup of one of the following types.

I. Let G be an arbitrary group, and g its identity element.
Let nQ, nl9 ••• be a family of integers (with repetitions allowed)
indexed by a (possibly uncountable or empty) set I = {0, •••}. Let
S = G U {(i, n): i e I, n an integer, 0 5g n < ni9 (i, n) Φ (0, 0)}, with
an optional zero element adjoined. Define multiplication by: (i, n)g —
g if geG, (i, n)(j, m) = (i,n + m)ifi= j and n + m< ni9 (i, n)(j, m) =
g otherwise.

II. Same as Type II in § 1.
III. L e t g be a n o n n e g a t i v e integer. L e t S be e i t h e r { 0 , 1 , •••,

g + 1} or {1, , g + 1}. Define mon — min (m ~f n, g + 1).
IV. Let g be a nonnegative integer. Let S = {0, 1, , g + 1} U {/&}•

Define Oh — hQ = g, xh = hx = g + 1 if x Φ 0, mn — min (m + n, g + 1)
if m φ h Φ n.

Proof. Each of the four types in § 1 reduces, in the presence
of maximal condition, to the corresponding type in this corollary.
For instance, in Type 1, each of the groups Gi9 if it contains any
elements of the interval (1/2, 1), must contain a maximal such element,
r. It is easy to see that G Γ) (1/2, 1) consists of powers r, r2, , rn of
r. For each i, let us take w< to be the first power of r not in the
interval T{. If we identify rm for all m < % with the pair (ΐ, m)
we have essentially the operation described in the corollary. Type
II is the same as in § 1. Types III and IV are handled like Type I,
but are easier.

Another way to prove Corollary 1 would be to repeat the proof
of the main theorem, using in place of Lemma 8 a theorem of
Clifford [2, Lemma 2.5, page 637] which states essentially that every
semigroup satisfying (3) and (4) and containing a maximal element
relative to | must be a finite cyclic semigroup. For this corollary (as
well as the following ones) it is easy to check that the converse
holds.

COROLLARY 2. Suppose S is a semigroup satisfying (2) in which
each congruence is the Rees congruence modulo some ideal. Then S
is isomorphic to a semigroup constructed as in Type 1, G being the
one-element group, and the optional extra being omitted.

Proof. The assumption that every congruence is a Rees con-
gruence implies that S contains a zero element (since the identity
congruence must be a Rees congruence). Moreover, each congruence
is then uniquely determined by the congruence class containing 0.
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Thus (1) is satisfied, if we let g = 0. Therefore, we need only
specialize the main theorem by determining those cases in which g
is a zero element. For this to happen in Type 1, we must have
G = {g}, and the optional extra element must be missing. Thus,
Type 1 reduces to the situation described in the corollary. In Type
2 also, we must have G = {g}, so that S must have either one or
two elements, without the extra 0; these cases are already included
as degenerate forms of Type 1. Finally, in Types 3 and 4, g can
never be a zero element.

COROLLARY 3. Suppose S is a semigroup satisfying (2) and
containing an identity element e. Suppose that each congruence on
S is uniquely determined by its kernel relative to e. Then S is
either a group or a group with a zero element adjoined.

Proof. The hypothesis states that (1), with g replaced by e,
is satisfied. Therefore we need only specialize the main theorem by
determining those cases in which g is an identity element. In Type
1, we note that g fails to act as an identity element for the
elements of the T^ hence each T{ must be empty, so that the
desired conclusion follows. In Type 2, g fails to act as an identity
element on the optional element a; hence a must be lacking, so
that the conclusion follows. In Type 3, g fails to act as an identity
element unless S consists of two elements, so that S must be a
one-element group with a zero adjoined. In Type 4, g fails to act
as an identity on the element h.
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